NAG Library Function Document
 nag_1d_quad_brkpts_1 (d01slc)

1 Purpose

nag_1d_quad_brkpts_1 (d01slc) is a general purpose integrator which calculates an approximation to the integral of a function $f(x)$ over a finite interval $[a, b]$:

$$
I=\int_{a}^{b} f(x) d x
$$

where the integrand may have local singular behaviour at a finite number of points within the integration interval.

2 Specification

```
#include <nag.h>
```

\#include <nagd01.h>
void nag_1d_quad_brkpts_1 (
double (*f)(double x, Nag_User *comm),
double a, double b, Integer nbrkpts, const double brkpts[],
double epsabs, double epsrel, Integer max_num_subint, double *result,
double *abserr, Nag_QuadProgress *qp, Nag_User *comm, NagError *fail)

3 Description

nag_1d_quad_brkpts_1 (d01slc) is based upon the QUADPACK routine QAGP (Piessens et al. (1983)). It is very similar to nag_1d_quad_gen_1 (d01sjc), but allows you to supply 'break-points', points at which the function is known to be difficult. It is an adaptive function, using the Gauss 10 -point and Kronrod 21-point rules. The algorithm described by de Doncker (1978), incorporates a global acceptance criterion (as defined by Malcolm and Simpson (1976)) together with the ϵ-algorithm (Wynn (1956)) to perform extrapolation. The user-supplied 'break-points' always occur as the end-points of some sub-interval during the adaptive process. The local error estimation is described by Piessens et al. (1983).

4 References

de Doncker E (1978) An adaptive extrapolation algorithm for automatic integration ACM SIGNUM Newsl. 13(2) 12-18

Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature $A C M$ Trans. Math. Software 1 129-146
Piessens R, de Doncker-Kapenga E, Ûberhuber C and Kahaner D (1983) QUADPACK, A Subroutine Package for Automatic Integration Springer-Verlag

Wynn P (1956) On a device for computing the $e_{m}\left(S_{n}\right)$ transformation Math. Tables Aids Comput. 10 91-96

5 Arguments

1: $\quad \mathbf{f}$ - function, supplied by the user
External Function
f must return the value of the integrand f at a given point.

The specification of \mathbf{f} is:

```
double f (double x, Nag_User *comm)
```

1: \mathbf{x} - double Input
On entry: the point at which the integrand f must be evaluated.
2: \quad comm - Nag_User *
Pointer to a structure of type Nag_User with the following member:
p - Pointer
On entry/exit: the pointer $\mathbf{c o m m} \rightarrow \mathbf{p}$ should be cast to the required type, e.g., struct user $*_{s}=$ (struct user $*$)comm \rightarrow p, to obtain the original object's address with appropriate type. (See the argument comm below.)
a - double
Input
On entry: the lower limit of integration, a.
3: $\quad \mathbf{b}-$ double
Input
On entry: the upper limit of integration, b. It is not necessary that $a<b$.
nbrkpts - Integer
Input
On entry: the number of user-supplied break-points within the integration interval.
Constraint: nbrkpts ≥ 0.
5: brkpts[nbrkpts] - const double
Input
On entry: the user-specified break-points.
Constraint: the break-points must all lie within the interval of integration (but may be supplied in any order).

6: epsabs - double
Input
On entry: the absolute accuracy required. If epsabs is negative, the absolute value is used. See Section 7.
epsrel - double
Input
On entry: the relative accuracy required. If epsrel is negative, the absolute value is used. See Section 7.
max_num_subint - Integer
Input
On entry: the upper bound on the number of sub-intervals into which the interval of integration may be divided by the function. The more difficult the integrand, the larger max_num_subint should be.
Constraint: max_num_subint ≥ 1.
result - double *
Output
On exit: the approximation to the integral I.
10: abserr - double *
Output
On exit: an estimate of the modulus of the absolute error, which should be an upper bound for $\mid I$ - result \mid.

11: $\quad \mathbf{q p}$ - Nag_QuadProgress *

Pointer to structure of type Nag_QuadProgress with the following members:

```
num_subint - Integer
    On exit: the actual number of sub-intervals used.
```

fun_count - Integer
Output

On exit: the number of function evaluations performed by nag_1d_quad_brkpts_1 (d01slc).

```
sub_int_beg_pts - double * Output
```

sub_int_end_pts - double * Output
sub_int_result - double * Output
sub_int_error - double * Output

On exit: these pointers are allocated memory internally with max_num_subint elements. If an error exit other than NE_INT_ARG_LT, NE_2_INT_ARG_LE $\overline{\text { or }}$ NE_ALLOC_FAIL occurs, these arrays will contain information which may be useful. For details, see Section 9.

Before a subsequent call to nag_1d_quad_brkpts_1 (d01slc) is made, or when the information contained in these arrays $\overline{\text { is no }}{ }^{-}$longer - useful, you should free the storage allocated by these pointers using the NAG macro NAG_FREE.

12: comm - Nag_User *
Pointer to a structure of type Nag_User with the following member:
p - Pointer
On entry/exit: the pointer comm $\rightarrow \mathbf{p}$, of type Pointer, allows you to communicate information to and from $\mathbf{f}()$. An object of the required type should be declared, e.g., a structure, and its address assigned to the pointer comm $\rightarrow \mathbf{p}$ by means of a cast to Pointer in the calling program, e.g., comm. $\mathrm{p}=$ (Pointer) \&s. The type Pointer is void *.

13: fail - NagError *
Input/Output
The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation).

6 Error Indicators and Warnings

NE_2_INT_ARG_LE

On entry, max_num_subint $=\langle$ value \rangle while nbrkpts $=\langle$ value \rangle. These arguments must satisfy max_num_subint $>$ nbrkpts.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_INT_ARG_LT

On entry, max_num_subint must not be less than 1: max_num_subint $=\langle$ value \rangle.
On entry, nbrkpts $=\langle$ value \rangle.
Constraint: nbrkpts ≥ 0.

NE_QUAD_BAD_SUBDIV

Extremely bad integrand behaviour occurs around the sub-interval (\langle value $\rangle,\langle v a l u e\rangle$).
The same advice applies as in the case of NE_QUAD_MAX_SUBDIV.

NE_QUAD_BRKPTS_INVAL

On entry, break-points outside (\mathbf{a}, \mathbf{b}): $\mathbf{a}=\langle$ value $\rangle, \mathbf{b}=\langle$ value \rangle.

NE_QUAD_MAX_SUBDIV

The maximum number of subdivisions has been reached: max_num_subint $=\langle$ value \rangle.
The maximum number of subdivisions has been reached without the accuracy requirements being achieved. Look at the integrand in order to determine the integration difficulties. If the position of a local difficulty within the interval can be determined (e.g., a singularity of the integrand or its derivative, a peak, a discontinuity, etc.) you will probably gain from splitting up the interval at this point and calling the integrator on the sub-intervals. If necessary, another integrator, which is designed for handling the type of difficulty involved, must be used. Alternatively, consider relaxing the accuracy requirements specified by epsabs and epsrel, or increasing the value of max_num_subint.

NE_QUAD_NO_CONV

The integral is probably divergent, or slowly convergent.
Please note that divergence can occur with any error exit other than NE_INT_ARG_LT, NE_2_INT_ARG_LE and NE_ALLOC_FAIL.

NE_QUAD_ROUNDOFF_EXTRAPL

Round-off error is detected during extrapolation.
The requested tolerance cannot be achieved, because the extrapolation does not increase the accuracy satisfactorily; the returned result is the best that can be obtained.
The same advice applies as in the case of NE_QUAD_MAX_SUBDIV.

NE_QUAD_ROUNDOFF_TOL

Round-off error prevents the requested tolerance from being achieved: epsabs $=\langle$ value \rangle, epsrel $=\langle$ value \rangle.
The error may be underestimated. Consider relaxing the accuracy requirements specified by epsabs and epsrel.

7 Accuracy

nag_1d_quad_brkpts_1 (d01slc) cannot guarantee, but in practice usually achieves, the following accuracy:

$$
\mid I-\text { result } \mid \leq t o l
$$

where

$$
t o l=\max \{|\mathbf{e p s a b s}|, \mid \text { epsrel }|\times|I|\}
$$

and epsabs and epsrel are user-specified absolute and relative error tolerances. Moreover it returns the quantity abserr which, in normal circumstances, satisfies

$$
|I-\mathbf{r e s u l t}| \leq \mathbf{a b s e r r} \leq t o l .
$$

8 Parallelism and Performance

nag_1d_quad_brkpts_1 (d01slc) is not threaded in any implementation.

9 Further Comments

The time taken by nag_1d_quad_brkpts_1 (d01slc) depends on the integrand and the accuracy required. If the function fails with an error exit other than NE_INT_ARG_LT, NE_2_INT_ARG_LE or NE_ALLOC_FAIL, then you may wish to examine the contents of the structure qp. These contain the
end-points of the sub-intervals used by nag_1d_quad_brkpts_1 (d01slc) along with the integral contributions and error estimates over the sub-intervals.

Specifically, $i=1,2, \ldots n$, let r_{i} denote the approximation to the value of the integral over the subinterval $\left[a_{i}, b_{i}\right]$ in the partition of $[a, b]$ and e_{i} be the corresponding absolute error estimate.
Then, $\int_{a_{i}}^{b_{i}} f(x) d x \simeq r_{i}$ and result $=\sum_{i=1}^{n} r_{i}$ unless the function terminates while testing for divergence of the integral (see Section 3.4.3 of Piessens et al. (1983)). In this case, result (and abserr) are taken to be the values returned from the extrapolation process. The value of n is returned in $\mathbf{q p} \rightarrow \mathbf{n u m}$ _subint, and the values a_{i}, b_{i}, r_{i} and e_{i} are stored in the structure $\mathbf{q p}$ as

$$
\begin{aligned}
& a_{i}=\mathbf{q p} \rightarrow \mathbf{s u b} \text { int_beg_pts }[i-1], \\
& b_{i}=\mathbf{q p} \rightarrow \mathbf{s u b} \text { _int_end_pts }[i-1], \\
& r_{i}=\mathbf{q p} \rightarrow \mathbf{s u b} \text { _int_result }[i-1] \text { and } \\
& e_{i}=\mathbf{q p} \rightarrow \mathbf{s u b} \text { int_error }[i-1] .
\end{aligned}
$$

10 Example

This example computes

$$
\int_{0}^{1} \frac{1}{\sqrt{\left|x-\frac{1}{7}\right|}} d x
$$

10.1 Program Text

```
/* nag_1d_quad_brkpts_1 (d01slc) Example Program.
    *
    * NAGPRODCODE Version.
    * Copyright 2016 Numerical Algorithms Group.
    *
    * Mark 26, 2016.
    *
    */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagdO1.h>
#ifdef __cplusplus
extern "C"
{
#endif
    static double NAG_CALL f(double x, Nag_User *comm);
#ifdef __cplusplus
}
#endif
int main(void)
{
    static Integer use_comm[1] = { 1 };
    Integer exit_status = 0;
    double a, b;
    double epsabs, abserr, epsrel, brkpts[1], result;
    Integer nbrkpts;
    Nag_QuadProgress qp;
    Integer max_num_subint;
    NagError fail;
    Nag_User comm;
    INIT_FAIL(fail);
```

```
    printf("nag_1d_quad_brkpts_1 (d01slc) Example Program Results\n");
    /* For communication with user-supplied functions: */
    comm.p = (Pointer) &use_comm;
    nbrkpts = 1;
    epsabs = 0.0;
    epsrel = 0.001;
    a = 0.0;
    b = 1.0;
    max_num_subint = 200;
    brkpts[0] = 1.0 / 7.0;
    /* nag_1d_quad_brkpts_1 (d01slc).
    * One-dimensional adaptive quadrature, allowing for
    * singularities at specified points, thread-safe
    */
    nag_1d_quad_brkpts_1(f, a, b, nbrkpts, brkpts, epsabs, epsrel,
                            max_num_subint, &result, &abserr, &qp, &comm, &fail);
    printf("a - lower limit of integration = %10.4f\n", a);
    printf("b - upper limit of integration = %10.4f\n", b);
    printf("epsabs - absolute accuracy requested = %11.2e\n", epsabs);
    printf("epsrel - relative accuracy requested = %11.2e\n\n", epsrel);
    printf("brkpts[0] - given break-point = %10.4f\n", brkpts[0]);
    if (fail.code != NE_NOERROR)
    printf("Error from nag_1d_quad_brkpts_1 (d01slc) %s\n", fail.message);
    if (fail.code != NE_INT_ARG_LT && fail.code != NE_2_INT_ARG_LE &&
                fail.code != NE_ALLOC_FAIL && fail.code != NE_NO_LICENCE) {
    /* Free memory used by qp */
    NAG_FREE(qp.sub_int_beg_pts);
    NAG_FREE(qp.sub_int_end_pts);
    NAG_FREE(qp.sub_int_result);
    NAG_FREE(qp.sub_int_error);
}
if (fail.code != NE_INT_ARG_LT && fail.code != NE_2_INT_ARG_LE
            && fail.code != NE_QUAD_BRKPTS_INVAL && fail.code != NE_ALLOC_FAIL
            && fail.code != NE_NO_LICENCE) {
    printf("result - approximation to the integral = %9.5f\n", result);
    printf("abserr - estimate of the absolute error = %11.2e\n", abserr);
    printf("qp.fun_count - number of function evaluations = %4" NAG_IFMT
                                    "\n", qp.fun_count);
    printf("qp.num_subint - number of subintervals used = %4" NAG_IFMT "\n",
                qp.num_subint);
    }
    else {
    exit_status = 1;
    goto END;
    }
END:
    return exit_status;
}
static double NAG_CALL f(double x, Nag_User *comm)
{
    double a;
    Integer *use_comm = (Integer *) comm->p;
    if (use_comm[0]) {
        printf("(User-supplied callback f, first invocation.)\n");
        use_comm[0] = 0;
    }
    a = FABS(x - 1.0 / 7.0);
    return (a != 0.0) ? pow(a, -0.5) : 0.0;
}
```


10.2 Program Data

None.

10.3 Program Results

```
nag_1d_quad_brkpts_1 (d01slc) Example Program Results
(User-supplied callback f, first invocation.)
a - lower limit of integration = 0.0000
b - upper limit of integration = 1.0000
epsabs - absolute accuracy requested = 0.00e+00
epsrel - relative accuracy requested = 1.00e-03
brkpts[0] - given break-point = 0.1429
result - approximation to the integral = 2.60757
abserr - estimate of the absolute error = 5.51e-14
qp.fun_count - number of function evaluations = 462
qp.num_subint - number of subintervals used = 12
```

