NAG Library Function Document

 nag_quad_md_numth_vec (d01gdc)
1 Purpose

nag_quad_md_numth_vec (d01gdc) calculates an approximation to a definite integral in up to 20 dimensions, using the Korobov-Conroy number theoretic method.

2 Specification

```
#include <nag.h>
#include <nagdo1.h>
void nag_quad_md_numth_vec (Integer ndim,
    void (*vecfun)(Integer ndim, const double x[], double fv[], Integer m,
        Nag_Comm *comm),
    void (*vecreg)(Integer ndim, const double x[], Integer j, double c[],
        double d[], Integer m, Nag_Comm *comm),
    Integer npts, double vk[], Integer nrand, Nag_Boolean transform,
    double *res, double *err, Nag_Comm *comm, NagError *fail)
```


3 Description

nag_quad_md_numth_vec (d01gdc) calculates an approximation to the integral

$$
\begin{equation*}
I=\int_{c_{1}}^{d_{1}} \ldots \int_{c_{n}}^{d_{n}} f\left(x_{1}, \ldots, x_{n}\right) d x_{n} \ldots d x_{1} \tag{1}
\end{equation*}
$$

using the Korobov-Conroy number theoretic method (see Korobov (1957), Korobov (1963) and Conroy (1967)). The region of integration defined in (1) is such that generally c_{i} and d_{i} may be functions of $x_{1}, x_{2}, \ldots, x_{i-1}$, for $i=2,3, \ldots, n$, with c_{1} and d_{1} constants. The integral is first of all transformed to an integral over the n-cube $[0,1]^{n}$ by the change of variables

$$
x_{i}=c_{i}+\left(d_{i}-c_{i}\right) y_{i}, \quad i=1,2, \ldots, n .
$$

The method then uses as its basis the number theoretic formula for the n-cube, $[0,1]^{n}$:

$$
\begin{equation*}
\int_{0}^{1} \cdots \int_{0}^{1} g\left(x_{1}, \ldots, x_{n}\right) d x_{n} \cdots d x_{1}=\frac{1}{p} \sum_{k=1}^{p} g\left(\left\{k \frac{a_{1}}{p}\right\}, \ldots,\left\{k \frac{a_{n}}{p}\right\}\right)-E \tag{2}
\end{equation*}
$$

where $\{x\}$ denotes the fractional part of x, a_{1}, \ldots, a_{n} are the so-called optimal coefficients, E is the error, and p is a prime integer. (It is strictly only necessary that p be relatively prime to all a_{1}, \ldots, a_{n} and is in fact chosen to be even for some cases in Conroy (1967).) The method makes use of properties of the Fourier expansion of $g\left(x_{1}, \ldots, x_{n}\right)$ which is assumed to have some degree of periodicity. Depending on the choice of a_{1}, \ldots, a_{n} the contributions from certain groups of Fourier coefficients are eliminated from the error, E. Korobov shows that a_{1}, \ldots, a_{n} can be chosen so that the error satisfies

$$
\begin{equation*}
E \leq C K p^{-\alpha} \ln ^{\alpha \beta} p \tag{3}
\end{equation*}
$$

where α and C are real numbers depending on the convergence rate of the Fourier series, β is a constant depending on n, and K is a constant depending on α and n. There are a number of procedures for calculating these optimal coefficients. Korobov imposes the constraint that

$$
\begin{equation*}
a_{1}=1 \quad \text { and } \quad a_{i}=a^{i-1}(\bmod p) \tag{4}
\end{equation*}
$$

and gives a procedure for calculating the argument, a, to satisfy the optimal conditions.

In this function the periodisation is achieved by the simple transformation

$$
x_{i}=y_{i}^{2}\left(3-2 y_{i}\right), \quad i=1,2, \ldots, n .
$$

More sophisticated periodisation procedures are available but in practice the degree of periodisation does not appear to be a critical requirement of the method.

An easily calculable error estimate is not available apart from repetition with an increasing sequence of values of p which can yield erratic results. The difficulties have been studied by Cranley and Patterson (1976) who have proposed a Monte-Carlo error estimate arising from converting (2) into a stochastic integration rule by the inclusion of a random origin shift which leaves the form of the error (3) unchanged; i.e., in the formula (2), $\left\{k \frac{a_{i}}{p}\right\}$ is replaced by $\left\{\alpha_{i}+k \frac{a_{i}}{p}\right\}$, for $i=1,2, \ldots, n$, where each α_{i}, is uniformly distributed over $[0,1]$. Computing the integral for each of a sequence of random vectors α allows a 'standard error' to be estimated.

This function provides built-in sets of optimal coefficients, corresponding to six different values of p. Alternatively, the optimal coefficients may be supplied by you. Functions nag_quad_md_numth_coeff_ prime (d01gyc) and nag_quad_md_numth_coeff_2prime (d01gzc) compute the optimal coefficients for the cases where p is a prime number or p is a product of two primes, respectively.

4 References

Conroy H (1967) Molecular Shroedinger equation VIII. A new method for evaluting multi-dimensional integrals J. Chem. Phys. 47 5307-5318
Cranley R and Patterson T N L (1976) Randomisation of number theoretic methods for mulitple integration SIAM J. Numer. Anal. 13 904-914

Korobov N M (1957) The approximate calculation of multiple integrals using number theoretic methods Dokl. Acad. Nauk SSSR 115 1062-1065
Korobov N M (1963) Number Theoretic Methods in Approximate Analysis Fizmatgiz, Moscow

5 Arguments

ndim - Integer
On entry: n, the number of dimensions of the integral.
Constraint: $1 \leq \mathbf{n d i m} \leq 20$.
vecfun - function, supplied by the user
External Function vecfun must evaluate the integrand at a specified set of points.

The specification of vecfun is:

```
void vecfun (Integer ndim, const double x[], double fv[], Integer m,
```

 Nag_Comm *comm)
 1: ndim - Integer Input

On entry: n, the number of dimensions of the integral.
2: $\quad \mathbf{x}[\mathbf{m} \times \mathbf{n d i m}]-$ const double Input
Note: where $\mathbf{X}(i, j)$ appears in this document, it refers to the array element $\mathbf{x}[(j-1) \times \mathbf{m}+i-1]$.
On entry: the coordinates of the m points at which the integrand must be evaluated. $\mathbf{X}(i, j)$ contains the j th coordinate of the i th point.

3: $\quad \mathbf{f v}[\mathbf{m}]-$ double
Output
On exit: $\mathbf{f v}[i-1]$ must contain the value of the integrand of the i th point, i.e., $\mathbf{f v}[i-1]=f(\mathbf{X}(i, 1), \mathbf{X}(i, 2), \ldots, \mathbf{X}(i, \mathbf{n d i m}))$, for $i=1,2, \ldots, \mathbf{m}$.

4:
m - Integer
Input
On entry: the number of points m at which the integrand is to be evaluated.
5: comm - Nag_Comm *
Pointer to structure of type Nag_Comm; the following members are relevant to vecfun.
user - double *
iuser - Integer *
p - Pointer
The type Pointer will be void *. Before calling nag_quad_md_numth_vec (d01gdc) you may allocate memory and initialize these pointers with various quantities for use by vecfun when called from nag_quad_md_numth_vec (d01gdc) (see Section 2.3.1.1 in How to Use the NAG Library and its Documentation).
vecreg - function, supplied by the user
vecreg must evaluate the limits of integration in any dimension for a set of points.

The specification of vecreg is:
void vecreg (Integer ndim, const double $x[]$, Integer j, double c[], double d[], Integer m, Nag_Comm *comm)

1: ndim - Integer Input
On entry: n, the number of dimensions of the integral.
2: $\mathbf{x}[\mathbf{m} \times \mathbf{n d i m}]-$ const double Input
Note: where $\mathbf{X}(i, j)$ appears in this document, it refers to the array element $\mathbf{x}[(j-1) \times \mathbf{m}+i-1]$.
On entry: for $i=1,2, \ldots, m, \mathbf{X}(i, 1), \mathbf{X}(i, 2), \ldots, \mathbf{X}(i, j-1)$ contain the current values of the first $(j-1)$ coordinates of the i th point, which may be used if necessary in calculating the m values of c_{j} and d_{j}.

3: \mathbf{j} - Integer
Input
On entry: the index j for which the limits of the range of integration are required.
4: $\quad \mathbf{c}[\mathbf{m}]$ - double
Output
On exit: $\mathbf{c}[i-1]$ must be set to the lower limit of the range for $\mathbf{X}(i, j)$, for $i=1,2, \ldots, m$.

5: $\quad \mathbf{d}[\mathbf{m}]$ - double
Output
On exit: $\mathbf{d}[i-1]$ must be set to the upper limit of the range for $\mathbf{X}(i, j)$, for $i=1,2, \ldots, m$.

6: $\quad \mathbf{m}$ - Integer
Input
On entry: the number of points m at which the limits of integration must be specified.

7: comm - Nag_Comm *
Pointer to structure of type Nag_Comm; the following members are relevant to vecreg.
user - double *
iuser - Integer *
p - Pointer
The type Pointer will be void *. Before calling nag_quad_md_numth_vec (d01gdc) you may allocate memory and initialize these pointers with various quantities for use by vecreg when called from nag_quad_md_numth_vec (d01gdc) (see Section 2.3.1.1 in How to Use the NAG Library and its Documentation).
npts - Integer
Input
On entry: the Korobov rule to be used. There are two alternatives depending on the value of npts.
(i) $1 \leq \mathbf{n p t s} \leq 6$.

In this case one of six preset rules is chosen using 2129, 5003, 10007, 20011, 40009 or 80021 points depending on the respective value of npts being 1, 2, 3, 4, 5 or 6 .
(ii) npts >6.
npts is the number of actual points to be used with corresponding optimal coefficients supplied in the array vk.
Constraint: npts ≥ 1.
5: $\quad \mathbf{v k}[\mathbf{n d i m}]-$ double
Input/Output
On entry: if npts >6, vk must contain the n optimal coefficients (which may be calculated using nag_quad_md_numth_coeff_prime (d01gyc) or nag_quad_md_numth_coeff_2prime (d01gzc)).
If npts ≤ 6, $\mathbf{v k}$ need not be set.
On exit: if npts >6, vk is unchanged.
If $\mathbf{n p t s} \leq 6, \mathbf{v k}$ contains the n optimal coefficients used by the preset rule.
6: nrand - Integer
Input
On entry: the number of random samples to be generated (generally a small value, say 3 to 5 , is sufficient). The estimate, res, of the value of the integral returned by the function is then the average of nrand calculations with different random origin shifts. If npts >6, the total number of integrand evaluations will be nrand $\times \mathbf{n p t s}$. If $1 \leq \mathbf{n p t s} \leq 6$, then the number of integrand evaluations will be nrand $\times p$, where p is the number of points corresponding to the six preset rules. For reasons of efficiency, these values are calculated a number at a time in vecfun.

Constraint: nrand ≥ 1.
transform - Nag_Boolean
On entry: indicates whether the periodising transformation is to be used.
transform $=$ Nag_TRUE
The transformation is to be used.
transform $=$ Nag_FALSE
The transformation is to be suppressed (to cover cases where the integrand may already be periodic or where you want to specify a particular transformation in the definition of vecfun).

Suggested value: transform $=$ Nag_TRUE.

8: res - double *
Output
On exit: the approximation to the integral I.
9: \quad err - double *
Output
On exit: the standard error as computed from nrand sample values. If nrand $=1$, then err contains zero.

10: comm - Nag_Comm *
The NAG communication argument (see Section 2.3.1.1 in How to Use the NAG Library and its Documentation).

11: fail - NagError *
Input/Output
The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation).

6 Error Indicators and Warnings
NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.

NE_BAD_PARAM

On entry, argument \langle value \rangle had an illegal value.

NE_INT

On entry, $\mathbf{n d i m}=\langle$ value \rangle.
Constraint: $1 \leq \mathbf{n d i m} \leq 20$.
On entry, npts must be at least $1: \mathbf{n p t s}=\langle$ value \rangle.
On entry, nrand must be at least 1: $\boldsymbol{n r a n d}=\langle$ value \rangle.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If $\mathbf{n r a n d}>1$, an estimate of the absolute standard error is given by the value, on exit, of err.

8 Parallelism and Performance

nag_quad_md_numth_vec (d01gdc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

vecfun and vecreg must calculate the integrand and limits of integration at a set of points. For some problems the amount of time spent in these two functions, which must be supplied by you, may account for a significant part of the total computation time.

The time taken will be approximately proportional to nrand $\times p$, where p is the number of points used, but may depend significantly on the efficiency of the code provided by you in vecfun and vecreg.
The exact values of res and err on return will depend (within statistical limits) on the sequence of random numbers generated within nag_quad_md_numth_vec (d01gdc) by calls to nag_rand_basic (g05sac). Separate runs will produce identical answers.

10 Example

This example calculates the integral

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \cos \left(0.5+2\left(x_{1}+x_{2}+x_{3}+x_{4}\right)-4\right) d x_{1} d x_{2} d x_{3} d x_{4}
$$

10.1 Program Text

```
/* nag_quad_md_numth_vec (dOlgdc) Example Program.
    *
    * NAGPRODCODE Version.
    *
    * Copyright 2016 Numerical Algorithms Group.
    *
    * Mark 26, 2016.
    */
#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd01.h>
#include <nagx04.h>
#ifdef __cplusplus
extern "C"
{
#endif
    static void NAG_CALL vecfun(Integer ndim, const double x[], double fv[],
                                    Integer m, Nag_Comm *comm);
    static void NAG_CALL vecreg(Integer ndim, const double x[], Integer j,
                                    double c[], double d[], Integer m,
                                    Nag_Comm *comm);
#ifdef __cplusplus
}
#endif
int main(void)
{
    static double ruser[2] = { -1.0, -1.0 };
    Integer exit_status = 0;
    Integer ndim;
    Integer npts, nrand;
    double err, res;
    double *vk = 0;
    Nag_Boolean transform;
    char nag_enum_arg[40];
    Nag_Comm comm;
```

```
    NagError fail;
    INIT_FAIL(fail);
    printf("nag_quad_md_numth_vec (dOlgdc) Example Program Results\n");
    /* For communication with user-supplied functions: */
    comm.user = ruser;
    /* Skip heading in data file */
#ifdef _WIN32
    scanf_s("%*[^\n] ");
#else
    scanf("%*[^\n] ");
#endif
    /* Input parameters */
#ifdef _WIN32
    scanf_s("%" NAG_IFMT " %" NAG_IFMT " %" NAG_IFMT "", &ndim, &npts, &nrand);
#else
    scanf("%" NAG_IFMT " %" NAG_IFMT " %" NAG_IFMT "", &ndim, &npts, &nrand);
#endif
    /* Nag_Boolean */
#ifdef _WIN32
    scanf_s("%39s %*[^\n] ", nag_enum_arg, (unsigned)_countof(nag_enum_arg));
#else
    scanf("%39s %*[^\n] ", nag_enum_arg);
#endif
    transform = (Nag_Boolean) nag_enum_name_to_value(nag_enum_arg);
    if (!(vk = NAG_ALLOC(ndim, double)))
    {
        printf("Allocation failure\n");
        exit_status = -1;
        goto END;
    }
    /* nag_quad_md_numth_vec (d01gdc).
        * Multidimensional quadrature, general product region,
        * number-theoretic method.
        */
    nag_quad_md_numth_vec(ndim, vecfun, vecreg, npts, vk, nrand, transform,
                &res, &err, &comm, &fail);
    if (fail.code != NE_NOERROR) {
        printf("Error from nag_quad_md_numth_vec (d01gdc).\n%s\n", fail.message);
        exit_status = 1;
        goto END;
    }
    printf("\nResult = %13.5f, standard error = %10.2e\n", res, err);
END:
    NAG_FREE(vk);
    return exit_status;
}
static void NAG_CALL vecfun(Integer ndim, const double x[], double fv[],
                                    Integer m, Nag_Comm *comm)
{
    Integer i, index, j;
    double sum;
    if (comm->user[0] == -1.0) {
        printf("(User-supplied callback vecfun, first invocation.)\n");
        comm->user[0] = 0.0;
    }
    for (i = 0; i < m; i++) {
        sum = 0.0;
        for (j = 0, index = 0; j < ndim; j++, index += m)
            sum += x[i + index];
    fv[i] = cos(0.5 + 2.0 * sum - 4.0);
```

```
    }
}
static void NAG_CALL vecreg(Integer ndim, const double x[], Integer j,
                                    double c[], double d[], Integer m, Nag_Comm *comm)
{
    Integer i;
    if (comm->user[1] == -1.0) {
        printf("(User-supplied callback vecreg, first invocation.)\n");
        comm->user[1] = 0.0;
    }
    for (i = 0; i < m; i++) {
        c[i] = 0.0;
        d[i] = 1.0;
    }
}
```


10.2 Program Data

None.

10.3 Program Results

nag_quad_md_numth_vec (dOlgdc) Example Program Results (User-supplied callback vecreg, first invocation.) (User-supplied callback vecfun, first invocation.)

Result $=0.43999$, standard error $=1.89 \mathrm{e}-06$

