
NAG Library Function Document

nag_quad_md_numth_vec (d01gdc)

1 Purpose

nag_quad_md_numth_vec (d01gdc) calculates an approximation to a definite integral in up to 20
dimensions, using the Korobov–Conroy number theoretic method.

2 Specification

#include <nag.h>
#include <nagd01.h>

void nag_quad_md_numth_vec (Integer ndim,

void (*vecfun)(Integer ndim, const double x[], double fv[], Integer m,
Nag_Comm *comm),

void (*vecreg)(Integer ndim, const double x[], Integer j, double c[],
double d[], Integer m, Nag_Comm *comm),

Integer npts, double vk[], Integer nrand, Nag_Boolean transform,
double *res, double *err, Nag_Comm *comm, NagError *fail)

3 Description

nag_quad_md_numth_vec (d01gdc) calculates an approximation to the integral

I ¼
Z d1

c1

� � �
Z dn

cn

f x1; . . . ; xnð Þ dxn . . . dx1 ð1Þ

using the Korobov–Conroy number theoretic method (see Korobov (1957), Korobov (1963) and Conroy
(1967)). The region of integration defined in (1) is such that generally ci and di may be functions of
x1; x2; . . . ; xi�1, for i ¼ 2; 3; . . . ; n, with c1 and d1 constants. The integral is first of all transformed to
an integral over the n-cube 0; 1½ �n by the change of variables

xi ¼ ci þ di � cið Þyi; i ¼ 1; 2; . . . ; n:

The method then uses as its basis the number theoretic formula for the n-cube, 0; 1½ �n:
Z 1

0
� � �

Z 1

0
g x1; . . . ; xnð Þ dxn � � � dx1 ¼ 1

p

Xp
k¼1

g k
a1
p

� �
; . . . ; k

an
p

� �� �
� E ð2Þ

where xf g denotes the fractional part of x, a1; . . . ; an are the so-called optimal coefficients, E is the
error, and p is a prime integer. (It is strictly only necessary that p be relatively prime to all a1; . . . ; an
and is in fact chosen to be even for some cases in Conroy (1967).) The method makes use of properties
of the Fourier expansion of g x1; . . . ; xnð Þ which is assumed to have some degree of periodicity.
Depending on the choice of a1; . . . ; an the contributions from certain groups of Fourier coefficients are
eliminated from the error, E. Korobov shows that a1; . . . ; an can be chosen so that the error satisfies

E � CKp��ln�� p ð3Þ
where � and C are real numbers depending on the convergence rate of the Fourier series, � is a
constant depending on n, and K is a constant depending on � and n. There are a number of procedures
for calculating these optimal coefficients. Korobov imposes the constraint that

a1 ¼ 1 and ai ¼ ai�1 mod pð Þ ð4Þ
and gives a procedure for calculating the argument, a, to satisfy the optimal conditions.

d01 – Quadrature d01gdc

Mark 26 d01gdc.1

In this function the periodisation is achieved by the simple transformation

xi ¼ y2i 3� 2yið Þ; i ¼ 1; 2; . . . ; n:

More sophisticated periodisation procedures are available but in practice the degree of periodisation
does not appear to be a critical requirement of the method.

An easily calculable error estimate is not available apart from repetition with an increasing sequence of
values of p which can yield erratic results. The difficulties have been studied by Cranley and Patterson
(1976) who have proposed a Monte–Carlo error estimate arising from converting (2) into a stochastic
integration rule by the inclusion of a random origin shift which leaves the form of the error (3)

unchanged; i.e., in the formula (2), k
ai
p

� �
is replaced by �i þ k

ai
p

� �
, for i ¼ 1; 2; . . . ; n, where each

�i, is uniformly distributed over 0; 1½ �. Computing the integral for each of a sequence of random vectors
� allows a ‘standard error’ to be estimated.

This function provides built-in sets of optimal coefficients, corresponding to six different values of p.
Alternatively, the optimal coefficients may be supplied by you. Functions nag_quad_md_numth_coeff_
prime (d01gyc) and nag_quad_md_numth_coeff_2prime (d01gzc) compute the optimal coefficients for
the cases where p is a prime number or p is a product of two primes, respectively.

4 References

Conroy H (1967) Molecular Shroedinger equation VIII. A new method for evaluting multi-dimensional
integrals J. Chem. Phys. 47 5307–5318

Cranley R and Patterson T N L (1976) Randomisation of number theoretic methods for mulitple
integration SIAM J. Numer. Anal. 13 904–914

Korobov N M (1957) The approximate calculation of multiple integrals using number theoretic methods
Dokl. Acad. Nauk SSSR 115 1062–1065

Korobov N M (1963) Number Theoretic Methods in Approximate Analysis Fizmatgiz, Moscow

5 Arguments

1: ndim – Integer Input

On entry: n, the number of dimensions of the integral.

Constraint: 1 � ndim � 20.

2: vecfun – function, supplied by the user External Function

vecfun must evaluate the integrand at a specified set of points.

The specification of vecfun is:

void vecfun (Integer ndim, const double x[], double fv[], Integer m,
Nag_Comm *comm)

1: ndim – Integer Input

On entry: n, the number of dimensions of the integral.

2: x½m� ndim� – const double Input

Note: where X i; jð Þ appears in this document, it refers to the array element
x½ j� 1ð Þ �mþ i� 1�.
On entry: the coordinates of the m points at which the integrand must be evaluated.
X i; jð Þ contains the jth coordinate of the ith point.

d01gdc NAG Library Manual

d01gdc.2 Mark 26

3: fv½m� – double Output

On exit: fv½i � 1� must contain the value of the integrand of the ith point, i.e.,
fv½i � 1� ¼ f X i; 1ð Þ;X i; 2ð Þ; . . . ;X i;ndimð Þð Þ, for i ¼ 1; 2; . . . ;m.

4: m – Integer Input

On entry: the number of points m at which the integrand is to be evaluated.

5: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to vecfun.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_quad_md_numth_vec
(d01gdc) you may allocate memory and initialize these pointers with various
quantities for use by vecfun when called from nag_quad_md_numth_vec
(d01gdc) (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

3: vecreg – function, supplied by the user External Function

vecreg must evaluate the limits of integration in any dimension for a set of points.

The specification of vecreg is:

void vecreg (Integer ndim, const double x[], Integer j, double c[],
double d[], Integer m, Nag_Comm *comm)

1: ndim – Integer Input

On entry: n, the number of dimensions of the integral.

2: x½m� ndim� – const double Input

Note: where X i; jð Þ appears in this document, it refers to the array element
x½ j� 1ð Þ �mþ i� 1�.
On entry: for i ¼ 1; 2; . . . ;m, X i; 1ð Þ, X i; 2ð Þ; . . . ;X i; j� 1ð Þ contain the current values
of the first j� 1ð Þ coordinates of the ith point, which may be used if necessary in
calculating the m values of cj and dj.

3: j – Integer Input

On entry: the index j for which the limits of the range of integration are required.

4: c½m� – double Output

On exit: c½i � 1� must be set to the lower limit of the range for X i; jð Þ, for
i ¼ 1; 2; . . . ;m.

5: d½m� – double Output

On exit: d½i � 1� must be set to the upper limit of the range for X i; jð Þ, for
i ¼ 1; 2; . . . ;m.

6: m – Integer Input

On entry: the number of points m at which the limits of integration must be specified.

d01 – Quadrature d01gdc

Mark 26 d01gdc.3

7: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to vecreg.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_quad_md_numth_vec
(d01gdc) you may allocate memory and initialize these pointers with various
quantities for use by vecreg when called from nag_quad_md_numth_vec
(d01gdc) (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

4: npts – Integer Input

On entry: the Korobov rule to be used. There are two alternatives depending on the value of
npts.

(i) 1 � npts � 6.

In this case one of six preset rules is chosen using 2129, 5003, 10007, 20011, 40009 or
80021 points depending on the respective value of npts being 1, 2, 3, 4, 5 or 6.

(ii) npts > 6.

npts is the number of actual points to be used with corresponding optimal coefficients
supplied in the array vk.

Constraint: npts � 1.

5: vk½ndim� – double Input/Output

On entry: if npts > 6, vk must contain the n optimal coefficients (which may be calculated using
nag_quad_md_numth_coeff_prime (d01gyc) or nag_quad_md_numth_coeff_2prime (d01gzc)).

If npts � 6, vk need not be set.

On exit: if npts > 6, vk is unchanged.

If npts � 6, vk contains the n optimal coefficients used by the preset rule.

6: nrand – Integer Input

On entry: the number of random samples to be generated (generally a small value, say 3 to 5, is
sufficient). The estimate, res, of the value of the integral returned by the function is then the
average of nrand calculations with different random origin shifts. If npts > 6, the total number
of integrand evaluations will be nrand� npts. If 1 � npts � 6, then the number of integrand
evaluations will be nrand� p, where p is the number of points corresponding to the six preset
rules. For reasons of efficiency, these values are calculated a number at a time in vecfun.

Constraint: nrand � 1.

7: transform – Nag_Boolean Input

On entry: indicates whether the periodising transformation is to be used.

transform ¼ Nag TRUE
The transformation is to be used.

transform ¼ Nag FALSE
The transformation is to be suppressed (to cover cases where the integrand may already be
periodic or where you want to specify a particular transformation in the definition of
vecfun).

Suggested value: transform ¼ Nag TRUE.

d01gdc NAG Library Manual

d01gdc.4 Mark 26

8: res – double * Output

On exit: the approximation to the integral I.

9: err – double * Output

On exit: the standard error as computed from nrand sample values. If nrand ¼ 1, then err
contains zero.

10: comm – Nag_Comm *

The NAG communication argument (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

11: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, ndim ¼ valueh i.
Constraint: 1 � ndim � 20.

On entry, npts must be at least 1: npts ¼ valueh i.
On entry, nrand must be at least 1: nrand ¼ valueh i.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If nrand > 1, an estimate of the absolute standard error is given by the value, on exit, of err.

8 Parallelism and Performance

nag_quad_md_numth_vec (d01gdc) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library.

d01 – Quadrature d01gdc

Mark 26 d01gdc.5

Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

vecfun and vecreg must calculate the integrand and limits of integration at a set of points. For some
problems the amount of time spent in these two functions, which must be supplied by you, may account
for a significant part of the total computation time.

The time taken will be approximately proportional to nrand� p, where p is the number of points used,
but may depend significantly on the efficiency of the code provided by you in vecfun and vecreg.

The exact values of res and err on return will depend (within statistical limits) on the sequence of
random numbers generated within nag_quad_md_numth_vec (d01gdc) by calls to nag_rand_basic
(g05sac). Separate runs will produce identical answers.

10 Example

This example calculates the integral
Z 1

0

Z 1

0

Z 1

0

Z 1

0
cos 0:5þ 2 x1 þ x2 þ x3 þ x4ð Þ � 4ð Þ dx1 dx2 dx3 dx4:

10.1 Program Text

/* nag_quad_md_numth_vec (d01gdc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd01.h>
#include <nagx04.h>

#ifdef __cplusplus
extern "C"
{
#endif

static void NAG_CALL vecfun(Integer ndim, const double x[], double fv[],
Integer m, Nag_Comm *comm);

static void NAG_CALL vecreg(Integer ndim, const double x[], Integer j,
double c[], double d[], Integer m,
Nag_Comm *comm);

#ifdef __cplusplus
}
#endif

int main(void)
{

static double ruser[2] = { -1.0, -1.0 };
Integer exit_status = 0;
Integer ndim;
Integer npts, nrand;
double err, res;
double *vk = 0;
Nag_Boolean transform;
char nag_enum_arg[40];
Nag_Comm comm;

d01gdc NAG Library Manual

d01gdc.6 Mark 26

NagError fail;

INIT_FAIL(fail);

printf("nag_quad_md_numth_vec (d01gdc) Example Program Results\n");

/* For communication with user-supplied functions: */
comm.user = ruser;

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Input parameters */
#ifdef _WIN32

scanf_s("%" NAG_IFMT " %" NAG_IFMT " %" NAG_IFMT "", &ndim, &npts, &nrand);
#else

scanf("%" NAG_IFMT " %" NAG_IFMT " %" NAG_IFMT "", &ndim, &npts, &nrand);
#endif

/* Nag_Boolean */
#ifdef _WIN32

scanf_s("%39s %*[^\n] ", nag_enum_arg, (unsigned)_countof(nag_enum_arg));
#else

scanf("%39s %*[^\n] ", nag_enum_arg);
#endif

transform = (Nag_Boolean) nag_enum_name_to_value(nag_enum_arg);

if (!(vk = NAG_ALLOC(ndim, double)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* nag_quad_md_numth_vec (d01gdc).
* Multidimensional quadrature, general product region,
* number-theoretic method.
*/

nag_quad_md_numth_vec(ndim, vecfun, vecreg, npts, vk, nrand, transform,
&res, &err, &comm, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_quad_md_numth_vec (d01gdc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

printf("\nResult = %13.5f, standard error = %10.2e\n", res, err);

END:
NAG_FREE(vk);

return exit_status;
}

static void NAG_CALL vecfun(Integer ndim, const double x[], double fv[],
Integer m, Nag_Comm *comm)

{
Integer i, index, j;
double sum;

if (comm->user[0] == -1.0) {
printf("(User-supplied callback vecfun, first invocation.)\n");
comm->user[0] = 0.0;

}
for (i = 0; i < m; i++) {

sum = 0.0;
for (j = 0, index = 0; j < ndim; j++, index += m)

sum += x[i + index];
fv[i] = cos(0.5 + 2.0 * sum - 4.0);

d01 – Quadrature d01gdc

Mark 26 d01gdc.7

}
}

static void NAG_CALL vecreg(Integer ndim, const double x[], Integer j,
double c[], double d[], Integer m, Nag_Comm *comm)

{
Integer i;

if (comm->user[1] == -1.0) {
printf("(User-supplied callback vecreg, first invocation.)\n");
comm->user[1] = 0.0;

}
for (i = 0; i < m; i++) {

c[i] = 0.0;
d[i] = 1.0;

}
}

10.2 Program Data

None.

10.3 Program Results

nag_quad_md_numth_vec (d01gdc) Example Program Results
(User-supplied callback vecreg, first invocation.)
(User-supplied callback vecfun, first invocation.)

Result = 0.43999, standard error = 1.89e-06

d01gdc NAG Library Manual

d01gdc.8 (last) Mark 26

	d01gdc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Conroy (1967)
	Cranley and Patterson (1976)
	Korobov (1957)
	Korobov (1963)

	5 Arguments
	ndim
	vecfun
	ndim
	x
	fv
	m
	comm
	user
	iuser
	p

	vecreg
	ndim
	x
	j
	c
	d
	m
	comm
	user
	iuser
	p

	npts
	vk
	nrand
	transform
	res
	err
	comm
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INTERNAL_ERROR
	NE_NO_LICENCE

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

