
NAG Library Function Document

nag_quad_md_numth_vec (d01gdc)

1 Purpose

nag_quad_md_numth_vec (d01gdc) calculates an approximation to a definite integral in up to 20
dimensions, using the Korobov–Conroy number theoretic method.

2 Specification

#include <nag.h>
#include <nagd01.h>

void nag_quad_md_numth_vec (Integer ndim,

void (*vecfun)(Integer ndim, const double x[], double fv[], Integer m,
Nag_Comm *comm),

void (*vecreg)(Integer ndim, const double x[], Integer j, double c[],
double d[], Integer m, Nag_Comm *comm),

Integer npts, double vk[], Integer nrand, Nag_Boolean transform,
double *res, double *err, Nag_Comm *comm, NagError *fail)

3 Description

nag_quad_md_numth_vec (d01gdc) calculates an approximation to the integral
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using the Korobov–Conroy number theoretic method (see Korobov (1957), Korobov (1963) and Conroy
(1967)). The region of integration defined in (1) is such that generally ci and di may be functions of
x1; x2; . . . ; xi�1, for i ¼ 2; 3; . . . ; n, with c1 and d1 constants. The integral is first of all transformed to
an integral over the n-cube 0; 1½ �n by the change of variables

xi ¼ ci þ di � cið Þyi; i ¼ 1; 2; . . . ; n:

The method then uses as its basis the number theoretic formula for the n-cube, 0; 1½ �n:
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where xf g denotes the fractional part of x, a1; . . . ; an are the so-called optimal coefficients, E is the
error, and p is a prime integer. (It is strictly only necessary that p be relatively prime to all a1; . . . ; an
and is in fact chosen to be even for some cases in Conroy (1967).) The method makes use of properties
of the Fourier expansion of g x1; . . . ; xnð Þ which is assumed to have some degree of periodicity.
Depending on the choice of a1; . . . ; an the contributions from certain groups of Fourier coefficients are
eliminated from the error, E. Korobov shows that a1; . . . ; an can be chosen so that the error satisfies

E � CKp��ln�� p ð3Þ
where � and C are real numbers depending on the convergence rate of the Fourier series, � is a
constant depending on n, and K is a constant depending on � and n. There are a number of procedures
for calculating these optimal coefficients. Korobov imposes the constraint that

a1 ¼ 1 and ai ¼ ai�1 mod pð Þ ð4Þ
and gives a procedure for calculating the argument, a, to satisfy the optimal conditions.
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In this function the periodisation is achieved by the simple transformation

xi ¼ y2i 3� 2yið Þ; i ¼ 1; 2; . . . ; n:

More sophisticated periodisation procedures are available but in practice the degree of periodisation
does not appear to be a critical requirement of the method.

An easily calculable error estimate is not available apart from repetition with an increasing sequence of
values of p which can yield erratic results. The difficulties have been studied by Cranley and Patterson
(1976) who have proposed a Monte–Carlo error estimate arising from converting (2) into a stochastic
integration rule by the inclusion of a random origin shift which leaves the form of the error (3)

unchanged; i.e., in the formula (2), k
ai
p

� �
is replaced by �i þ k

ai
p

� �
, for i ¼ 1; 2; . . . ; n, where each

�i, is uniformly distributed over 0; 1½ �. Computing the integral for each of a sequence of random vectors
� allows a ‘standard error’ to be estimated.

This function provides built-in sets of optimal coefficients, corresponding to six different values of p.
Alternatively, the optimal coefficients may be supplied by you. Functions nag_quad_md_numth_coeff_
prime (d01gyc) and nag_quad_md_numth_coeff_2prime (d01gzc) compute the optimal coefficients for
the cases where p is a prime number or p is a product of two primes, respectively.
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5 Arguments

1: ndim – Integer Input

On entry: n, the number of dimensions of the integral.

Constraint: 1 � ndim � 20.

2: vecfun – function, supplied by the user External Function

vecfun must evaluate the integrand at a specified set of points.

The specification of vecfun is:

void vecfun (Integer ndim, const double x[], double fv[], Integer m,
Nag_Comm *comm)

1: ndim – Integer Input

On entry: n, the number of dimensions of the integral.

2: x½m� ndim� – const double Input

Note: where X i; jð Þ appears in this document, it refers to the array element
x½ j� 1ð Þ �mþ i� 1�.
On entry: the coordinates of the m points at which the integrand must be evaluated.
X i; jð Þ contains the jth coordinate of the ith point.
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3: fv½m� – double Output

On exit: fv½i � 1� must contain the value of the integrand of the ith point, i.e.,
fv½i � 1� ¼ f X i; 1ð Þ;X i; 2ð Þ; . . . ;X i;ndimð Þð Þ, for i ¼ 1; 2; . . . ;m.

4: m – Integer Input

On entry: the number of points m at which the integrand is to be evaluated.

5: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to vecfun.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_quad_md_numth_vec
(d01gdc) you may allocate memory and initialize these pointers with various
quantities for use by vecfun when called from nag_quad_md_numth_vec
(d01gdc) (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

3: vecreg – function, supplied by the user External Function

vecreg must evaluate the limits of integration in any dimension for a set of points.

The specification of vecreg is:

void vecreg (Integer ndim, const double x[], Integer j, double c[],
double d[], Integer m, Nag_Comm *comm)

1: ndim – Integer Input

On entry: n, the number of dimensions of the integral.

2: x½m� ndim� – const double Input

Note: where X i; jð Þ appears in this document, it refers to the array element
x½ j� 1ð Þ �mþ i� 1�.
On entry: for i ¼ 1; 2; . . . ;m, X i; 1ð Þ, X i; 2ð Þ; . . . ;X i; j� 1ð Þ contain the current values
of the first j� 1ð Þ coordinates of the ith point, which may be used if necessary in
calculating the m values of cj and dj.

3: j – Integer Input

On entry: the index j for which the limits of the range of integration are required.

4: c½m� – double Output

On exit: c½i � 1� must be set to the lower limit of the range for X i; jð Þ, for
i ¼ 1; 2; . . . ;m.

5: d½m� – double Output

On exit: d½i � 1� must be set to the upper limit of the range for X i; jð Þ, for
i ¼ 1; 2; . . . ;m.

6: m – Integer Input

On entry: the number of points m at which the limits of integration must be specified.
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7: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to vecreg.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_quad_md_numth_vec
(d01gdc) you may allocate memory and initialize these pointers with various
quantities for use by vecreg when called from nag_quad_md_numth_vec
(d01gdc) (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

4: npts – Integer Input

On entry: the Korobov rule to be used. There are two alternatives depending on the value of
npts.

(i) 1 � npts � 6.

In this case one of six preset rules is chosen using 2129, 5003, 10007, 20011, 40009 or
80021 points depending on the respective value of npts being 1, 2, 3, 4, 5 or 6.

(ii) npts > 6.

npts is the number of actual points to be used with corresponding optimal coefficients
supplied in the array vk.

Constraint: npts � 1.

5: vk½ndim� – double Input/Output

On entry: if npts > 6, vk must contain the n optimal coefficients (which may be calculated using
nag_quad_md_numth_coeff_prime (d01gyc) or nag_quad_md_numth_coeff_2prime (d01gzc)).

If npts � 6, vk need not be set.

On exit: if npts > 6, vk is unchanged.

If npts � 6, vk contains the n optimal coefficients used by the preset rule.

6: nrand – Integer Input

On entry: the number of random samples to be generated (generally a small value, say 3 to 5, is
sufficient). The estimate, res, of the value of the integral returned by the function is then the
average of nrand calculations with different random origin shifts. If npts > 6, the total number
of integrand evaluations will be nrand� npts. If 1 � npts � 6, then the number of integrand
evaluations will be nrand� p, where p is the number of points corresponding to the six preset
rules. For reasons of efficiency, these values are calculated a number at a time in vecfun.

Constraint: nrand � 1.

7: transform – Nag_Boolean Input

On entry: indicates whether the periodising transformation is to be used.

transform ¼ Nag TRUE
The transformation is to be used.

transform ¼ Nag FALSE
The transformation is to be suppressed (to cover cases where the integrand may already be
periodic or where you want to specify a particular transformation in the definition of
vecfun).

Suggested value: transform ¼ Nag TRUE.

d01gdc NAG Library Manual

d01gdc.4 Mark 26



8: res – double * Output

On exit: the approximation to the integral I.

9: err – double * Output

On exit: the standard error as computed from nrand sample values. If nrand ¼ 1, then err
contains zero.

10: comm – Nag_Comm *

The NAG communication argument (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

11: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, ndim ¼ valueh i.
Constraint: 1 � ndim � 20.

On entry, npts must be at least 1: npts ¼ valueh i.
On entry, nrand must be at least 1: nrand ¼ valueh i.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If nrand > 1, an estimate of the absolute standard error is given by the value, on exit, of err.

8 Parallelism and Performance

nag_quad_md_numth_vec (d01gdc) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library.
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Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

vecfun and vecreg must calculate the integrand and limits of integration at a set of points. For some
problems the amount of time spent in these two functions, which must be supplied by you, may account
for a significant part of the total computation time.

The time taken will be approximately proportional to nrand� p, where p is the number of points used,
but may depend significantly on the efficiency of the code provided by you in vecfun and vecreg.

The exact values of res and err on return will depend (within statistical limits) on the sequence of
random numbers generated within nag_quad_md_numth_vec (d01gdc) by calls to nag_rand_basic
(g05sac). Separate runs will produce identical answers.

10 Example

This example calculates the integral
Z 1

0

Z 1

0

Z 1

0

Z 1

0
cos 0:5þ 2 x1 þ x2 þ x3 þ x4ð Þ � 4ð Þ dx1 dx2 dx3 dx4:

10.1 Program Text

/* nag_quad_md_numth_vec (d01gdc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd01.h>
#include <nagx04.h>

#ifdef __cplusplus
extern "C"
{
#endif

static void NAG_CALL vecfun(Integer ndim, const double x[], double fv[],
Integer m, Nag_Comm *comm);

static void NAG_CALL vecreg(Integer ndim, const double x[], Integer j,
double c[], double d[], Integer m,
Nag_Comm *comm);

#ifdef __cplusplus
}
#endif

int main(void)
{

static double ruser[2] = { -1.0, -1.0 };
Integer exit_status = 0;
Integer ndim;
Integer npts, nrand;
double err, res;
double *vk = 0;
Nag_Boolean transform;
char nag_enum_arg[40];
Nag_Comm comm;
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NagError fail;

INIT_FAIL(fail);

printf("nag_quad_md_numth_vec (d01gdc) Example Program Results\n");

/* For communication with user-supplied functions: */
comm.user = ruser;

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Input parameters */
#ifdef _WIN32

scanf_s("%" NAG_IFMT " %" NAG_IFMT " %" NAG_IFMT "", &ndim, &npts, &nrand);
#else

scanf("%" NAG_IFMT " %" NAG_IFMT " %" NAG_IFMT "", &ndim, &npts, &nrand);
#endif

/* Nag_Boolean */
#ifdef _WIN32

scanf_s("%39s %*[^\n] ", nag_enum_arg, (unsigned)_countof(nag_enum_arg));
#else

scanf("%39s %*[^\n] ", nag_enum_arg);
#endif

transform = (Nag_Boolean) nag_enum_name_to_value(nag_enum_arg);

if (!(vk = NAG_ALLOC(ndim, double)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* nag_quad_md_numth_vec (d01gdc).
* Multidimensional quadrature, general product region,
* number-theoretic method.
*/

nag_quad_md_numth_vec(ndim, vecfun, vecreg, npts, vk, nrand, transform,
&res, &err, &comm, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_quad_md_numth_vec (d01gdc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

printf("\nResult = %13.5f, standard error = %10.2e\n", res, err);

END:
NAG_FREE(vk);

return exit_status;
}

static void NAG_CALL vecfun(Integer ndim, const double x[], double fv[],
Integer m, Nag_Comm *comm)

{
Integer i, index, j;
double sum;

if (comm->user[0] == -1.0) {
printf("(User-supplied callback vecfun, first invocation.)\n");
comm->user[0] = 0.0;

}
for (i = 0; i < m; i++) {

sum = 0.0;
for (j = 0, index = 0; j < ndim; j++, index += m)

sum += x[i + index];
fv[i] = cos(0.5 + 2.0 * sum - 4.0);

d01 – Quadrature d01gdc

Mark 26 d01gdc.7



}
}

static void NAG_CALL vecreg(Integer ndim, const double x[], Integer j,
double c[], double d[], Integer m, Nag_Comm *comm)

{
Integer i;

if (comm->user[1] == -1.0) {
printf("(User-supplied callback vecreg, first invocation.)\n");
comm->user[1] = 0.0;

}
for (i = 0; i < m; i++) {

c[i] = 0.0;
d[i] = 1.0;

}
}

10.2 Program Data

None.

10.3 Program Results

nag_quad_md_numth_vec (d01gdc) Example Program Results
(User-supplied callback vecreg, first invocation.)
(User-supplied callback vecfun, first invocation.)

Result = 0.43999, standard error = 1.89e-06
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