NAG Library Function Document

nag_surviv_cox_model (g12bac)

1 Purpose

nag_surviv_cox_model (g12bac) returns parameter estimates and other statistics that are associated with the Cox proportional hazards model for fixed covariates.

2 Specification

```
#include <nag.h>
#include <nagg12.h>
```

```
void nag_surviv_cox_model (Integer n, Integer m, Integer ns,
        const double z[], Integer tdz, const Integer sz[], Integer ip,
        const double t[], const Integer ic[], const double omega[],
        const Integer isi[], double *dev, double b[], double se[], double sc[],
        double cov[], double res[], Integer *nd, double tp[], double sur[],
        Integer tdsur, Integer ndmax, double tol, Integer max_iter,
        Integer iprint, const char *outfile, NagError *fail)
```

3 Description

The proportional hazard model relates the time to an event, usually death or failure, to a number of explanatory variables known as covariates. Some of the observations may be right censored, that is the exact time to failure is not known, only that it is greater than a known time.

Let t_i , for i = 1, 2, ..., n be the failure time or censored time for the *i*th observation with the vector of p covariates z_i . It is assumed that censoring and failure mechanisms are independent. The hazard function, $\lambda(t, z)$, is the probability that an individual with covariates z fails at time t given that the individual survived up to time t. In the Cox proportional hazards model (Cox (1972)) $\lambda(t, z)$ is of the form:

$$\lambda(t, z) = \lambda_0(t) \exp\left(z^{\mathrm{T}}\beta + \omega\right)$$

where λ_0 is the base-line hazard function, an unspecified function of time, β is a vector of unknown arguments and ω is a known offset.

Assuming there are ties in the failure times giving $n_d < n$ distinct failure times, $t_{(1)} < \cdots < t_{(n_d)}$ such that d_i individuals fail at $t_{(i)}$, it follows that the marginal likelihood for β is well approximated (see Kalbfleisch and Prentice (1980)) by:

$$L = \prod_{i=1}^{n_d} \frac{\exp(s_i^{\mathsf{T}}\beta + \omega_i)}{\left[\sum_{l \in R(t_{(i)})} \exp(z_l^{\mathsf{T}}\beta + \omega_l)\right]^{d_i}}$$
(1)

where s_i is the sum of the covariates of individuals observed to fail at $t_{(i)}$ and $R(t_{(i)})$ is the set of individuals at risk just prior to $t_{(i)}$, that is it is all individuals that fail or are censored at time $t_{(i)}$ along with all individuals that survive beyond time $t_{(i)}$. The maximum likelihood estimates (MLEs) of β , given by $\hat{\beta}$, are obtained by maximizing (1) using a Newton-Raphson iteration technique that includes step halving and utilizes the first and second partial derivatives of (1) which are given by equations (2) and (3) below:

$$U_j(\beta) = \frac{\partial \ln L}{\partial \beta_j} = \sum_{i=1}^{n_d} \left[s_{ji} - d_i \alpha_{ji}(\beta) \right] = 0$$
⁽²⁾

for j = 1, ..., p, where s_{ji} is the *j*th element in the vector s_i and

$$lpha_{ji}(eta) = rac{\sum\limits_{l \in Rig(t_{(i)}ig)} z_{jl} \expig(z_l^{\mathrm{T}}eta + \omega_lig)}{\sum\limits_{l \in Rig(t_{(i)}ig)} \expig(z_l^{\mathrm{T}}eta + \omega_lig)}.$$

Similarly,

$$I_{hj}(\beta) = -\frac{\partial^2 \ln L}{\partial \beta_h \partial \beta_j} = \sum_{i=1}^{n_d} d_i \gamma_{hji}$$
(3)

where

$$\gamma_{hji} = \frac{\sum\limits_{l \in R(t_{(i)})} z_{hl} z_{jl} \exp(z_l^{\mathsf{T}} \beta + \omega_l)}{\sum\limits_{l \in R(t_{(i)})} \exp(z_l^{\mathsf{T}} \beta + \omega_l)} - \alpha_{hi}(\beta) \alpha_{ji}(\beta) \quad h, j = 1, \dots, p.$$

 $U_j(\beta)$ is the *j*th component of a score vector and $I_{hj}(\beta)$ is the (h, j) element of the observed information matrix $I(\beta)$ whose inverse $I(\beta)^{-1} = [I_{hj}(\beta)]^{-1}$ gives the variance-covariance matrix of β . It should be noted that if a covariate or a linear combination of covariates is monotonically increasing or decreasing with time then one or more of the β_j 's will be infinite.

If $\lambda_0(t)$ varies across ν strata, where the number of individuals in the *k*th stratum is n_k , $k = 1, ..., \nu$ with $n = \sum_{k=1}^{\nu} n_k$, then rather than maximizing (1) to obtain $\hat{\beta}$, the following marginal likelihood is maximized:

$$L = \prod_{k=1}^{\nu} L_k, \tag{4}$$

where L_k is the contribution to likelihood for the n_k observations in the kth stratum treated as a single sample in (1). When strata are included the covariate coefficients are constant across strata but there is a different base-line hazard function λ_0 .

The base-line survivor function associated with a failure time $t_{(i)}$, is estimated as $\exp(-\hat{H}(t_{(i)}))$, where

$$\hat{H}(t_{(i)}) = \sum_{t_{(j)} \le t_{(i)}} \left(\frac{d_i}{\sum_{l \in R(t_{(j)})} \exp\left(z_l^{\mathrm{T}} \hat{\beta} + \omega_l\right)} \right),$$
(5)

where d_i is the number of failures at time $t_{(i)}$. The residual for the *l*th observation is computed as:

$$r(t_l) = \hat{H}(t_l) \exp\left(-z_l^{\mathrm{T}}\hat{\beta} + \omega_l\right)$$

where $\hat{H}(t_l) = \hat{H}(t_{(i)}), t_{(i)} \le t_l < t_{(i+1)}$. The deviance is defined as $-2 \times (\text{logarithm of marginal likelihood})$. There are two ways to test whether individual covariates are significant: the differences between the deviances of nested models can be compared with the appropriate χ^2 -distribution; or, the asymptotic normality of the parameter estimates can be used to form z tests by dividing the estimates by their standard errors or the score function for the model under the null hypothesis can be used to form z tests.

4 References

Cox D R (1972) Regression models in life tables (with discussion) J. Roy. Statist. Soc. Ser. B 34 187-220

Gross A J and Clark V A (1975) Survival Distributions: Reliability Applications in the Biomedical Sciences Wiley

Kalbfleisch J D and Prentice R L (1980) The Statistical Analysis of Failure Time Data Wiley

5 Arguments

1:	n – Integer In	put
	On entry: the number of data points, n.	
	Constraint: $\mathbf{n} \geq 2$.	
2:	m – Integer	put
	On entry: the number of covariates in array z.	
	Constraint: $\mathbf{m} \ge 1$.	
3:	ns – Integer	put
	On entry: the number of strata. If $ns > 0$ then the stratum for each observation must be supplin isi.	lied
	Constraint: $ns \ge 0$.	
4:	$\mathbf{z}[\mathbf{n} \times \mathbf{t} \mathbf{d} \mathbf{z}]$ – const double In	put
	Note: the (i, j) th element of the matrix Z is stored in $\mathbf{z}[(i-1) \times \mathbf{tdz} + j - 1]$.	
	On entry: the <i>i</i> th row must contain the covariates which are associated with the <i>i</i> th failure to given in \mathbf{t} .	ime
5:	tdz – Integer	put
	On entry: the stride separating matrix column elements in the array z.	
	Constraint: $\mathbf{tdz} \geq \mathbf{m}$.	
6:	sz[m] – const Integer In	put
	On entry: indicates which subset of covariates is to be included in the model.	
	$\mathbf{sz}[i-1] \ge 1$ The <i>j</i> th covariate is included in the model.	
	sz[i-1] = 0 The <i>j</i> th covariate is excluded from the model and not referenced.	
	Constraints:	
	$sz[j-1] \ge 0$; At least one and at most $n_0 - 1$ elements of sz must be nonzero where n_0 is the number observations excluding any with zero value of isi.	r of
7:	ip – Integer	put
	On entry: the number of covariates included in the model as indicated by sz.	
	Constraint: $ip =$ number of nonzero values of sz.	

8: $\mathbf{t}[\mathbf{n}]$ – const double Input On entry: the vector of n failure censoring times. 9: ic[n] – const Integer Input On entry: the status of the individual at time t given in t. ic[i-1] = 0Indicates that the *i*th individual has failed at time t[i-1]. ic[i-1] = 1Indicates that the *i*th individual has been censored at time t[i - 1]. *Constraint*: ic[i-1] = 0 or 1, for i = 1, 2, ..., n. 10: omega[n] – const double Input On entry: if an offset is required then omega must contain the value of ω_i , for i = 1, 2, ..., n. Otherwise omega must be set NULL. $isi[\times] - const$ Integer 11: Input On entry: if ns > 0 the stratum indicators which also allow data points to be excluded from the analysis. If ns = 0, isi is not referenced and may be NULL. isi[i-1] = kIndicates that the *i*th data point is in the *k*th stratum, for k = 1, 2, ..., ns. isi[i-1] = 0Indicates that the *i*th data point is omitted from the analysis. Constraint: if ns > 0, $0 \le isi[i-1] \le ns$, and more than ip values of isi[i-1] > 0, for $i = 1, 2, \ldots, \mathbf{n}$. dev – double * 12: Output On exit: the deviance, that is $-2 \times (\text{maximized log marginal likelihood})$. **b**[**ip**] – double Input/Output 13: On entry: initial estimates of the covariate coefficient arguments β . $\mathbf{b}[j-1]$ must contain the initial estimate of the coefficient of the covariate in z corresponding to the *j*th nonzero value of SZ. Suggested value: In many cases an initial value of zero for $\mathbf{b}[j-1]$ may be used. For other suggestions see Section 9. On exit: $\mathbf{b}[j-1]$ contains the estimate $\hat{\beta}_i$, the coefficient of the covariate stored in the *i*th column of z where i is the *j*th nonzero value in the array sz. 14: se[ip] – double Output

On exit: se[j-1] is the asymptotic standard error of the estimate contained in b[j-1] and score function in sc[j-1] for j = 1, 2, ..., ip.

15:
$$sc[ip] - double$$

On exit: sc[j-1] is the value of the score function, $U_j(\beta)$, for the estimate contained in b[j-1].

16:
$$\operatorname{cov}[\operatorname{ip} \times (\operatorname{ip} + 1)] - \operatorname{double}$$

On exit: the variance-covariance matrix of the parameter estimates in **b** stored in packed form by column, i.e., the covariance between the parameter estimates given in $\mathbf{b}[i-1]$ and $\mathbf{b}[j-1]$, $j \ge i$, is stored in $\mathbf{cov}(j(j-1)/2 + i)$.

Output

Output

17:

res[n] - double

17:	$\mathbf{res}[\mathbf{n}] = \text{double}$	Juipui
	On exit: the residuals, $r(t_l)$, $l = 1, 2,, \mathbf{n}$.	
18:	nd – Integer *	Dutput
	On exit: the number of distinct failure times.	
19:	tp[ndmax] – double	Dutput
	On exit: $\mathbf{tp}[i-1]$ contains the <i>i</i> th distinct failure time, for $i = 1, 2,, \mathbf{nd}$.	
20:	$sur[ndmax \times tdsur] - double$	Dutput
	Note: the (i, j) th element of the matrix is stored in $sur[(i-1) \times tdsur + j - 1]$.	-
	On exit: if $ns = 0$, $sur(i, 1)$ contains the estimated survival function for the <i>i</i> th distinct time.	failure
	If $ns > 0$, $sur(i, k)$ contains the estimated survival function for the <i>i</i> th distinct failure time <i>k</i> th stratum.	in the
21:	tdsur – Integer	Input
	On entry: the stride separating matrix column elements in the array sur.	
	Constraint: $tdsur \ge max(ns, 1)$.	
22:	ndmax – Integer	Input
	On entry: the second dimension of the array sur.	
	Constraint: $ndmax \ge$ the number of distinct failure times. This is returned in nd.	
23:	tol – double	in the Input
	On entry: indicates the accuracy required for the estimation. Convergence is assumed who decrease in deviance is less than $tol \times (1.0+CurrentDeviance)$. This corresponds approximate an absolute precision if the deviance is small and a relative precision if the deviance is less than the deviance is small and a relative precision if the deviance is less than the deviance is small and a relative precision if the deviance is less than the deviance is small and a relative precision if the deviance is less than	ely to
	Constraint: tol $\geq 10 \times$ machine precision.	
24:	max_iter – Integer	Input
	On entry: the maximum number of iterations to be used for computing the estimates. If ma is set to 0 then the standard errors, score functions, variance-covariance matrix and the su function are computed for the input value of β in b but β is not updated.	
	Constraint: $\max_{i \in \mathbb{N}} \ge 0$.	
25:	iprint – Integer	Input
	On entry: indicates if the printing of information on the iterations is required.	
	$\begin{array}{l} \mathbf{iprint} \leq 0 \\ \text{There is no printing.} \end{array}$	
	$iprint \ge 1$ The deviance and the current estimates are printed every $iprint$ iterations.	
26:	outfile – const char *	Input
	<i>On entry</i> : the name of the file into which information is to be output. If outfile is set to NU to the string 'stdout', then the monitoring information is output to stdout.	LL or
Mark	k 26	2bac.5

Output

Input/Output

27: fail – NagError *

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation).

6 Error Indicators and Warnings

NE_2_INT_ARG_LT

On entry, $\mathbf{tdsur} = \langle value \rangle$ while $\mathbf{ns} = \langle value \rangle$. These arguments must satisfy $\mathbf{tdsur} \ge \mathbf{ns}$.

On entry, $\mathbf{tdz} = \langle value \rangle$ while $\mathbf{m} = \langle value \rangle$. These arguments must satisfy $\mathbf{tdz} \geq \mathbf{m}$.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_ARRAY_CONS

The contents of array **ic** are not valid. Constraint: not all values of **ic** can be 1.

NE_G12BA_CONV

Convergence has not been achieved in **max_iter** iterations. The progress towards convergence can be examined by using by setting **iprint** to ≥ 1 . Any non-convergence may be due to a linear combination of covariates being monotonic with time. Full results are returned.

NE_G12BA_DEV

In the current iteration 10 step halvings have been performed without decreasing the deviance from the previous iteration. Convergence is assumed.

NE_G12BA_MAT_SING

The matrix of second partial derivatives is singular. Try different starting values or include fewer covariates.

NE_G12BA_NDMAX

On entry, **ndmax** is $= \langle value \rangle$ while the output value of $\mathbf{nd} = \langle value \rangle$. Constraint: $\mathbf{ndmax} \ge \mathbf{nd}$.

NE_G12BA_OVERFLOW

Overflow has been detected. Try different starting values.

NE_G12BA_SZ_IP

On entry, $\mathbf{ip} = \langle value \rangle$ and the number of nonzero values of $\mathbf{sz} = \langle value \rangle$. Constraint: $\mathbf{ip} =$ the number of nonzero values of \mathbf{sz} .

NE_G12BA_SZ_ISI

On entry, the number of values of sz[i] > 0 is $\langle value \rangle$, $\mathbf{n} = \langle value \rangle$ and excluded observations with isi[i] = 0 is $\langle value \rangle$.

Constraint: the number of values of nonzero sz must be less than n – excluded observations.

NE_INT_ARG_LT

On entry, $\mathbf{m} = \langle value \rangle$. Constraint: $\mathbf{m} \ge 1$.

On entry, **max_iter** must not be less than 0: **max_iter** = $\langle value \rangle$.

On entry, $\mathbf{n} = \langle value \rangle$. Constraint: $\mathbf{n} \geq 2$.

On entry, $\mathbf{ns} = \langle value \rangle$. Constraint: $\mathbf{ns} \ge 0$.

On entry, $\mathbf{tdsur} = \langle value \rangle$. Constraint: $\mathbf{tdsur} \ge 1$.

NE_INT_ARRAY_CONS

On entry, $\mathbf{ic}[\langle value \rangle] = \langle value \rangle$. Constraint: $\mathbf{ic}[\langle value \rangle] = 0$ or 1.

On entry, $isi[\langle value \rangle] = \langle value \rangle$. Constraint: $0 \le isi[\langle value \rangle] \le ns$.

On entry, $\mathbf{sz}[\langle value \rangle] = \langle value \rangle$. Constraint: $\mathbf{sz}[\langle value \rangle] \ge 0$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

NE_NOT_APPEND_FILE

Cannot open file outfile for appending.

NE_NOT_CLOSE_FILE

Cannot close file outfile.

NE_REAL_MACH_PREC

On entry, $\mathbf{tol} = \langle value \rangle$, *machine precision*(nag_machine_precision) = $\langle value \rangle$. Constraint: $\mathbf{tol} \ge 10.0 \times machine precision$.

7 Accuracy

The accuracy is specified by tol.

8 Parallelism and Performance

nag_surviv_cox_model (g12bac) is not threaded in any implementation.

9 Further Comments

nag_surviv_cox_model (g12bac) uses mean centering which involves subtracting the means from the covariables prior to computation of any statistics. This helps to minimize the effect of outlying observations and accelerates convergence.

If the initial estimates are poor then there may be a problem with overflow in calculating $\exp(\beta^T z_i)$ or there may be non-convergence. Reasonable estimates can often be obtained by fitting an exponential model using nag_glm_poisson (g02gcc).

10 Example

The data are the remission times for two groups of leukemia patients (see Gross and Clark (1975) p242). A dummy variable indicates which group they come from. An initial estimate is computed using the exponential model and then the Cox proportional hazard model is fitted and parameter estimates and the survival function are printed.

g12bac

10.1 Program Text

```
/* nag_surviv_cox_model (g12bac) Example Program.
* NAGPRODCODE Version.
* Copyright 2016 Numerical Algorithms Group.
 * NAG C Library
 *
 * Mark 26, 2016.
*/
#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg02.h>
#include <nagg12.h>
int main(void)
{
  Integer exit_status = 0, i, *ic = 0, ip, ip1, iprint, irank, *isi = 0, j, m,
         maxit;
  Integer n, nd, ndmax, ns, *sz = 0, tdsur, tdv;
 double dev, df, tol;
double *b = 0, *cov = 0, *offset = 0, *omega = 0, *res = 0, *sc = 0;
double *se = 0, *sur = 0, *t = 0, *tp = 0, *v = 0, *y = 0, *z = 0;
  NagError fail;
#define Z(I, J) z[((I) -1)*m + (J) -1]
  INIT_FAIL(fail);
 printf("nag_surviv_cox_model (g12bac) Example Program Results\n");
  /* Skip heading in data file */
#ifdef _WIN32
    scanf_s("%*[^\n]");
#else
  scanf("%*[^\n]");
#endif
#ifdef _WIN32
  scanf_s("%" NAG_IFMT " %" NAG_IFMT " %" NAG_IFMT " %" NAG_IFMT
          " ", &n, &m, &ns, &maxit, &iprint);
#else
 scanf("%" NAG_IFMT " %" NAG_IFMT " %" NAG_IFMT " %" NAG_IFMT
        " ", &n, &m, &ns, &maxit, &iprint);
#endif
  ndmax = 42;
  tdsur = MAX(1, ns);
  if (!(z = NAG_ALLOC(n * m, double))
      || !(sz = NAG_ALLOC(m, Integer))
      || !(t = NAG_ALLOC(n, double))
      || !(ic = NAG_ALLOC(n, Integer))
      || !(omega = NAG_ALLOC(n, double))
      || !(isi = NAG_ALLOC(n, Integer))
      || !(res = NAG_ALLOC(n, double))
      || !(sur = NAG_ALLOC(ndmax * tdsur, double))
      || !(tp = NAG_ALLOC(ndmax, double)))
  {
    printf("Allocation failure\n");
    exit_status = -1;
    goto END;
  }
  if (ns > 0) {
    for (i = 1; i <= n; ++i) {
#ifdef _WIN32
```

```
scanf_s("%lf", &t[i - 1]);
#else
      scanf("%lf", &t[i - 1]);
#endif
      for (j = 1; j <= m; ++j)
#ifdef _WIN32
        scanf_s("%lf", &Z(i, j));
#else
        scanf("%lf", &Z(i, j));
#endif
#ifdef _WIN32
     scanf_s("%" NAG_IFMT "", &ic[i - 1]);
#else
      scanf("%" NAG_IFMT "", &ic[i - 1]);
#endif
#ifdef _WIN32
     scanf_s("%" NAG_IFMT "", &isi[i - 1]);
#else
     scanf("%" NAG_IFMT "", &isi[i - 1]);
#endif
   }
 }
 else {
    for (i = 1; i <= n; ++i) {
#ifdef _WIN32
     scanf_s("%lf", &t[i - 1]);
#else
      scanf("%lf", &t[i - 1]);
#endif
      for (j = 1; j <= m; ++j)
#ifdef _WIN32
        scanf_s("%lf", &Z(i, j));
#else
        scanf("%lf", &Z(i, j));
#endif
#ifdef _WIN32
     scanf_s("%" NAG_IFMT "", &ic[i - 1]);
#else
     scanf("%" NAG_IFMT "", &ic[i - 1]);
#endif
   }
 }
 for (i = 1; i <= m; ++i)
#ifdef _WIN32
   scanf_s("%" NAG_IFMT "", &sz[i - 1]);
#else
    scanf("%" NAG_IFMT "", &sz[i - 1]);
#endif
#ifdef
       _WIN32
 scanf_s("%" NAG_IFMT "", &ip);
#else
 scanf("%" NAG_IFMT "", &ip);
#endif
 ip1 = ip + 1;
  if (!(b = NAG_ALLOC(ip1, double))
      || !(se = NAG_ALLOC(ip1, double))
      || !(sc = NAG_ALLOC(ip1, double))
      || !(cov = NAG_ALLOC(ip1 * (ip1 + 1) / 2, double))
      || !(tdv = ip1 + 6)
      || !(v = NAG_ALLOC(n * tdv, double))
      || !(y = NAG_ALLOC(n, double))
      || !(offset = NAG_ALLOC(n, double)))
  {
   printf("Allocation failure\n");
    exit_status = -1;
    goto END;
 }
 tol = 5e-5;
 for (i = 1; i <= n; ++i) {
   y[i - 1] = 1.0 - (double) ic[i - 1];
```

```
offset[i - 1] = log(t[i - 1]);
  }
  /* nag_glm_poisson (g02gcc).
  * Fits a generalized linear model with Poisson errors
   */
  nag_glm_poisson(Nag_Log, Nag_MeanInclude, n, z, m, m, sz, ip1, y, 0, offset,
                  0.0, &dev, &df, b, &irank, se, cov, v, tdv, tol, maxit, 0, 0, 0.0, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_glm_poisson (g02gcc).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
  }
  for (i = 1; i <= ip; ++i)
   b[i - 1] = b[i];
  if (irank != ip + 1)
   printf(" WARNING: covariates not of full rank\n");
  /* nag_surviv_cox_model (g12bac).
   * Fits Cox's proportional hazard model
   */
  nag_surviv_cox_model(n, m, ns, z, m, sz, ip, t, ic, (double *) 0,
                        isi, &dev, b, se, sc, cov, res, &nd, tp, sur, tdsur,
                        ndmax, tol, maxit, iprint, "", &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_surviv_cox_model (g12bac).\n%s\n", fail.message);
    exit_status = 1;
    goto END;
  }
  printf("\n");
  printf(" Parameter
                          Estimate
                                          Standard Error\n");
 printf("\n");
  for (i = 1; i <= ip; ++i)
   printf("%6" NAG_IFMT "
                               %8.4f
                                                     %8.4f\n",
          i, b[i - 1], se[i - 1]);
  printf("\n");
  printf(" Deviance = %13.4e\n", dev);
  printf("\n");
 printf("
              Time
                        Survivor Function\n");
  printf("\n");
  ns = MAX(ns, 1);
 for (i = 1; i <= nd; ++i) {
    printf("%10.0f", tp[i - 1]);
    for (j = 1; j <= ns; ++j)</pre>
     printf("
                    %8.4f%s", sur[(i - 1) * tdsur + j - 1], j % 3 ? "" : "\n");
   printf("\n");
  }
END:
  NAG_FREE(z);
  NAG_FREE(sz);
  NAG_FREE(t);
  NAG_FREE(ic);
  NAG_FREE (omega);
  NAG_FREE(isi);
  NAG_FREE(res);
  NAG_FREE(sur);
  NAG_FREE(tp);
  NAG_FREE(b);
  NAG_FREE(se);
  NAG_FREE(sc);
  NAG_FREE(cov);
  NAG_FREE(v);
  NAG_FREE(y);
 NAG_FREE(offset);
  return exit_status;
}
```

10.2 Program Data

nag_surviv_cox_model (g12bac) Example Program Data

42 1 0 20 0

10.3 Program Results

nag_surviv_cox_model (g12bac) Example Program Results

Parameter	Estimate	Standard Error
1	-1.5091	0.4096
Deviance =	1.7276e+02	
Time	Survivor Function	
1 2 3 4 5 6 7 8	0.9640 0.9264 0.9065 0.8661 0.8235 0.7566 0.7343 0.6506	

10	0.6241		
11	0.5724		
12	0.5135		
13	0.4784		
15	0.4447		
16	0.4078		
17	0.3727		
22	0.2859		
23	0.1908		