
NAG Library

How to Use the NAG Library and its Documentation

Contents

1 Library Identification . 3

2 How to Use the NAG Library . 3

2.1 Structure of the Library. 3

2.2 General Advice . 3

2.3 Programming Advice . 3

2.3.1 The NAG C environment . 4
2.3.1.1 NAG data types . 4
2.3.1.2 Memory management in the Library . 5
2.3.1.3 The Nag_Order Argument . 5
2.3.1.4 Array references. 5
2.3.1.5 Internal data structures in the NAG C Library . 11
2.3.1.6 Chapter header files . 11

2.3.2 Direct and Reverse Communication Functions . 11

2.4 Use of NAG Long Names . 12

2.5 Input/Output . 12

2.6 Auxiliary Functions . 12

2.7 NAG Error Handling and the fail Argument . 12

2.7.1 Use of NAGERR_DEFAULT . 12
2.7.2 Use of the fail Argument . 13
2.7.3 The NagError structure . 14
2.7.4 Structure of the NAG error messages. 14
2.7.5 License Management. 15
2.7.6 Unexpected Errors. 15

2.8 Calling the Library from Other Languages. 15

2.9 Arithmetic Considerations and Reproducibility of Results . 15

2.9.1 Bit-wise Reproducibility (BWR) . 17
2.9.1.1 Vendor Math Libraries and Conditional Bitwise Reproducibility (CBWR) 18

2.10Multithreading. 18

2.10.1 Thread Safety . 18
2.10.1.1 Functions with Function Arguments . 18
2.10.1.2 Input/Output . 18
2.10.1.3 Implementation Issues . 19

2.10.2 Parallelism. 19
2.10.2.1 Introduction . 19
2.10.2.2 How is Parallelism Used in the NAG Library? . 20

2.10.3Multithreaded Functions . 21

3 How to Use NAG Documentation . 21

3.1 Using the Manual. 21

3.2 Structure of the Documentation . 22

3.3 Specification of Arguments . 23

3.3.1 Classification of Arguments . 23
3.3.2 Constraints and suggested values . 23

Introduction How to Use the NAG Library and its Documentation

Mark 26 essint.1

3.4 Example Programs and Results . 24

3.5 Online Documentation . 24

3.5.1 HTML Format. 24
3.5.1.1 Viewing HTML5 Files . 24
3.5.1.2 Firefox (and other Mozilla based browsers) . 24
3.5.1.3 Other Browsers . 25
3.5.1.4 Navigating HTML5 Files . 25
3.5.1.5 Printing HTML5 Files . 25
3.5.1.6 Windows HTML Help . 25

3.5.2 PDF Format . 25
3.5.2.1 Viewing and Printing PDF Files . 25
3.5.2.2 Navigating the PDF Files . 26

4 Background to the Problems. 26

5 NAG Library Standards . 26

6 References . 26

How to Use the NAG Library and its Documentation NAG Library Manual

essint.2 Mark 26

1 Library Identification

Periodically a new Mark of the NAG Library is released: new functions are added, corrections and/or
improvements are made to existing functions; and, occasionally, functions are withdrawn if they have
been superseded by improved functions.

You must know which implementation and which mark and revision of the Library you are using or
intend to use. To find out these Library details, you can run a program which calls the NAG C Library
function nag_implementation_details (a00aac).

This function has no arguments; it simply outputs text to the standard output, if available. Details can
also be found by a call to nag_implementation_separated_details (a00adc).

Note: for the NAG C Library the release prior to Mark 23 was Mark 9. The content of the NAG C
Library, Mark 24 is generally equivalent to that of other NAG Libraries at this mark.

2 How to Use the NAG Library

2.1 Structure of the Library

The NAG Library is a comprehensive collection of functions for the solution of numerical and
statistical problems.

The Library is divided into chapters, each devoted to a branch of numerical analysis or statistics. Each
chapter has a three-character name and a title, e.g.,

Chapter d01 – Quadrature

Exceptionally, Chapters h and s have one-character names. The chapters and their names are based on
the ACM modified SHARE classification index (see ACM (1960–1976)).

All documented functions have two names. One is based on the SHARE index classification and
consists of a six-character name which begins with the characters of the chapter/subchapter name, for
example

c06pcc

The letters of this type of function name are always lower case, the second and third characters being
digits and the last letter being c. This function name is referred to as the short name. Each function also
has a more meaningful and longer name, for example

nag_sum_fft_complex_1d

which we refer to as the long name. The long name may be used as an alternative to the short name
when calling the function. See Section 2.4 for further details.

2.2 General Advice

A NAG Library function cannot be guaranteed to return meaningful results irrespective of the data
supplied to it. Care and thought must be exercised in:

(a) formulating the problem;

(b) programming the use of Library functions;

(c) assessing the significance of the results.

The remainder of this document is concerned with (b) and (c).

2.3 Programming Advice

The Library and its documentation are designed with the assumption that you will write a calling
program in C (although it may be called from other languages – see Section 2.8).

When a suitable NAG function has been selected, the function must be called from the C Library via a
suitable user-written program, the calling program. This manual assumes that you have sufficient

Introduction How to Use the NAG Library and its Documentation

Mark 26 essint.3

knowledge of the C programming language to be able to write such a program. Each C Library function
document contains an example of a suitable calling program (see Section 3.4).

When writing a calling program, a number of environmental features common to all such NAG
programs must be observed in addition to specific features which are relevant to the particular NAG
function being called. These features are discussed below; you should also refer to the example
program.

2.3.1 The NAG C environment

The environment for the NAG Library is defined in a number of include files; a list is given in
Section 2.3.1.6. The most important of the header files is nag.h, which must be included in any
program that calls a NAG Library function and must precede any other NAG header file.

These include files are placed in <product_folder>/include folder by the installer. For its exact location
please see the Users' Note or other local documentation.

The file nag.h defines data types and error codes used in the NAG Library together with a number of
macros used in example programs.

You will also need to include the header file nag_stdlib.h in the calling program, if any memory
management is required; see Section 2.3.1.2.

2.3.1.1 NAG data types

Integer
This data type is used for integer arguments to NAG Library functions. It is normally defined to
be long. Please refer to the Users' Note for its exact type.

Nag_Boolean
This is an enumeration type defined as

typedef enum{Nag_FALSE=0; Nag_TRUE=1} Nag_Boolean;

This replaces the previously used Boolean type. In order that you can continue to use your
existing program, a preprocessor define CL07_COMPATIBILITY has been introduced. This
feature can be used from the command line by specifying

-DCL07_COMPATIBILITY

Complex
This data type is a structure defined for use with complex numbers:

typedef struct {double re, im;} Complex;

Pointer
This data type represents the generic pointer void *.

Nag_Comm
This data type is a structure with a number of fields among which are a generic pointer, an
Integer pointer and a double pointer which may be used for communicating information between
a user-defined function and your calling program, where the user-defined function is supplied as
an argument to the NAG function. This avoids the necessity of using global variables for such
communication. The use of Integer and double pointers allows double and Integer arrays to be
communicated with no casting. For an example of use, please see the NAG Library Section 10 in
nag_opt_simplex_easy (e04cbc).

Nag_User
This is also a communication structure with a generic pointer with usage similar to Nag_Comm.

Nag_FileID
This data type is an integer type used by certain NAG Library functions which deal with input or
output files. Functions in Chapter x04 must be used to associate a file name with the file ID.

Enumeration Types
A number of other enumeration types are defined in nag_types.h (included by nag.h) for use in
calls to various NAG Library functions. You should use these enumeration types in your C/C++

How to Use the NAG Library and its Documentation NAG Library Manual

essint.4 Mark 26

calling programs. If the NAG Library is being called from languages other than C/C++ we have
provided a function to map the enumeration members to integer values (see nag_enum_name_
to_value (x04nac)).

Other structure types
A number of structures have been defined to facilitate calls to NAG functions. Please note that
only those components of a structure that are relevant to a call to a specific NAG function are
described in the corresponding function document. A complete specification of a NAG defined
structure can be found in the NAG Library header file nag_types.h included in the distribution
materials.

2.3.1.2 Memory management in the Library

Memory is frequently dynamically allocated within NAG Library functions. All requests for memory
are checked for success or failure. In the unlikely event of failure occurring the Library function returns
or terminates with the error state NE_ALLOC_FAIL (details of error handling in the Library are given
in Section 2.7).

The macros NAG_ALLOC, NAG_REALLOC and NAG_FREE are defined to select suitable memory
management functions for the NAG Library. NAG_ALLOC has two arguments; the first specifies the
number of elements to be allocated while the second specifies the type of element. The statement

p = NAG_ALLOC(n, double);

allocates n elements of memory of type double to p, a pointer to double.

NAG_REALLOC has three arguments; the first specifies the name of the pointer whose memory is to be
extended, the second specifies the number of elements, the third specifies the type of element.

The statement

p = NAG_REALLOC(p, n, double);

allocates n elements of memory of type double to p, a pointer to double.

NAG_FREE frees memory allocated by NAG_ALLOC or NAG_REALLOC; its single argument is the pointer
which specifies the memory to be deallocated. The statement

NAG_FREE(p);

deallocates memory pointed to by p and sets its value to NULL.

These macros are defined in the header file nag_stdlib.h which must be included if these macros are
used in the calling program. NAG_FREE must be used to free memory allocated and returned from a
NAG function. If memory is allocated using NAG_ALLOC for whatever reason, it must be freed using
NAG_FREE. For an illustration of their use, see Section 10.1 in nag_1d_cheb_fit_constr (e02agc). The
use of NAG_ALLOC, NAG_REALLOC and NAG_FREE is strongly recommended.

2.3.1.3 The Nag_Order Argument

Different programming languages lay out two-dimensional data in memory in different ways. The C
language treats a two-dimensional array as a single block of memory arranged in rows, the so called
‘row-major’ ordering. Some other languages, notably Fortran, arrange two-dimensional arrays by
column (‘column-major’ ordering). Commencing at Mark 7, those functions in the NAG C Library that
deal with two-dimensional arrays and where it is sensible to do so, have an extra argument, called
order, which allows you to specify that your data is arranged in rows (by setting order to
Nag_RowMajor) or in columns (by setting order to Nag_ColMajor). This is particularly useful if the
NAG C Library is being called from a language which uses the column-major ordering or if you wish
to call a function from a language, such as Visual Basic 7 onwards, which supports column-major
ordering.

2.3.1.4 Array references

In C it is possible to declare a two-dimensional variable using notation of the form:

double a[dim1][dim2];

Introduction How to Use the NAG Library and its Documentation

Mark 26 essint.5

When this variable is a argument to a function, it is effectively treated by the compiler as a pointer, *a,
of type double with an allocated memory of dim1*dim2 on the stack. The address of an element of
this array, say a[3][5] is then an explicit address computed to be *(a+3*dim2+5), since C stores data
in row-major order.

Alternatively it is possible for you to allocate memory explicitly (on the heap) to a pointer of type
double *, using the form:

a=(double *)malloc((size_t)(dim1*dim2*sizeof(double));

In this case the C preprocessor allows a succinct notation for computing this explicit address by using a
macro definition:

#define A(I,J) a[I*dim2+J]

The element of this array if indexed ij is then indexed using the pointer notation *(a+i*dim2+j) or by
using the array notation a[i*dim2+j]; or by using A(I,J) assuming the macro [2] is already defined.

We often wish to refer to the storage of elements representing a submatrix of the matrix A, for example,
the submatrix comprising rows k to l and columns m to n. For convenience we use the notation A(k:l,

m:n) to refer to those elements of a storing the given submatrix with elements Aij ¼ A i� 1; j � 1ð Þ
(see [2] and [4]), for i ¼ k; . . . ; l and j ¼ m; . . . ; n. That is,

A(k:l,m:n) = {a[p], p = (i-1)*pda+j-1, i=k,...,l and j=m,...,n},

for row major ordering.

If the data is to be stored using column-major ordering and we have declared an array variable as

double a[dim1][dim2];

then the element indexed ij is effectively transposed. That is, the element a[i][j] under row-major
ordering is the element a[j][i] under column-major ordering.

As another alternative you may choose to malloc the required memory as in [1] above. In this case, the
element indexed ij is using the pointer notation *(a+j*dim1+i); or by using the array notation a

[j*dim1+i]; or by using A(I,J) if the macro is defined as

#define A(I,J) A[J*dim1+I]

Note the difference in definition between [2] and [4] above.

In order to simplify the documentation, we refer to array elements using the macro definitions above.
Further, we note that in the preprocessor directive [2] and [4], the critical dimension is either dim2 if
the row-major ordering is used or dim1 if column-major ordering is used. We designate either dim2 or
dim1 as the principal dimension depending on the storage ordering scheme. The principal dimension
can be thought of as a stride which must be taken to traverse either a row or a column depending on the
order argument.

Typically in the NAG Library we use the convention 'pda' if the function has the order argument and
pda can have different values depending on whether the array is stored in row major or in column
major order. If the specification of an array is such that its elements must be stored in row major order
we use the term 'tda' (meaning trailing dimension). For arrays whose elements must be stored in
column major order we use the term 'lda' (meaning leading dimension). As of Mark 24, new functions
in the library generally store two-dimensional data in the column order. We are standardizing on the
phrase ‘stride separating row elements’ to mean column order storage and the phrase ‘stride separating
column elements’ to mean row order storage.

In order to facilitate calling functions in which data has to be stored in a mutually exclusive manner,
such as for example, function A requires data to be in row order and while function B requires data to
be stored in column order and the 'order' parameter has not been provided, then functions provided in
the f16 chapter will have to be used. For example, nag_dge_copy (f16qfc) can be used to change from
row order to column order by performing a transposed copy. Functions are available in this chapter for
performing a variety of copying tasks such as triangular copy, etc..

We illustrate these concepts using two examples. In the first example, memory is allocated while in the
second example memory is declared. In both examples, row or column modes are demarcated using the

How to Use the NAG Library and its Documentation NAG Library Manual

essint.6 Mark 26

preprocessor macro NAG_ROW_MAJOR. Memory is allocated using NAG_ALLOC, which is a macro defined
in nag_stdlib.h, in preference to explicit malloc calls. This macro maps to calls to internal Library
functions to allocate memory. Also note the use of NAG_FREE to free the memory.

Example 1

/* Example Program, with memory allocated, based on:
*
* nag_dorgqr (f08afc) Example Program.
*
* Copyright Numerical Algorithms Group.
*
*/

#include <stdio.h>
#include <string.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, j, m, n, pda_row, pda_column, tau_len;
Integer exit_status=0;
NagError fail;

/* Arrays */
char *title=0;
double *a_row=0, *a_column=0, *tau=0;
char matrx_data [] = {

" -0.57 -1.28 -0.39 0.25 "
" -1.93 1.08 -0.31 -2.14 "
" 2.30 0.24 0.40 -0.35 "
" -1.93 0.64 -0.66 0.08 "
" 0.15 0.30 0.15 -2.13 "
" -0.02 1.03 -1.43 0.50 "

}, *matrix_data_ptr = matrx_data;

/* Initialize strtok */
matrix_data_ptr = strtok(matrix_data_ptr, " \t\n");

#define A_COLUMN(I,J) a_column[(J-1)*pda_column + I - 1]
#define A_ROW(I,J) a_row[(I-1)*pda_row + J - 1]

INIT_FAIL(fail);

m = 6;
n = 4;;
pda_column = m;
pda_row = n;
tau_len = MIN(m, n);

/* Allocate memory */
if (!(title = NAG_ALLOC(31, char)) ||

!(a_row = NAG_ALLOC(m * n, double)) ||
!(a_column = NAG_ALLOC(m * n, double)) ||
!(tau = NAG_ALLOC(tau_len, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

#ifdef NAG_ROW_MAJOR
printf("Using row major storage, allocated memory\n");
/* Read A from data above */
for (i = 1; i <= m; ++i)

Introduction How to Use the NAG Library and its Documentation

Mark 26 essint.7

{
for (j = 1; j<= n; j++)

{
sscanf(matrix_data_ptr, "%lf", &A_ROW(i,j));
matrix_data_ptr = strtok(0, " \t\n");

}
}

/* Compute the QR factorization of A */
f08aec(Nag_RowMajor, m, n, a_row, pda_row, tau, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from f08aec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Form the leading N columns of Q explicitly */
f08afc(Nag_RowMajor, m, n, n, a_row, pda_row, tau, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from f08afc.\n%s\n", fail.message);
exit_status = 2;
goto END;

}
/* Print the leading N columns of Q only */
sprintf(title, "The leading %2ld columns of Q\n", n);
x04cac(Nag_RowMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, m, n,

a_row, pda_row, title, 0, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from x04cac.\n%s\n", fail.message);
exit_status = 3;
goto END;

}
#else

printf("Using column major storage, allocated memory\n");
/* Read A from data above */
for (i = 1; i <= m; ++i)

{
for (j = 1; j<= n; j++)

{
sscanf(matrix_data_ptr, "%lf", &A_COLUMN(i,j));
matrix_data_ptr = strtok(0, " \t\n");

}
}

f08aec(Nag_ColMajor, m, n, a_column, pda_column, tau, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from f08aec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Form the leading N columns of Q explicitly */
f08afc(Nag_ColMajor, m, n, n, a_column, pda_column, tau, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from f08afc.\n%s\n", fail.message);
exit_status = 2;
goto END;

}
/* Print the leading N columns of Q only */
sprintf(title, "The leading %2ld columns of Q\n", n);
x04cac(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, m, n,

a_column, pda_column, title, 0, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from x04cac.\n%s\n", fail.message);
exit_status = 3;
goto END;

}

How to Use the NAG Library and its Documentation NAG Library Manual

essint.8 Mark 26

#endif
END:
if (title) NAG_FREE(title);
if (a_row) NAG_FREE(a_row);
if (a_column) NAG_FREE(a_column);
if (tau) NAG_FREE(tau);

return exit_status;
}

Example 2

/* Example Program, with memory declared, based on:
*
* nag_dorgqr (f08afc)) Example Program.
*
* Copyright Numerical Algorithms Group.
*
*/

#include <stdio.h>
#include <string.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

#define MMAX 10
#define NMAX 8

int main(void)
{

/* Scalars */
Integer i, j, m, n, pda, tau_len;
Integer exit_status=0;
NagError fail;

/* Arrays */
char title[30];
double a_row[MMAX][NMAX], a_column[NMAX][MMAX], tau[NMAX];
char matrx_data [] = {

" -0.57 -1.28 -0.39 0.25 "
" -1.93 1.08 -0.31 -2.14 "
" 2.30 0.24 0.40 -0.35 "
" -1.93 0.64 -0.66 0.08 "
" 0.15 0.30 0.15 -2.13 "
" -0.02 1.03 -1.43 0.50 "

}, *matrix_data_ptr = matrx_data;

/* Initialize strtok */
matrix_data_ptr = strtok(matrix_data_ptr, " \t\n");

INIT_FAIL(fail);

m = 6;
n = 4;;
pda = NMAX;
tau_len = MIN(m, n);

/* Read A from data above */
#ifdef NAG_ROW_MAJOR

for (i = 0; i < m; ++i)
{

for (j = 0; j< n; j++)
{

sscanf(matrix_data_ptr, "%lf", &a_row[i][j]);
matrix_data_ptr = strtok(0, " \t\n");

}
}

Introduction How to Use the NAG Library and its Documentation

Mark 26 essint.9

/* Compute the QR factorization of A */
printf("Using row major storage, declared memory\n");
f08aec(Nag_RowMajor, m, n, &a_row[0][0], pda, tau, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from f08aec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Form the leading N columns of Q explicitly */
f08afc(Nag_RowMajor, m, n, n, &a_row[0][0], pda, tau, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from f08afc.\n%s\n", fail.message);
exit_status = 2;
goto END;

}
/* Print the leading N columns of Q only */
sprintf(title, "The leading %2ld columns of Q\n", n);
x04cac(Nag_RowMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, m, n,

&a_row[0][0], pda, title, 0, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from x04cac.\n%s\n", fail.message);
exit_status = 3;
goto END;

}
#else

printf("Using column major storage, declared memory\n");
for (i = 0; i < m; ++i)

for (j = 0; j< n; j++)
{

/* Note column data is transposed */
sscanf(matrix_data_ptr, "%lf", &a_column[j][i]);
matrix_data_ptr = strtok(0, " \t\n");

}

f08aec(Nag_ColMajor, m, n, &a_column[0][0], pda, tau, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from f08aec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Form the leading N columns of Q explicitly */
f08afc(Nag_ColMajor, m, n, n, &a_column[0][0], pda, tau, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from f08afc.\n%s\n", fail.message);
exit_status = 2;
goto END;

}
/* Print the leading N columns of Q only */
sprintf(title, "The leading %2ld columns of Q\n", n);
x04cac(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, m, n,

&a_column[0][0], pda, title, 0, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from x04cac.\n%s\n", fail.message);
exit_status = 3;
goto END;

}
#endif
END:
return exit_status;

}

How to Use the NAG Library and its Documentation NAG Library Manual

essint.10 Mark 26

2.3.1.5 Internal data structures in the NAG C Library

For efficiency, and wherever possible, the NAG C Library is designed to make use of the Basic Linear
Algebra Subprograms (BLAS), a suite of low-level functions tuned by many computer manufacturers
for their particular hardware. Since the BLAS are specified in Fortran, and therefore use the column-
major storage order, the NAG C Library also uses this scheme, internally, for new functions wherever it
is practical. Thus any two-dimensional arrays you have provided may be re-ordered on entry and/or on
exit from the NAG functions, as appropriate. It is therefore slightly more efficient to use the column-
major ordering; however, except for very large data sets, the effect is negligible in practice.

2.3.1.6 Chapter header files

Chapter header files contain the function declarations for the NAG Library with ANSI function
prototyping. The appropriate chapter header file must be included for each NAG function called by your
program. For example, to call the function nag_sum_fft_complex_1d (c06pcc) the chapter header file
nagc06.h must be included as

#include <nagc06.h>

The naming convention is to prefix the first three characters of the function name in lower case by nag

and use .h as the postfix as in normal C practice, except that all functions in Chapter s use the header
file nags.h.

(a) Header files intended for your inclusion within calling programs to the NAG Library

nag.h defines the basic environment for use of the NAG Library. This header file must be included in
each calling program to the NAG Library and must precede all other header files that are included. This
must be followed by one or more of the following chapter header files.

naga00.h naga02.h nagc02.h nagc05.h nagc06.h nagc09.h

nagd01.h nagd02.h nagd03.h nagd04.h nagd05.h nagd06.h

nage01.h nage02.h nage04.h nage05.h nagf01.h nagf02.h

nagf03.h nagf04.h nagf06.h nagf07.h nagf08.h nagf11.h

nagf12.h nagf16.h nagg01.h nagg02.h nagg03.h nagg04.h

nagg05.h nagg07.h nagg08.h nagg10.h nagg11.h nagg12.h

nagg13.h nagh02.h nagh03.h nagm01.h nags.h nagx01.h

nagx02.h nagx04.h nagx06.h nagx07.h

nag_stdlib.h defines the memory allocation macro NAG_ALLOC and NAG_FREE. You must include
this header file if the NAG definitions of NAG_ALLOC and NAG_FREE, as used in the example programs,
are required.

(b) The following three header files are included by nag.h (you do not need to supply a specific
statement to include them)

nag_types.h defines the NAG types used in the Library.

nag_errlist.h defines the NAG error codes and messages used in the Library.

nag_names.h maps the NAG long names to short names.

2.3.2 Direct and Reverse Communication Functions

Functions in the Library that require a user-supplied function may be classified as either direct
communication or reverse communication.

Direct communication functions require a user-supplied function to be provided as an actual argument
to the NAG Library function. You must write this function using a very rigid interface as specified in
the relevant function document. For the majority of applications this is the simplest and most
convenient usage. Sometimes however this approach can be restrictive:

Introduction How to Use the NAG Library and its Documentation

Mark 26 essint.11

(i) when the required format of the function does not allow useful information to be passed
conveniently to and from your calling program;

(ii) when the direct communication function is being called from another computer language which
does not fully support procedure arguments in a way that is compatible with the Library.

These restrictions can be removed by using a reverse communication function. Instead of obtaining the
solution in one call, reverse communication functions perform one step of the solution process before
returning to the calling program with an appropriate flag (IREVCM) set. The value of IREVCM
determines whether the process has finished or whether fresh information is required. In the latter case
the required information must be calculated before re-entering the reverse communication function.
Thus you have the responsibility for providing an iterative loop. Although reverse communication
functions will typically be more complicated to use than direct communication equivalents they do
provide greater flexibility for the evaluation of the function.

2.4 Use of NAG Long Names

The long names defined in the header file nag_names.h are #defines. You should note that the short
function names given in upper case in this file are also #defines and therefore their corresponding long
names will not require a terminating pair of brackets. These declarations are to be found in nagx01.h

and nagx02.h. As the header file nag_names.h is already included via nag.h, you need not include
nag_names.h in their calling programs.

2.5 Input/Output

NAG Library functions output all error and warning messages to the C standard error stream stderr.
Chapters e04, e05, g02 and g13 will optionally output results to the C standard output stream stdout

or to an alternative user-specified file. A number of functions in Minimizing or Maximizing a Function
(Chapter e04) and Operations Research (Chapter h) read input from external files.

2.6 Auxiliary Functions

In addition to the documented functions, the NAG Library contains a much larger number of auxiliary
functions. You do not normally need to concern yourself with these functions, as they will automatically
be called as required by the user-callable function you have selected.

2.7 NAG Error Handling and the fail Argument

All functions that have error exits have a argument that allows you control over the printing of error
messages when an error is detected. There is a further option which allows you to either continue
running your program, having returned from the NAG function, or to stop with either an exit statement
or an abort within the NAG function. The different ways of using these error handling facilities are
described below.

Note that in some implementations, the Library is linked with the vendor library containing LAPACK
functions and the Chapters f07 and f08 function interfaces, where appropriate, act as wrappers to the
corresponding vendor LAPACK functions. In this case, the fail argument passed through the Chapter
f07 and Chapter f08 interfaces does not have full control over the printing of error messages; nor does
it determine whether or not control is returned to the calling program when an error is detected.

2.7.1 Use of NNAAGGEERRRR__DDEEFFAAUULLTT

The simplest method of using the error handling facility is to put NAGERR_DEFAULT in place of the fail
argument in calls to the NAG C functions. If an error is detected the appropriate NAG error message is
output on stderr and the program is stopped by the use of exit.

How to Use the NAG Library and its Documentation NAG Library Manual

essint.12 Mark 26

2.7.2 Use of the fail Argument

The two remaining ways of using the NAG error handling facility both involve defining the fail
argument in the calling program. The fail argument is of type NagError which is a structure fully
defined in nag_types.h. The fields of this structure of relevance to you as a user of the NAG C
Library:

int code;
Nag_Boolean print;
char message[NAG_ERROR_BUF_LEN];
Integer errnum;
void (*handler)(char*,int,char*);

where the symbol NAG_ERROR_BUF_LEN is normally defined to be 512.

This structure will contain the NAG error code and message on return from a call to a NAG Library
function. The NAG error codes and some associated NAG error messages are defined in nag_err-

list.h. A detailed description of the individual members of this structure is given below (see
Section 2.7.3).

The NAG error argument fail is declared in the calling program as:

NagError fail;

The address of the argument is then passed to the NAG C function being called. Relevant members of
the structure must be initialized before passing the argument to the called function, even though you
may not actually require all members. It is recommended that the NAG defined macro INIT_FAIL be
used for this purpose.

The INIT_FAIL macro sets:

fail:code ¼ NE NOERROR

fail:print ¼ Nag FALSE

fail:errnum ¼ 0

fail:handler ¼ 0

The SET_FAIL macro is also available. It sets the contents of fail in the same way as INIT_FAIL

except that fail:print is set to Nag_TRUE.

(a) Use of the fail argument with the print member set to Nag_TRUE

If you require that the NAG error message be printed when an error is found, but that the called
function should return control to the calling program, then the fail argument must be declared with all
members initialized and the print member set to Nag_TRUE. Use of the NAG-defined macro
SET_FAIL with the statement SET_FAIL(fail); performs the appropriate assignments. Alternatively
the initialization could be done by declaring the fail argument with static and then setting fail.print to
Nag_TRUE.

If no error occurs, fail.code will contain the error code NE_NOERROR on return from the called
function. However, if an error is found, the appropriate NAG error message will be output on stderr

before returning control to the calling program; fail.code will contain the relevant NAG error code. You
must ensure that the calling program tests the code member of the fail argument on return from the
NAG C function; you may then choose whether to exit the calling program or continue. See the
example program for nag_zero_nonlin_eqns_easy (c05qbc) for such a case. The option of continuing
may be advantageous if the results being returned are of some value even when an error has been
detected. In the case of nag_zero_nonlin_eqns_easy (c05qbc) the code could be altered to allow the
program to continue if the specific error codes NE_TOO_MANY_FEVALS, NE_TOO_SMALL and
NE_NO_IMPROVEMENT occur, as in such a case useful partial results are returned (see the function
document for nag_zero_nonlin_eqns_easy (c05qbc)).

(b) Use of the fail argument with the print member set to Nag_FALSE

If you do not wish the NAG error messages to be printed automatically when an error is found then the
fail argument must be declared with all members initialized and the print member set to Nag_FALSE.

Introduction How to Use the NAG Library and its Documentation

Mark 26 essint.13

Use of static in the declaration of fail will automatically leave the print member as Nag_FALSE as
will the use of INIT_FAIL(fail).

This method is suitable for those of you who wish to produce your own error messages rather than use
the NAG Library versions. Alternative error messages may be coded directly into the calling program
or be produced via a user-written error-handling function which is assigned to the handler member of
the fail argument (see the description of the handler member below).

2.7.3 The NNaaggEErrrroorr structure

The members of the NagError structure, of relevance to you as the user of the NAG C Library, are
described in full below.

code

On successful exit, code contains the NAG error code NE_NOERROR; if an error or warning has been
detected, then code contains the specific error or warning code. Error codes are prefixed with NE_
whereas warning codes have the prefix NW_.

print

print must be set before calling any NAG Library function with a fail argument. It should be set to
Nag_TRUE if the NAG error message is to be printed, otherwise Nag_FALSE. It is not changed by the
NAG Library function.

message

On successful exit the array message contains the character string "NE_NOERROR:\n No error". If
an error has been detected, then message contains the error message text, whether or not this is printed.

errnum

On successful exit, errnum is unchanged. For certain error or warning exits errnum will contain a
value specifying additional information concerning the error. For example if a vector is supplied
incorrectly, then errnum may specify which component of the vector is wrong. Cases where errnum

returns information are described in the relevant function documents.

handler

handler must be set to 0 if control is to be returned to the calling function after an error has been
detected. Otherwise it must point to a user-supplied error-handling function. An example of the ANSI C
declaration of a user-supplied error function (here called errhan) is:

void errhan(const char *string, int code, const char *name)

where string contains the NAG error message on input, code is the NAG error code and name is the
short name of the NAG Library function which detected the error. If print (see above) is Nag_TRUE,
then the NAG error message is printed before the user-supplied error handler is called. If the user-
supplied error handler returns control, then the NAG error handler will return control to the calling
program; otherwise the user-supplied error handler may exit.

An elementary example of where this feature might be used is if it is preferred to print error messages
on stdout rather than the default stderr. In this case errhan could be defined as:

void errhan(const char *string, int code, const char *name)
{

if (code != NE_NOERROR)
{

printf("\nError or warning from %s.\n", name);
printf("%s\n", string);

}
}

2.7.4 Structure of the NAG error messages

For illustrative purposes, let us consider two examples of the format of the NAG Library error
messages, in the NAG Library documentation:

How to Use the NAG Library and its Documentation NAG Library Manual

essint.14 Mark 26

NE_INT

On entry, N ¼ valueh i.
Constraint: N > 1.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

If the NAG function in question detects an error and error messages are being displayed, either by using
the default error handler NAGERR_DEFAULT or by setting fail:print ¼ Nag TRUE, then text of the
following form would be displayed:

NE_INT:
On entry, n = 1
Constraint: n > 1.

or

NE_BAD_PARAM:
On entry, argument order had an illegal value.

i.e., the notation valueh i appearing in the documented error message is a place holder that will be
populated by the value of a variable, argument name or some other piece of information when that error
message is displayed.

2.7.5 License Management

If your implementation is license managed then your local site will have details on how the license
management is implemented; please contact your site installer for details. To determine whether a valid
license is available on your machine run the example program for nag_licence_query (a00acc).

Should a valid license not be found when calling license managed functions from the Library then the
function returns or terminates with the error state NE_NO_LICENCE. On Unix based systems, the
appropriate environment variables should then be checked (e.g., NAG_KUSARI_FILE) to make sure
this points to the licence file containing a valid licence, and the licence file should be checked for any
obvious errors (e.g., the licence refers to a different implementation). If everything appears to be correct
then please contact NAG (see Support from NAG for details).

2.7.6 Unexpected Errors

Internal calls to Library functions are checked for error exits even when these exits are not to be
expected. Should an unexpected error exit occur the function returns or terminates with the error state
NE_INTERNAL_ERROR.

2.8 Calling the Library from Other Languages

In general the NAG Library can be called from other computer languages (such as C++, C#, Java,
Visual Basic and Python) provided that appropriate mappings exist between the NAG Library data types
and their data types (see http://www.nag.co.uk/numeric/CL/classocinfo.asp).

2.9 Arithmetic Considerations and Reproducibility of Results

The results obtained when calling a NAG Library function depend not only on the algorithm used to
solve the problem, but also on the compiler used to build the library, compiler run-time libraries, and
also the arithmetic properties of the machine on which the code is run.

Historically, different kinds of computer hardware tended to have different kinds of arithmetic. Some
machines would store floating-point numbers using a base 16 significand and exponent system, others
would use base 2, and some even used base 8 or 10. Such differences caused major headaches for
software library providers because code that worked well on one arithmetic system might not behave in
exactly the same way on another. This meant that great care had to be taken to make the library code
portable.

Introduction How to Use the NAG Library and its Documentation

Mark 26 essint.15

In addition, it was not unheard of for machine arithmetic to have flaws or errors where basic operations
such as multiplication or division could sometimes give incorrect results, especially on numbers that
were in some way ‘extreme’, such as being very large or small.

After the first of the IEEE standards for floating-point arithmetic (ANSI/IEEE (1985)) was introduced in
the 1980s, the situation improved greatly. Nowadays most significant hardware, and certainly most
hardware that NAG libraries run on, will use IEEE-style base 2 arithmetic. This makes production of
portable code easier, but there are still problems, partly due to the latitude allowed by the IEEE
standards. For example, hardware which uses extra-precise 80-bit internal registers for arithmetic, as
originally introduced in the Intel 8087 coprocessor in the 1980s, behaves slightly differently from
hardware that uses 64-bit registers, particularly if a compiler generates optimized code which holds
arithmetic subexpressions in the extra-precise registers.

Since, for performance reasons, computer arithmetic is generally finite precision (as is certainly the case
for IEEE standard arithmetic) most of the numerical methods implemented by NAG Library functions
can only return an approximation to the true solution, simply due to accumulation of rounding errors.

It should therefore be clear that running a program which calls a NAG Library function with the same
data on two different machines can give different results, due to compiler, hardware and run-time
library considerations. Usually these differences are small – it may be that a result computed on one
machine differs only in the last few significant bits from the same result computed on another machine
– for example, when solving a well-conditioned set of linear equations on two different machines.
Occasionally small differences may be magnified, for example if a conditional test depends on an
imprecise result. A function that searches for a mininum of an optimization problem may converge to a
different local minimum, but in general, so long as the function's documentation doesn't claim that the
same local minimum will always be obtained, this should be acceptable. Even if an algorithm
converges to the same local minimum, arithmetic differences may mean that a different number of
iterations is taken to get there.

Modern hardware and optimizing compilers have introduced further scope for arithmetic quirks. An
example is in the use of Streaming SIMD Extension (SSE) instructions. These low-level machine
instructions allow hardware to operate on more than one number in parallel, if your compiler is smart
enough to generate and use them correctly, or if you hand-code your own assembly language functions.

SSE instructions enable low-level parallelism of floating-point arithmetic operations. For example, a
128-bit SSE register can hold two 64-bit double precision (or four 32-bit single precision) numbers at
the same time, and operate on them all simultaneously. This can lead to big time savings when working
on large amounts of data.

But this may come at a price. Efficient use of SSE instructions can sometimes depend on exactly how
the memory used to store data is aligned. Some SSE instructions for moving data to and from memory
need memory to be aligned on a 16-byte boundary. If it happens that the memory (for example, a
pointer to an array of numbers) that a NAG function uses is not aligned nicely, then it may not be
possible to use those SSE instructions. An optimizing compiler might well generate two instruction
streams, one for when it detects that memory is aligned, and one for when it is not.

An example should serve to make things clearer. Suppose we wish to compute the inner product of two
vectors, X and Y, each of length N. The inner product (or dot product) of two vectors is computed by
multiplying together corresponding elements of the two vectors, and summing the individual products to
get the result. A function compiled by a good optimizing compiler would load numbers two or four at a
time, multiply them together two or four at a time, and accumulate the results into the final result.

But if the memory is not nicely aligned – and it may well not be – the compiler needs to generate a
different code path to deal with the situation. Here the result will take longer to get because the
products must be computed and accumulated one at a time. At run-time, the code checks whether it can
take the fast path or not, and works appropriately.

The problem is that by altering the order of the accumulations, we are quite possibly changing the final
result, simply due to rounding differences when working with finite precision computer arithmetic.
Instead of getting the inner product

s ¼ x1 � y1 þ x2 � y2 þ x3 � y3 þ � � � þ xn � yn

we may get

How to Use the NAG Library and its Documentation NAG Library Manual

essint.16 Mark 26

s ¼ x1 � y1 þ x3 � y3ð Þ þ x2 � y2 þ x4 � y4ð Þ þ � � � :
It is likely that the result will be just as accurate either way – neither result will be precise due to finite
arithmetic – but they may differ by a tiny amount. And if that tiny difference leads to a different
decision being made by the code that called the inner product function, the difference may be
magnified.

Furthermore, it is possible that the same program running with bitwise identical data on the same
machine may give different results when run twice in a row simply because, when the program is
loaded, by chance some piece of memory may or may not be aligned on a particular boundary. Such
non-deterministic results can be frustrating if you depend on always getting identical results for the
same data.

On even newer hardware, AVX instructions use 256-bit registers, and can therefore operate on more
numbers at a time. For AVX instructions, memory may need to be 32-byte aligned.

Some memory used by NAG Library functions is allocated inside the NAG Library. In order to
minimize differences due to effects like that described above, we can try to make sure the memory is
always aligned nicely – for example, by use of more controllable memory allocation functions where
available – but that is not always possible since it partly depends on the support of the compiler.

Of course, no Library function has control over memory you have allocated before being passed to the
function. If you do observe non-deterministic results which you suspect are due to memory
considerations, and you are unable to accept this variation, then you are advised to make sure that any
memory you allocate is aligned nicely; unfortunately, precisely how you do this is dependent on your
system, but you may be able to get advice through NAG's usual support channels (see Support from
NAG).

Parallelism, coming from a multithreaded implementation of the NAG Library and/or a multithreaded
vendor library is another potential source of non-determinism in numerical results. Some functions may
give different results when run on different numbers of cores, or even different results when a
calculation is repeated on the same number of cores. Where reproducibility of results is vital, a purely
serial NAG library, without parallelism in either NAG functions or calls to parallel vendor library
functions will generally be available in an appropriate implementation, and may be the best choice. You
are advised to consult NAG (see Support from NAG) for advice.

2.9.1 Bit-wise Reproducibility (BWR)

Mathematical operations on fixed-length floating point numbers (e.g., 32-bit floats or 64-bit doubles) are
not associative. This means that a computer may produce different results for aþ bþ cð Þ and
aþ bð Þ þ c. For example, an IEEE 754 32-bit floating point number has a mantissa of 23 bits. Therefore
in this number format 224 þ 1 ¼ 224, which means that for instance 224 þ 1

� �� 224 ¼ 0 while

224 þ 1� 224
� � ¼ 1. BWR is a term which refers to the case in which a given computer program (e.g., a

set of source codes) produces bit-for-bit the exact same answer in different computing environments
such as

1. Different operating systems (e.g., answers produced on Windows vs answers produced on Linux).

2. Different CPU architectures (e.g., Intel vs AMD or Intel Sandy Bridge vs Intel Ivy Bridge etc.).

3. Different compiler versions.

4. Different numbers of threads.

Users often desire BWR however it is extremely difficult to achieve. Typically you should ensure that:

(a) Instructions are always executed in exactly the same order.

(b) No advanced CPU features are used which may not be available on other processors (e.g., SSE3,
SSE4, AVX).

(c) A fixed number of threads is always used.

Often condition (a) is equivalent to compiling with no (or very limited) compiler optimizations, since
newer versions of compilers typically improve their code optimization algorithms, which means one

Introduction How to Use the NAG Library and its Documentation

Mark 26 essint.17

version of a compiler may optimize a set of operations one way while the next version may optimize it
a different way. Condition (b) typically means that only basic SSE instructions are allowed, such as are
supported across the widest range of processors and the enhanced SIMD instructions present in newer
processors are not exploited.

The result is that to achieve BWR across a wide range of computing environments one often has to
sacrifice a lot of performance.

2.9.1.1 Vendor Math Libraries and Conditional Bitwise Reproducibility (CBWR)

An implementation of the NAG Library that is not self-contained will make calls to an appropriate
vendor library containing, in particular, high performance linear algebra functions. The NAG Library
has no direct control over BWR with respect to results obtained from calls to the vendor library.
However, for at least one such vendor library, CBWR has been introduced such that if an environment
variable is set and a set of conditions adhered to in the code calling the vendor library then BWR can
be forced. Where CBWR is available for a vendor library used by an implementation of the NAG
Library, details will be given in the Users' Note for that implementation.

It should be noted that many NAG functions do not adhere to the conditions set out by vendor library
CBWR and so it may not be possible to ensure BWR for all NAG Library functions across different
CPU architectures for implementations that are not self-contained.

2.10 Multithreading

2.10.1Thread Safety

In multi-threaded applications a team of threads each process instructions independently while sharing
the same memory address space. A thread safe program ensures that any data shared by these threads,
such as global variables, is not accessed simultaneously which compromises results. This can be
ensured through appropriate synchronization, such as that found in OpenMP. The NAG C Library is
thread safe by design: the functions do not use global variables and all communication between them is
via argument lists, and thus can be safely called simultaneously by multiple threads in your program.

2.10.1.1 Functions with Function Arguments

Some Library functions require you to supply a function and to pass the name of the function as an
actual argument in the call to the Library function. For many of these Library functions, the supplied
function interface includes an array parameter (called comm) specifically for you to pass information to
the supplied function without the need for global variables.

If you need to provide your supplied function with more information than can be given via the interface
argument list, then you are advised to check, in the relevant chapter introduction, whether the Library
function you intend to call has an equivalent reverse communication interface. These have been
designed specifically for problems where user-supplied function interfaces are not flexible enough for a
given problem, and their use should eliminate the need to provide data through global variables. Where
reverse communication interfaces are not available, it is usual to use global variables containing the
required data that is accessible from both the supplied function and from the calling program. It is
thread safe to do this only if any global data referenced is updated using appropriate synchronisation,
thus avoiding the possibility of simultaneous modification by different threads.

Thread safety of user-supplied functions is also an issue with a number of functions in multi-threaded
implementations of the NAG Library, which may internally parallelize around the calls to the user-
supplied functions. This issue affects not just global variables but also how the comm array may be
used. In these cases, synchronisation may be needed to ensure thread safety. Chapter x06 provides
functions which can be used in your supplied function to determine whether it is being called from
within an OpenMP parallel region. If you are in doubt over the thread safety of your program you are
advised to contact NAG for assistance.

2.10.1.2 Input/Output

When using the NAG C Library in multi-threaded applications we recommend that when using the C
Library error mechanism, the output is switched off (by setting fail:print=Nag_FALSE).

How to Use the NAG Library and its Documentation NAG Library Manual

essint.18 Mark 26

2.10.1.3 Implementation Issues

In very rare cases we are unable to guarantee the thread safety of a particular specific implementation.
Note also that in some implementations, the Library is linked with one or more vendor libraries to
provide, for example, efficient BLAS functions. NAG cannot guarantee that any such vendor library is
thread safe. Please consult the Users' Note for your implementation for any additional implementation-
specific information.

2.10.2 Parallelism

2.10.2.1 Introduction

The time taken to execute a function from the NAG Library has traditionally depended, to a large
degree, on the serial performance capabilities of the processor being used. In an effort to go beyond the
performance limitations of a single core processor, multithreaded implementations of the NAG Library
are available. These implementations divide the computational workload of some functions between
multiple cores and executes these tasks in parallel. Traditionally, such systems consisted of a small
number of processors each with a single core. Improvements in the performance capabilities of these
processors happened in line with increases in clock frequencies. However, this increase reached a limit
which meant that processor designers had to find another way in which to improve performance; this
led to the development of multicore processors, which are now ubiquitous. Instead of consisting of a
single compute core, multicore processors consist of two or more, which typically comprise at least a
Central Processing Unit and a small cache. Thus making effective use of parallelism, wherever possible,
has become imperative in order to maximize the performance potential of modern hardware resources,
and the multithreaded implementations.

The effectiveness of parallelism can be measured by how much faster a parallel program is compared to
an equivalent serial program. This is called the parallel speedup. If a serial program has been
parallelized then the speedup of the parallel implementation of the program is defined by dividing the
time taken by the original serial program on a given problem by the time taken by the parallel program
using n cores to compute the same problem. Ideal speedup is obtained when this value is n (i.e., when
the parallel program takes 1

nth the time of the original serial program). If speedup of the parallel
program is close to ideal for increasing values of n then we say the program has good scalability.

The scalability of a parallel program may be less than the ideal value because of two factors:

(a) the overheads introduced as part of the parallel implementation, and

(b) inherently serial parts of the program.

Overheads include communication and synchronisation as well as any extra setup required to allow
parallelism. Such overheads depend on the efficiency of the compiler and operating system libraries and
the underlying hardware. The impact on performance of inherently serial fractions of a program is
explained theoretically (i.e., assuming an idealised system in which overheads are zero) by Amdahl's
law. Amdahl's law places an upper bound on the speedup of a parallel program with a given inherently
serial fraction. If r is the parallelizable fraction of a program and s ¼ 1� r is the inherently serial
fraction then the speedup using n sub-tasks, Sn, satisfies the following:

Sn � 1

sþ r
n

� �

Thus, for example, this says that a program with a serial fraction of one quarter can only ever achieve a
speedup of 4 since as n ! 1, Sn � 4.

Parallelism may be utilised on two classes of systems: shared memory and distributed memory
machines, which require different programming techniques. Distributed memory machines are
composed of processors located in multiple components which each have their own memory space
and are connected by a network. Communication and synchronisation between these components is
explicit. Shared memory machines have multiple processors (or a single multicore processor) which can
all access the same memory space, and this shared memory is used for communication and
synchronisation. The NAG Library makes use of shared memory parallelism using OpenMP as
described in Section 2.10.2.2.

Introduction How to Use the NAG Library and its Documentation

Mark 26 essint.19

Parallel programs which use OpenMP create (or "fork") a number of threads from a single process
when required at run-time. (Programs which make use of shared memory parallelism are also called
multithreaded programs.) The threads form a team comprising of a single master thread and a number
of slave threads. These threads are capable of executing program instructions independently of one
another in parallel. Once the parallel work has been completed the slave threads return control to the
master thread and become inactive (or "join") until the next parallel region of work. The threads share
the same memory address space, i.e., that of the parent process, and this shared memory is used for
communication and synchronisation. OpenMP provides some mechanisms for access control so that, as
well as allowing all threads to access shared variables, it is possible for each thread to have private
copies of other variables that only it can access. Something to be aware of for multithreaded programs,
compared to serial ones, is that identical results cannot be guaranteed, nor should be expected. Identical
results are often impossible in a parallel program since using different numbers of threads may cause
floating-point arithmetic to be evaluated in a different (but equally valid) order, thus changing the
accumulation of rounding errors. For a more in-depth discussion of reproducibility of results see
Section 2.9.

2.10.2.2 How is Parallelism Used in the NAG Library?

The multithreaded implementations differ from the serial implementations of the NAG Library in that it
makes use of multithreading through use of OpenMP, which is a portable specification for shared
memory programming that is available in many different compilers on a wide range of different
hardware platforms (see OpenMP).

Note that not all functions are parallelized; you should check Section 8 of the function documents to
find details about parallelism and performance of functions of interest.

There are two situations in which a call to a function in the NAG Library makes use of multithreading:

1. The function being called is a NAG-specific function that has been threaded using OpenMP, or that
internally calls another NAG-specific function that is threaded. This applies to multithreaded
implementations of the NAG Library only.

2. The function being called calls through to BLAS or LAPACK functions. The vendor library
recommended for use with your implementation of the NAG Library (whether the NAG Library is
threaded or not) may be threaded. Please consult the Users' Note for further information.

A complete list of all the functions in the NAG Library, and their threaded status is given in
Section 2.10.3.

It is useful to understand how OpenMP is used within the Library in order to avoid the potential pitfalls
which lead to making inefficient use of the Library.

A call to a threaded NAG-specific function may, depending on input and at one or more points during
execution, use OpenMP to create a team of threads for a parallel region of work. The team of threads
will fork at the start of the parallel region before joining at the end of the parallel region. Both the fork
and the join will happen internally within the function call. However, there are situations in which the
teams of threads may be made available to OpenMP directives in your code via user-supplied
subprograms, we refer to directives not contained within a parallel region as orphaned directives. (See
Section 8 of the function documents for further information.) Furthermore, OpenMP constructs within
NAG functions are executed by teams of threads created within the NAG code, that is, there are no
orphaned directives in the Library itself. Throughout this documentation we assume the use of the
recommended compiler as given in the Users' Note, and in particular the use of a single OpenMP run-
time library. Thus all OpenMP environment variables will apply to your own code and to NAG
functions. However, they may not be respected by vendor libraries that have a mechanism for
overriding them. NAG provides functions in Chapter x06 to control threads for your whole program,
including any specific to a vendor library being called by NAG. You should take care when calling
these NAG functions from within your own parallel regions, since if nested parallelism is enabled (it is
disabled by default) the NAG function will fork-and-join a team of threads for each calling thread,
which may lead to contention on system resources and very poor performance. Poor performance due to
contention can also occur if the number of threads requested exceeds the number of physical cores in
your machine, or if some hardware resources are busy executing other processes (which may belong to
other users in a shared system). For these reasons you should be aware of the number of physical cores

How to Use the NAG Library and its Documentation NAG Library Manual

essint.20 Mark 26

available to your program on your machine, and use this information in selecting a number of threads
which minimizes contention on resources. Please read the Users' Note for advice about setting the
number of threads to use, or contact NAG (see Support from NAG) for advice.

If you are calling multithreaded NAG functions from within another threading mechanism you need to
be aware of whether or not this threading mechanism is compatible with the OpenMP compiler runtime
used to build the multithreaded implementation of the NAG Library on your platform(s) of choice. The
Users' Note document for each of the implementations in question will include some guidance on this,
and you should contact NAG for further advice if required.

Parallelism is used in many places throughout the NAG Library since, although many functions have
not been the focus of parallel development by NAG, they may benefit by calling functions that have,
and/or by calling parallel vendor functions (e.g., BLAS, LAPACK). Thus, the performance
improvement due to multithreading, if any, will vary depending upon which function is called,
problem sizes and other parameters, system design and operating system configuration. If you
frequently call a function with similar data sizes and other parameters, it may be worthwhile to
experiment with different numbers of threads to determine the choice that gives optimal performance.
Please contact NAG for further advice if required.

As a general guide, many key functions in the following areas are known to benefit from shared
memory parallelism:

Dense and Sparse Linear Algebra

FFTs

Random Number Generators

Quadrature

Partial Differential Equations

Interpolation

Curve and Surface Fitting

Correlation and Regression Analysis

Multivariate Methods

Time Series Analysis

Financial Option Pricing

Global Optimization

Wavelets

2.10.3Multithreaded Functions

Many functions are threaded using OpenMP in multithreaded implementations of the NAG Library.
These implementations are denoted by having a product code of the form 'CS_______', rather than
'CL_______' for serial NAG Library implementations. Please consult Section 8 of each routine
document for further information. A table available in the HTML documentation lists which routines
have been threaded by NAG. The list also includes functions which internally call BLAS or LAPACK
routines, which may be threaded within the vendor library used by both serial and multithreaded NAG
Library implementations. You are advised to consult the documentation for the vendor library for
further information. Please consult the Users' Note for your implementation for any additional
implementation-specific information.

3 How to Use NAG Documentation

3.1 Using the Manual

The Manual is designed to serve the following functions for the NAG Library:

Introduction How to Use the NAG Library and its Documentation

Mark 26 essint.21

to give background information about different areas of numerical and statistical computation;

to advise on the choice of the most suitable NAG Library function or functions to solve a
particular problem;

to give all the information needed to call a NAG Library function correctly from a C program,
and to assess the results.

At the beginning of the Manual are some general introductory documents which provide some
background and additional information.

The document entitled ‘NAG C Library News, Mark 26’ provides details of new functions added,
details of functions scheduled for withdrawal and details of functions withdrawn at this mark.

The document entitled ‘Advice on Replacement Calls for Withdrawn/Superseded Functions’ provides
advice on how to modify your program.

The online documentation includes a Keyword and GAMS Search which provides you with a form to
search the Library for keywords.

Having found a likely chapter or function, you should read the corresponding Chapter Introduction,
which gives background information about that area of numerical computation, and recommendations
on the choice of a function, including indexes, tables and decision trees.

When you have chosen a function, you must consult the function document. Each function document
is essentially self-contained (it may, however, contain references to related documents). It includes a
description of the method, detailed specifications of each argument, explanations of each error exit,
remarks on accuracy, and (in most cases) an example program to illustrate the use of the function.

3.2 Structure of the Documentation

The NAG Library Manual is the principal documentation for the NAG C Library. It has the same
chapter structure as the Library: each chapter of functions in the Library has a corresponding chapter
(of the same name) in the Manual. The chapters occur in alphanumeric order. General introductory
documents appear at the beginning of the Manual.

Each chapter consists of the following documents:

Chapter Contents, e.g., Chapter d01;

Chapter Introduction, e.g., the d01 Chapter Introduction;

Function Documents, one for each documented function in the chapter.

A function document has the same short name as the function which it describes. Within each chapter,
function documents occur in alphanumeric order of short names. It should be noted that all the
computational functions from LAPACK, Release 3 are included in the NAG Library and can be called
by the NAG Library provided C Library interfaces to LAPACK. The NAG Library names follow the
naming convention of LAPACK except that the names are in lower case and 'nag_' is prepended.

All function documents have the same structure consisting of ten numbered sections:

1. Purpose

2. Specification

3. Description

4. References

5. Arguments (see Section 3.3)

6. Error Indicators and Warnings

7. Accuracy

8. Parallelism and Performance

9. Further Comments

10. Example (see Section 3.4)

How to Use the NAG Library and its Documentation NAG Library Manual

essint.22 Mark 26

In some documents (notably Chapters e04, e05 and h) there are a further three sections:

11. Algorithmic Details

12. Optional Parameters

13. Description of Monitoring Information

The sections numbered 11. and 13. above are optional; thus, the section titled Optional Parameters
may appear as (the possibly final) Section 11.

3.3 Specification of Arguments

Section 5 of each function document contains the specification of the arguments, in the order of their
appearance in the argument list.

3.3.1 Classification of Arguments

Arguments are classified as follows.

Input: you must assign values to these arguments on or before entry to the function, and these values
are unchanged on exit from the function.

Output: you need not assign values to these arguments before entry to the function; the function may
assign values to them.

Input/Output: you must assign values to these arguments before entry to the function, and the function
may then change these values.

Communication Structure and Arrays: arguments which are used to communicate data from one
function call to another.

External Function: a function which must be supplied (e.g., to evaluate an integrand or to print
intermediate output). Usually it must be supplied as part of your calling program, in which case its
specification includes full details of its argument list and specifications of its arguments (all enclosed in
a box). Its arguments are classified in the same way as those of the Library function, but because you
must write the procedure rather than call it, the significance of the classification is different.

Input: values may be supplied on entry.

Output: you may or must assign values to these arguments before exit from your procedure.

Input/Output: values may be supplied on entry, and you may or must assign values to them
before exit from your procedure.

3.3.2 Constraints and suggested values

The word ‘Constraint:’ or ‘Constraints:’ in the specification of an Input argument introduces a
statement of the range of valid values for that argument, e.g.,

Constraint: n > 0.

If the function is called with an invalid value for the argument (e.g.,n ¼ 0), the function will usually
take an error exit.

Occasionally, an enhancement of an existing function at a given Mark may weaken some constraints on
some arguments, this will not change the behaviour of existing code that calls the function, but will
allow new code to take advantage of enhanced functionality.

The phrase ‘Suggested value:’ introduces a suggestion for a reasonable initial setting for an Input
argument (e.g., accuracy or maximum number of iterations) in case you are unsure what value to use;
you should be prepared to use a different setting if the suggested value turns out to be unsuitable for
your problem.

Introduction How to Use the NAG Library and its Documentation

Mark 26 essint.23

3.4 Example Programs and Results

The example program in Section 10 of most function documents illustrates a simple call of the
function. The programs are designed so that they can be fairly easily modified, and so serve as the basis
for a simple program to solve your problem.

For each implementation of the Library, NAG distributes the example programs in machine-readable
form, with all necessary modifications already applied. Many sites make the programs accessible to you
in this form. These programs can also be obtained by using the nagc_example scripts, provided with the
product. Generic forms of the programs, without implementation-specific modifications, may be
obtained directly from the NAG web site. The Users' Note for your implementation will mention any
special changes which need to be made to the example programs from the generic form.

These example programs may contain preprocessor identifiers such as NAG_CALL to enable cross
platform portability. Such identifiers are subsequently replaced by appropriate implementation specific
tokens via the header files nag.h or nag_types.h, using the C preprocessor #defines.

Note that the results obtained from running the example programs may not be identical in all
implementations, and may not agree exactly with the results in the Manual.

For many function documents, a plot of the example program results is also provided. In some cases the
example program has been modified slightly to produce larger sets of results to give a more
representative plot of the solution profile produced.

3.5 Online Documentation

The complete NAG C Library Manual, Mark 26 can be viewed online in the following formats:

HTML, a fully linked version of the manual using HTML, SVG and MathML (recommended for
browsing) and providing links to the PDF version of each document (recommended for printing);

PDF, a full PDF manual browsed using the PDF bookmarks, or via HTML index files;

Single file PDF, the manual as a single PDF file;

Windows HTML help, Windows HTML help version as a single file.

The two single file formats are more compact than the formats that use one file per function and, for
example, allow text searches across the entire manual, but of course the larger files may not be so
convenient if you only need to view the documentation for a few functions.

This note tells you how to obtain the software required to view the documentation and advises you how
best to navigate the files with or without a browser.

3.5.1 HTML Format

3.5.1.1 Viewing HTML5 Files

These files do not use any proprietary browser specific features, and conform to relevant W3C
Recommendations (HTML, MathML, SVG, CSS).

Support for these languages may require that your browser be updated and/or the installation of
additional fonts. This document is restricted to providing information for the more widely used
browsers. If you require information for additional browsers please contact NAG.

3.5.1.2 Firefox (and other Mozilla based browsers)

Versions of Firefox from Firefox 4 onwards should display MathML in HTML files by default.

Rendering of the mathematics is improved if you install the STIX or other OpenType math fonts if they
are not already included on your system (as is the case with OS X and some Linux distributions). Full
details of the installers available for these fonts on all the major platforms are included in the Firefox
MathML fonts page:
http://www.mozilla.org/projects/mathml/fonts/

How to Use the NAG Library and its Documentation NAG Library Manual

essint.24 Mark 26

http://www.mozilla.org/projects/mathml/fonts/

3.5.1.3 Other Browsers

If Firefox is not being used, then the javascript on the page loads the MathJax javascript library (http://
www.mathjax.org) to enable MathML rendering. By default this is loaded from the web using the
MathJax Content Distribution Network. If you require the documentation to work without an Internet
connection then you may either use Firefox as described in the previous section or you may download a
local copy of MathJax (http://docs.mathjax.org/en/latest/installation.html) which needs to be unpacked
on to your local fileserver or file system, and then edit the file ../styles/nagmathml.js changing the line
http://cdn.mathjax.org/mathjax/latest/ to refer to your local installation.

3.5.1.4 Navigating HTML5 Files

A main index file has been provided (html/frontmatter/manconts.html) which links to individual Chapter
Contents documents, which in turn link to a complete set of HTML files. Use your browser to navigate
from this main index file. For each function document in HTML format you are provided with a link to
its equivalent PDF file, this file has been provided primarily for printing purposes.

Each library document contains a number of hyperlinks to particular elements, e.g., argument, sections,
chapter contents, etc. The following key identifies the colour used for each element:

CSS colour CSS name
black NAG type
green appendix, chap, chapter introduction, decision tree, general introduction, section
grey withdrawn document
pale blue equation, figure, item in a list, note, bibliographic reference, table, url, verbatim item,

website
navy blue ifail value
red parameter name
pink member
purple optional parameter
royal blue html table of contents, example plot, routine document, link to a routine example from a

table of contents

3.5.1.5 Printing HTML5 Files

It is possible to print your HTML5 files from the browser, however support for printing from browsers,
especially support for printing mathematics, varies considerably between versions of browsers and
platforms and printer drivers in use. You are recommended to use the PDF version of the document for
printing and suitable links are provided at the top and bottom of the HTML document.

3.5.1.6 Windows HTML Help

The Windows HTML Help version of the manual is essentially a compressed version of the HTML5
help, customised for the Windows HTML Help viewer (with a bundled copy of MathJax). This format
can be very convenient as it is a small compressed single file version allowing full text search over the
entire library. You may find this useful if you have a Microsoft Windows desktop, even if you have the
NAG Library installed on a different platform.

3.5.2 PDF Format

3.5.2.1 Viewing and Printing PDF Files

If you do not already have a copy of Adobe Acrobat Reader, a free copy can be downloaded from
http://www.adobe.com/reader. Please check this site for availability of a reader for your platform. While
we recommend the use of Acrobat Reader, there are alternative PDF viewers available which can also
be used, such as xpdf or ghostview.

If Acrobat is not running as a plug-in then the bookmark links will not work correctly if you are
browsing the PDF files via http rather than the local filesystem. You are advised to reinstall Adobe
Acrobat which should rectify the problem.

We recommend that you use the PDF format when printing library documentation.

Introduction How to Use the NAG Library and its Documentation

Mark 26 essint.25

http://www.mathjax.org
http://www.mathjax.org
http://docs.mathjax.org/en/latest/installation.html
../styles/nagmathml.js
http://www.adobe.com/reader

3.5.2.2 Navigating the PDF Files

The manual is supplied as a set of individual PDF files, one for each function document, chapter
introduction, etc.. Each PDF file contains bookmarks that can be used to navigate between the files.
Alternatively, and often more conveniently, HTML tables of contents are supplied which allow you to
navigate to the desired file using a browser, and then using Acrobat as a browser plugin to read or print
the document.

Alternatively the single file version of the PDF may be used. In this case the bookmarks will provide
links to every function in the Library, and text search may be used to search the entire Library contents.

4 NAG Library Design and Development

Various aspects of the design and development of the NAG Library, and NAG's technical policies and
organization are given in Ford (1982), Ford et al. (1979), Ford and Pool (1984), and Hague et al.
(1982).

5 NAG Library Standards

NAG Library development adheres to a number of international standards, see , ISO/IEC (1990),
Kernighan and Ritchie (1988) ANSI/IEEE POSIX (1995), Basic Linear Algebra Subprograms Technical
(BLAST) Forum (2001).

6 References

ACM (1960–1976) Collected algorithms from ACM index by subject to algorithms

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

ANSI/IEEE (1985) IEEE standard for binary floating-point arithmetic Std 754-1985 IEEE, New York

ANSI/IEEE POSIX (1995) POSIX Standard Thread Library ANSI/IEEE POSIX 1003.1c:1995

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra
Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee
http://www.netlib.org/blas/blast-forum/blas-report.pdf

Blackford L S, Demmel J, Dongarra J J, Duff I S, Hammarling S, Henry G, Heroux M, Kaufman L,
Lumsdaine A, Petitet A, Pozo R, Remington K and Whaley R C (2002) An updated set of Basic Linear
Algebra Subprograms (BLAS) ACM Trans. Math. Software 28 135–151

Dongarra J J, Du Croz J J, Duff I S and Hammarling S (1990) A set of Level 3 basic linear algebra
subprograms ACM Trans. Math. Software 16 1–28

Dongarra J J, Du Croz J J, Hammarling S and Hanson R J (1988) An extended set of FORTRAN basic
linear algebra subprograms ACM Trans. Math. Software 14 1–32

Ford B (1982) Transportable numerical software Lecture Notes in Computer Science 142 128–140
Springer–Verlag

Ford B, Bentley J, Du Croz J J and Hague S J (1979) The NAG Library ‘machine’ Softw. Pract. Exper.
9(1) 65–72

Ford B and Pool J C T (1984) The evolving NAG Library service Sources and Development of
Mathematical Software (ed W Cowell) 375–397 Prentice–Hall

Hague S J, Nugent S M and Ford B (1982) Computer-based documentation for the NAG Library
Lecture Notes in Computer Science 142 91–127 Springer–Verlag

ISO/IEC (1990) Information technology – programming language C Current C Language Standard
ISO/IEC 9899:1990

How to Use the NAG Library and its Documentation NAG Library Manual

essint.26 Mark 26

http://www.netlib.org/lapack/lug
http://www.netlib.org/blas/blast-forum/blas-report.pdf

Kernighan B W and Ritchie D M (1988) The C Programming Language (2nd Edition) Prentice–Hall

The BLAS Technical Forum Standard (2001) http://www.netlib.org/blas/blast-forum

Introduction How to Use the NAG Library and its Documentation

Mark 26 essint.27 (last)

http://www.netlib.org/blas/blast-forum

	How to Use the NAG Library and its Documentation
	1 Library Identification
	2 How to Use the NAG Library
	2.1 Structure of the Library
	2.2 General Advice
	2.3 Programming Advice
	2.3.1 The NAG C environment
	2.3.1.1 NAG data types
	2.3.1.2 Memory management in the Library
	2.3.1.3 The Nag_Order Argument
	2.3.1.4 Array references
	2.3.1.5 Internal data structures in the NAG C Library
	2.3.1.6 Chapter header files

	2.3.2 Direct and Reverse Communication Functions

	2.4 Use of NAG Long Names
	2.5 Input/Output
	2.6 Auxiliary Functions
	2.7 NAG Error Handling and the fail Argument
	2.7.1 Use of NAGERR_DEFAULT
	2.7.2 Use of the fail Argument
	2.7.3 The NagError structure
	2.7.4 Structure of the NAG error messages
	2.7.5 License Management
	2.7.6 Unexpected Errors

	2.8 Calling the Library from Other Languages
	2.9 Arithmetic Considerations and Reproducibility of Results
	2.9.1 Bit-wise Reproducibility (BWR)
	2.9.1.1 Vendor Math Libraries and Conditional Bitwise Reproducibility (CBWR)

	2.10 Multithreading
	2.10.1 Thread Safety
	2.10.1.1 Functions with Function Arguments
	2.10.1.2 Input/Output
	2.10.1.3 Implementation Issues

	2.10.2 Parallelism
	2.10.2.1 Introduction
	2.10.2.2 How is Parallelism Used in the NAG Library?

	2.10.3 Multithreaded Functions

	3 How to Use NAG Documentation
	3.1 Using the Manual
	3.2 Structure of the Documentation
	3.3 Specification of Arguments
	3.3.1 Classification of Arguments
	3.3.2 Constraints and suggested values

	3.4 Example Programs and Results
	3.5 Online Documentation
	3.5.1 HTML Format
	3.5.1.1 Viewing HTML5 Files
	3.5.1.2 Firefox (and other Mozilla based browsers)
	3.5.1.3 Other Browsers
	3.5.1.4 Navigating HTML5 Files
	3.5.1.5 Printing HTML5 Files
	3.5.1.6 Windows HTML Help

	3.5.2 PDF Format
	3.5.2.1 Viewing and Printing PDF Files
	3.5.2.2 Navigating the PDF Files

	4 NAG Library Design and Development
	5 NAG Library Standards
	6 References
	ACM (1960-1976)
	Anderson et al. (1999)
	ANSI/IEEE (1985)
	ANSI/IEEE POSIX (1995)
	Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)
	Blackford et al. (2002)
	Dongarra et al. (1990)
	Dongarra et al. (1988)
	Ford (1982)
	Ford et al. (1979)
	Ford and Pool (1984)
	Hague et al. (1982)
	ISO/IEC (1990)
	Kernighan and Ritchie (1988)
	The BLAS Technical Forum Standard (2001)

	NAG C Library Manual, Mark 26
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

