NAG Library Function Document nag_elliptic_integral_pi (s21bgc)

1 Purpose

nag_elliptic_integral_pi (s21bgc) returns a value of the classical (Legendre) form of the incomplete elliptic integral of the third kind.

2 Specification

```
#include <nag.h>
#include <nags.h>
double nag_elliptic_integral_pi (double dn, double phi, double dm,
        NagError *fail)
```


3 Description

nag_elliptic_integral_pi (s21bgc) calculates an approximation to the integral

$$
\Pi(n ; \phi \mid m)=\int_{0}^{\phi}\left(1-n \sin ^{2} \theta\right)^{-1}\left(1-m \sin ^{2} \theta\right)^{-\frac{1}{2}} d \theta
$$

where $0 \leq \phi \leq \frac{\pi}{2}, m \sin ^{2} \phi \leq 1, m$ and $\sin \phi$ may not both equal one, and $n \sin ^{2} \phi \neq 1$.
The integral is computed using the symmetrised elliptic integrals of Carlson (Carlson (1979) and Carlson (1988)). The relevant identity is

$$
\Pi(n ; \phi \mid m)=\sin \phi R_{F}(q, r, 1)+\frac{1}{3} n \sin ^{3} \phi R_{J}(q, r, 1, s)
$$

where $q=\cos ^{2} \phi, r=1-m \sin ^{2} \phi, s=1-n \sin ^{2} \phi, R_{F}$ is the Carlson symmetrised incomplete elliptic integral of the first kind (see nag_elliptic_integral_rf (s21bbc)) and R_{J} is the Carlson symmetrised incomplete elliptic integral of the third kind (see nag_elliptic_integral_rj (s21bdc)).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications

Carlson B C (1979) Computing elliptic integrals by duplication Numerische Mathematik 33 1-16
Carlson B C (1988) A table of elliptic integrals of the third kind Math. Comput. 51 267-280

5 Arguments

```
dn - double Input
phi - double Input
dm - double Input
On entry: the arguments \(n, \phi\) and \(m\) of the function.
```

Constraints:

```
0.0\leq\mathbf{phi}\leq\frac{\pi}{2};
dm }\times\mp@subsup{\operatorname{sin}}{}{2}(\mathbf{phi})\leq1.0
Only one of }\operatorname{sin}(\mathbf{phi})\mathrm{ and dm may be 1.0;
dn }\times\mp@subsup{\operatorname{sin}}{}{2}(\mathbf{phi})\not=1.0
```

Note that $\mathbf{d m} \times \sin ^{2}(\mathbf{p h i})=1.0$ is allowable, as long as $\mathbf{d m} \neq 1.0$.
4: fail - NagError * Input/Output
The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in How to Use the NAG Library and its Documentation for further information.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in How to Use the NAG Library and its Documentation for further information.

NE_REAL

On entry, $\mathbf{p h i}=\langle$ value \rangle.
Constraint: $0 \leq \mathbf{p h i} \leq(\pi / 2)$.

NE_REAL_2

On entry, $\mathbf{p h i}=\langle$ value \rangle and $\mathbf{d m}=\langle$ value \rangle; the integral is undefined.
Constraint: $\mathbf{d m} \times \sin ^{2}(\mathbf{p h i}) \leq 1.0$.
On entry, $\mathbf{p h i}=\langle$ value \rangle and $\mathbf{d n}=\langle$ value \rangle; the integral is infinite.
Constraint: $\mathbf{d n} \times \sin ^{2}(\mathbf{p h i}) \neq 1.0$.

NW_INTEGRAL_INFINITE

On entry, $\sin (\mathbf{p h i})=1$ and $\mathbf{d m}=1.0$; the integral is infinite.

7 Accuracy

In principle nag_elliptic_integral_pi (s21bgc) is capable of producing full machine precision. However round-off errors in internal arithmetic will result in slight loss of accuracy. This loss should never be excessive as the algorithm does not involve any significant amplification of round-off error. It is reasonable to assume that the result is accurate to within a small multiple of the machine precision.

8 Parallelism and Performance

nag_elliptic_integral_pi (s21bgc) is not threaded in any implementation.

9 Further Comments

You should consult the s Chapter Introduction, which shows the relationship between this function and the Carlson definitions of the elliptic integrals. In particular, the relationship between the argumentconstraints for both forms becomes clear.

For more information on the algorithms used to compute R_{F} and R_{J}, see the function documents for nag_elliptic_integral_rf (s21bbc) and nag_elliptic_integral_rj (s21bdc), respectively.

If you wish to input a value of phi outside the range allowed by this function you should refer to Section 17.4 of Abramowitz and Stegun (1972) for useful identities.

10 Example

This example simply generates a small set of nonextreme arguments that are used with the function to produce the table of results.

10.1 Program Text

```
/* nag_elliptic_integral_pi (s21bgc) Example Program.
    *
    * NAGPRODCODE Version.
    *
    * Copyright 2016 Numerical Algorithms Group.
    *
    * Mark 26, 2016.
    */
/* Pre-processor includes */
#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nags.h>
#include <nagx01.h>
int main(void)
{
    /*Integer scalar and array declarations */
    Integer exit_status = 0;
    Integer ix;
    /*Double scalar and array declarations */
    double dm, dn, p, phi, pi;
    NagError fail;
    INIT_FAIL(fail);
    printf("nag_elliptic_integral_pi (s21bgc) Example Program Results\n");
    printf("\n dn phi dm nag_elliptic_integral_pi\n\n");
    /*
        * nag_pi (x01aac)
        */
    pi = nag_pi;
    for (ix = 1; ix <= 3; ix++) {
        phi = ix * pi / 6.00e0;
        dm = ix * 0.250e0;
        dn = (pow(((-(1.00e0))), (ix + 1))) * ix * 0.10e0;
        /*
            * nag_elliptic_integral_pi (s21bgc)
            * Elliptic integral of 3rd kind, Legendre form, Pi (n; phi |m)
            */
        p = nag_elliptic_integral_pi(dn, phi, dm, &fail);
            if (fail.code != NE_NOERROR) {
                printf("Error from nag_elliptic_integral_pi (s21bgc).\n%s\n",
                    fail.message);
                exit_status = 1;
                goto END;
        }
        printf("%7.2f%7.2f%7.2f%12.4f\n", dn, phi, dm, p);
    }
END:
    return exit_status;
}
```


10.2 Program Data

None.

10.3 Program Results

nag_elliptic_integral_pi	$(s 21 b g c)$ Example Program Results		
dn	phi	dm	nag_elliptic_integral_pi
0.10	0.52	0.25	0.5341
-0.20	1.05	0.50	1.0778
0.30	1.57	0.75	2.6568

