205 — Random Number Generators g05pve

NAG Library Function Document
nag rand_kfold xyw (g05pvc)

1 Purpose

nag rand kfold xyw (g05pvc) generates training and validation datasets suitable for use in cross-
validation or jack-knifing.

2 Specification

#include <nag.h>
#include <nagg05.h>

void nag_rand_kfold_xyw (Integer k, Integer fold, Integer n, Integer m,
Nag_DataByObsOrVar sordx, double x[], Integer pdx, double y[],
double w[], Integer *nt, Integer state[], NagError *fail)

3 Description

Let X, denote a matrix of n observations on m variables and y, and w, each denote a vector of length
n. For example, X, might represent a matrix of independent variables, y, the dependent variable and w,
the associated weights in a weighted regression.

nag_rand kfold xyw (g05pvc) generates a series of training datasets, denoted by the matrix, vector,
vector triplet (Xy,y:, w:) of m; observations, and validation datasets, denoted (X,,y,,w,) with n,
observations. These training and validation datasets are generated as follows.

Each of the original n observations is randomly assigned to one of K equally sized groups or folds. For
the kth sample the validation dataset consists of those observations in group k and the training dataset
consists of all those observations not in group k. Therefore at most K samples can be generated.

If n is not divisible by K then the observations are assigned to groups as evenly as possible, therefore
any group will be at most one observation larger or smaller than any other group.

When using K = n the resulting datasets are suitable for leave-one-out cross-validation, or the training
dataset on its own for jack-knifing. When using K # n the resulting datasets are suitable for K-fold
cross-validation. Datasets suitable for reversed cross-validation can be obtained by switching the
training and validation datasets, i.e., use the kth group as the training dataset and the rest of the data as
the validation dataset.

One of the initialization functions nag rand init_repeatable (g05kfc) (for a repeatable sequence if
computed sequentially) or nag_rand init nonrepeatable (g05kgc) (for a non-repeatable sequence) must
be called prior to the first call to nag rand kfold xyw (g05pvc).

4 References

None.

S Arguments

1: k — Integer Input
On entry: K, the number of folds.

Constraint: 2 <k < n.

2: fold — Integer Input

On entry: the number of the fold to return as the validation dataset.

Mark 26 205pve. 1

g05pve NAG Library Manual

On the first call to nag _rand kfold xyw (g05pvc) fold should be set to 1 and then incremented
by one at each subsequent call until all K sets of training and validation datasets have been
produced. See Section 8 for more details on how a different calling sequence can be used.

Constraint: 1 < fold < k.

3: n — Integer Input
On entry: n, the number of observations.

Constraint: n > 1.

4: m — Integer Input
On entry: m, the number of variables.

Constraint: m > 1.

5: sordx — Nag DataByObsOrVar Input
On entry: determines how variables are stored in x.

Constraint: sordx = Nag_DataByVar or Nag_DataByObs.

6: x[dim] — double Input/Output
Note: the dimension, dim, of the array x must be at least

pdx x m when sordx = Nag_DataByVar;
pdx x n when sordx = Nag_DataByObs.

The way the data is stored in x is defined by sordx.

If sordx = Nag_DataByVar, x[(j — 1) x pdx + ¢ — 1] contains the ith observation for the jth
variable, for ¢ =1,2,...,nand j=1,2,..., m.

If sordx = Nag_DataByObs, x[(i — 1) x pdx + j — 1] contains the ith observation for the jth
variable, for 1 =1,2,...,nand j=1,2,... ,m.

On entry: if fold = 1, x must hold X, the values of X for the original dataset, otherwise, X must
not be changed since the last call to nag rand kfold xyw (g05pvc).

On exit: values of X for the training and validation datasets, with X; held in observations 1 to nt
and X, in observations nt + 1 to n.

7 pdx — Integer Input
On entry: the stride separating row elements in the two-dimensional data stored in the array x.
Constraints:

if sordx = Nag_DataByObs, pdx > m;
otherwise pdx > n.

8: y[n] — double Input/Output
If the original dataset does not include y, then y must be set to NULL.

On entry: if fold # 1, y must not be changed since the last call to nag_rand kfold xyw (g05pvc).
On exit: values of y for the training and validation datasets, with y; held in elements 1 to nt and
Yy in elements nt+ 1 to n.

9: w[n] — double Input/Output

If the original dataset does not include w, then w must be set to NULL.

On entry: if fold # 1, w must not be changed since the last call to nag rand kfold xyw
(g05pve).

g05pve.2 Mark 26

205 — Random Number Generators g05pve

12:

6

On exit: values of w for the training and validation datasets, with w; held in elements 1 to nt and
w, in elements nt+ 1 to n.
nt — Integer * Output

On exit: n;, the number of observations in the training dataset.

state[dim] — Integer Communication Array

Note: the dimension, dim, of this array is dictated by the requirements of associated functions
that must have been previously called. This array MUST be the same array passed as argument
state in the previous call to nag rand init repeatable (g05kfc) or nag rand init nonrepeatable

(g05kgc).
On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

fail — NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_ARRAY_SIZE

On entry, pdx = (value) and m = (value).
Constraint: if sordx = Nag_DataByObs, pdx > m.

On entry, pdx = (value) and n = (value).
Constraint: if sordx = Nag_DataByVar, pdx > n.

NE_BAD PARAM

On entry, argument (value) had an illegal value.

NE_INT

On entry, m = (value).
Constraint: m > 1.

On entry, n = (value).
Constraint: n > 1.

NE_INT_2

On entry, fold = (value) and k = (value).
Constraint: 1 < fold < k.

On entry, k = (value) and n = (value).
Constraint: 2 < k <n.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

Mark 26 205pve.3

g05pve NAG Library Manual

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in How to Use the NAG Library and its Documentation for further information.
NE_INVALID_STATE

On entry, state vector has been corrupted or not initialized.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.

See Section 3.6.5 in How to Use the NAG Library and its Documentation for further information.
NW_POTENTIAL_PROBLEM

More than 50% of the data did not move when the data was shuffled. (value) of the (value)
observations stayed put.

7 Accuracy

Not applicable.

8 Further Comments

nag rand kfold xyw (g05pvc) will be computationality more efficient if each observation in x is
contiguous, that is sordx = Nag_DataByObs.

Because of the way nag rand kfold xyw (g05pvc) stores the data you should usually generate the K
training and validation datasets in order, i.e., set fold = 1 on the first call and increment it by one at
each subsequent call. However, there are times when a different calling sequence would be beneficial,
for example, when performing different cross-validation analyses on different threads. This is possible,
as long as the following is borne in mind:

nag_rand kfold xyw (g05pvc) must be called with fold = 1 first.

Other than the first set, you can obtain the training and validation dataset in any order, but for a
given X you can only obtain each once.

For example, if you have three threads, you would call nag rand kfold xyw (g05pvc) once with
fold = 1. You would then copy the x returned onto each thread and generate the remaing k — 1 sets of
data by splitting them between the threads. For example, the first thread runs with fold = 2, ..., L, the
second with fold = L; + 1,..., L, and the third with fold = L, +1,... k.

9 Example

This example uses nag _rand kfold xyw (g05pvc) to facilitate K-fold cross-validation.

A set of simulated data is split into 5 training and validation datasets. nag_glm binomial (g02gbc) is
used to fit a logistic regression model to each training dataset and then nag glm predict (g02gpc) is
used to predict the response for the observations in the validation dataset.

The counts of true and false positives and negatives along with the sensitivity and specificity is then
reported.

9.1 Program Text

/* nag_rand_kfold_xyw (g05pvc) Example Program.
NAGPRODCODE Version.

Copyright 2016 Numerical Algorithms Group.
Mark 26, 201l16.

*/

/* Pre-processor includes */

g05pvc.4 Mark 26

205 — Random Number Generators g05pve

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg02.h>
#include <nagg05.h>

int main(void)
{
/* Integer scalar and array declarations */
Integer fn, fold, fp, i, ip, k, pdx, lstate, m,
max_nv, n, nn, np, nt, nv, obs_val, pred_val,
subid, tn, tp, j, pdv, rank, max_iter, print_iter;
Integer exit_status = 0, lseed = 1;
Integer *isx = 0, *state = 0;
Integer seed[1];

/* NAG structures and types */
NagError failj;

Nag_Link 1link;

Nag_IncludeMean mean;
Nag_BaseRNG genid;
Nag_Distributions errfn;
Nag_Boolean vfobs;
Nag_DataByObsOrVar sordx;

/* Double scalar and array declarations */

double ex_power, dev, eps, tol, df, scale;

double *b = 0, *cov = 0, *eta = 0, *pred = 0, *se = 0, *seeta = O,
*sepred = 0, *v = 0, *offset = 0, *wt = 0, *x =

/* Character scalar and array declarations */

char c¢l1link[40], cmean[40], cgenid[40];

/* Initialize the error structure */
INIT_FAIL(fail);

printf("nag_rand_kfold_xyw (gO5pvc) Example Program Results\n\n");

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("s*["\n] ");
#else

scanf ("s*["\n] ");
#endif

/* Set variables required by the regression (g0O2gbc) ... */
/* Read in the type of link function, whether a mean is required */

/* and the problem size */
#ifdef _WIN32

scanf_s("%39s%39s%" NAG_IFMT "%" NAG_IFMT "%*[*\n] ", clink,
(unsigned)_countof (clink), cmean, (unsigned)_countof (cmean),
&n, &m) ;
#else

scanf ("%$39s%39s%" NAG_IFMT "%" NAG_IFMT "%*["\n] ", clink, cmean, &n, &m);
#endif

link = (Nag_Link) nag_enum_name_to_value(clink) ;

mean = (Nag_IncludeMean) nag_enum_name_to_value(cmean) ;

/* Set storage order for gO5pvc */
/* (pick the one required by g02gbc and g02gpc) */
sordx = Nag_DataByObs;

= NAG_ALLOC(pdx * n, double)) ||
NAG_ALLOC(n, double)) ||
= NAG_ALLOC(n, double)) || !(isx = NAG_ALLOC(m, Integer)))

g % 8
Il

printf("Allocation failure\n");
exit_status = -1;
goto END;

Mark 26 g05pve.5

g05pve NAG Library Manual

}

/* This example is not using an offset or weights */
offset = 0;
wt = 0;

/* Read in data */
for (i = 0; i < n; i++) {
for (j = 0; J < m; Jj++) {
#ifdef _WIN32
scanf_s("$1f", &x[i * pdx + jl);
#else
scanf ("$1f", &x[i * pdx + jl);
#endif

}
#ifdef _WIN32
scanf_s("%1fs1fs*["\n] ", &yl[il]l, &t[i]);
#else
scanf ("%1fs1f%*[*\n] ", &yl[i], &tl[il]);
#endif
b

/* Read in variable inclusion flags */
for (j = 0; j < m; j++) {
#ifdef _WIN32
scanf_s("%" NAG_IFMT "", &isx[j]);
#else
scanf ("%" NAG_IFMT "", &isx[j]);
#endif
3
#ifdef _WIN32
scanf_s("s*["\n] ");
#else
scanf ("s*[*\n] ");
#endif

/* Read in control parameters for the regression */
#ifdef _WIN32
scanf_s("%" NAG_IFMT "%1f%1f%" NAG_IFMT "%*["\n] ", &print_iter, &eps,
&tol, &max_iter);
#else
scanf ("%" NAG_IFMT "%$1f%1f%" NAG_IFMT "%*["\n] ", &print_iter, &eps,
&tol, &max_iter);
#endif

/* Calculate IP */
for (ip = 0, 1 = 0; 1 < m; i++)
ip += (isx[i] > 0);
if (mean == Nag_MeanInclude)
ip++;
/* ... End of setting variables required by the regression */

/* Set variables required by data sampling routine (gO5pvc) ... */

/* Read in the base generator information and seed */
#ifdef _WIN32

scanf_s("%39s%" NAG_IFMT "%" NAG_IFMT "s*["\n] ", cgenid,

(unsigned)_countof (cgenid), &subid, &seed[0]);

#else

scanf ("%39s%" NAG_IFMT "%" NAG_IFMT "%*[*\n] ", cgenid, &subid, &seed[O0]);
#endif

genid = (Nag_BaseRNG) nag_enum_name_to_value(cgenid) ;

/* Initial call to gO05kfc to get size of STATE array */

lstate = 0;

nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate,
NAGERR_DEFAULT) ;

/* Allocate state array */

if (! (state = NAG_ALLOC(lstate, Integer)))
{

g05pve.6 Mark 26

205 — Random Number Generators g05pve

printf("Allocation failure\n");
exit_status = -1;
goto END;

¥

/* Initialize the generator to a repeatable sequence using gO5kfc */
nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate,
NAGERR_DEFAULT) ;

/* Read in the number of folds */
#ifdef _WIN32
scanf_s("%" NAG_IFMT "%*["\n] ", &k);
#else
scanf ("%" NAG_IFMT "%*["\n] ", &k);
#endif
/* ... End of setting variables required by data sampling routine */

/* Set variables required by prediction routine (g0O2gpc) ... */

/* Regression is performed using g02gbc so error structure is binomial */
errfn = Nag_Binomial;

/* This example does not use the predicted standard errors, so */

/* it doesn’t matter what VFOBS is set to */

vfobs = Nag_FALSE;

/* The error and link being used in the linear model don’t use scale */
/* and ex_power so they can be set to anything */

ex_power = 0.0;

scale = 0.0;

/* ... End of setting variables required by prediction routine */

/* This is the maximum size for a validation dataset */
max_nv = (Integer) (((double) n / (double) k) + 0.5);

/* Allocate arrays */

b = NAG_ALLOC(ip, double)) ||
= NAG_ALLOC(ip, double)) ||
v = NAG_ALLOC(ip * (ip + 1) / 2, double)) ||
= NAG_ALLOC(n * pdv, double)) |
\

|

|
! (seeta = NAG_ALLOC (max_nv, double)) |
! (pred = NAG_ALLOC (max_nv, double))

(
(
(
(
(eta = NAG_ALLOC (max_nv, double))
(|
([
(sepred = NAG_ALLOC (max_nv, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

b

/* Initialize counts */
tp = tn = fp = fn = 0O;

/* Loop over each fold */
for (fold = 1; fold <= k; fold++)
{
/* Use gO05pvc to split the data into training and validation datasets */
nag_rand_kfold_xyw(k, fold, n, m, sordx, x, pdx, y, t, &nt, state, &fail);
if (fail.code != NE_NOERROR) {
printf ("Error from nag_rand_kfold_xyw (gO5pvc) .\n%s\n", fail.message) ;
exit_status = 1;
if (fail.code != NW_POTENTIAL_PROBLEM)
goto END;
¥

/* Calculate the size of the validation dataset */
nv = n - nt;

/* Call g02gbc to fit generalized linear model, with Binomial */
/* errors to training data */

Mark 26 g05pve.7

g05pvce

nag_glm_binomial(link, mean, nt, x, pdx, m, isx, ip, VY,
offset, &dev, &df, b, &rank, se, cov,

tol, max_iter, print_iter, "", eps,
if (fail.code != NE_NOERROR) {
printf("Error from nag_glm_binomial (g02gbc) .\n%s\n",
exit_status = 1;
goto END;

t,

wt,
v, pdv,
sfail);

fail.message);

/* Call gO2gpc to predict the response for the observations in the */

/* validation dataset */

/* We want to start passing X and T at the (NT+1)th observation, */
/* These start at (i,j)=(nt+1l,1), hence the (nt*pdx+0)th element */

/* of X and the nt’th element of T */

nag_glm_predict(errfn, link, mean, nv, &x[nt * pdx], pdx, m,

&t[nt], offset, wt, scale, ex_power,
seeta, pred, sepred, &fail);

if (fail.code != NE_NOERROR) {
printf ("Error from nag_glm_predict (g02gpc) .\n%s\n",
exit_status = 1;
goto END;

}

/* Count the true/false positives/negatives */
for (i = 0; 1 < nv; i++) {

obs_val = (Integer) ylnt + i];
pred_val = (pred[i] >= 0.5 2 1 : 0);
if (obs_val) {
/* Positive */
if (pred_val) {
/* True positive */
tpt++;
}
else {
/* False Negative */
fn++;
}
3
else {
/* Negative */
if (pred_val) {
/* False positive */
fp++;
}
else {
/* True negative */
tn++;
¥
}
3
}
/* Display results */
np = tp + fn;
nn = fp + tn;
printf (" Observed\n") ;
printf(" 0 —mmmmmmmmm e \n");
printf (" Predicted | Negative Positive Total\n");
printf(" -—-------—--m \n") ;
printf (" Negative | %5" NAG_IFMT " %5" NAG_IFMT "
"\n", tn, fn, tn + fn);
printf (" Positive | %5" NAG_IFMT " %$5" NAG_IFMT "
"\n", fp, tp, fp + tp);
printf (" Total | %5" NAG_IFMT " %5" NAG_IFMT "
"\n", nn, np, nn + np);
printf ("\n");
if (np != 0) {
printf (" True Positive Rate (Sensitivity): %4.2f\n",

(double) tp / (double) np);

g05pvc.§

cov,

%5"

%5"

%5"

isx, ip,

NAG Library Manual

vfobs, eta,

fail.message) ;

NAG_IFMT

NAG_IFMT

NAG_IFMT

Mark 26

205 — Random Number Generators

}

else {

printf (" True Positive Rate

b

if (nn != 0) {

¥

else {

printf (" True Negative Rate (Specificity): %4.2f\n",
(double) tn / (double) nn);
printf (" True Negative Rate (Specificity): No negatives in data\n")

b

END:
NAG_FREE (isx) ;
NAG_FREE (state) ;
NAG_FREE (b) ;
NAG_FREE (cov) ;
NAG_FREE (eta) ;
NAG_FREE (pred) ;
NAG_FREE (se) ;

NAG_FREE (seeta) ;

NAG_FREE (sepred) ;

NAG_FREE (V) ;
NAG_FREE (offset) ;
NAG_FREE (wt) ;
NAG_FREE (x) ;
NAG_FREE (y) ;
NAG_FREE (t) ;

return (exit

9.2 Program Data

nag_rand_kfold_xyw
Nag_Logistic

0.0 -0.1 0.0 1.
0.4 -1.1 1.0 1.
-0.5 0.2 1.0 O.
0.6 1.1 1.0 O.
-0.3 -1.0 1.0 1.
2.8 -1.8 0.0 1.
0.4 -0.7 0.0 1.
-0.4 -0.3 1.0 O.
0.5 -2.0 0.0 O.
-l1.0 -0.3 1.0 1.
0.4 0.0 1.0 O.
-1.0 0.0 1.0 1.
0.0 0.4 1.0 1.
-0.1 0.7 1.0 1.
-0.2 1.8 1.0 1.
-0.9 0.7 1.0 1.
-1.1 -0.5 1.0 1.
-0.1 -2.2 1.0 1.
-1.8 -0.5 1.0 1.
-0.8 -0.9 0.0 1.
1.9 -0.1 1.0 1.
0.3 1.4 1.0 1.
0.4 -1.2 1.0 O.
2.2 1.8 1.0 O.
1.4 -0.4 0.0 1.
0.4 2.4 1.0 1.
-0.0 1.1 1.0 1.
1.4 -0.0 1.0 1.
-0.1 -0.1 0.0 O.
-0.6 -0.4 0.0 O.
0.6 -0.2 1.0 1.
-1.8 -0.3 1.0 1.
-0.3 1.0 1.0 1.
Mark 26

leNoNoNoNoNoNoNoloNe)

_status);

(g05pvc)

ORrRPrRPROOROORFHRRFHFOFRFRFRPRPRPOOOORHFOORRRERPREFPROOOORrO

leNoNoNoNoNoNoNoloNe)

Nag_MeanInclude

(Sensitivity):

Example Program Data

40 4 link, mean, n, m

FRRPRRRRRERRRPRRRRRERERRERRRRRRRERERERRERRERER
lc¥eNoNeNoNecNoNoNeReNeRoeNoNeNoNoNoNoNeNoNeRo e NoNeNoNoNoNoNoRo o)

No positives in data\n")

I

g05pvce

g05pvc.9

g05pve NAG Library Manual

-0.6 0.8 0.0 1.0 0.0 1.0
0.3 -0.5 0.0 0.0 1.0 1.0
1.6 1.4 1.0 1.0 0.0 1.0
-1.1 0.6 1.0 1.0 0.0 1.0
-0.3 0.6 1.0 1.0 0.0 1.0
-0.6 0.1 1.0 1.0 0.0 1.0
1.0 0.6 1.0 1.0 1.0 1.0 End of x, y, t
1 1 1 1 :: isx
0O 0.0 0.0 O :: print_iter,eps,tol,max_iter
Nag_MRG32k3a 0 42321 :: genid, subid, seed
5 i k

9.3 Program Results

nag_rand_kfold_xyw (gO05pvc) Example Program Results

Observed

Predicted | Negative Positive Total

Negative | 18 8 26
Positive | 4 10 14
Total | 22 18 40

True Positive Rate (Sensitivity): 0.56
True Negative Rate (Specificity): 0.82

g05pve. 10 (last) Mark 26

	g05pvc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	k
	fold
	n
	m
	sordx
	x
	pdx
	y
	w
	nt
	state
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_ARRAY_SIZE
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_INVALID_STATE
	NE_NO_LICENCE
	NW_POTENTIAL_PROBLEM

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 26
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

