205 — Random Number Generators g05pve

NAG Library Function Document
nag rand_kfold xyw (g05pvc)

1 Purpose

nag rand kfold xyw (g05pvc) generates training and validation datasets suitable for use in cross-
validation or jack-knifing.

2 Specification

#include <nag.h>
#include <nagg05.h>

void nag_rand_kfold_xyw (Integer k, Integer fold, Integer n, Integer m,
Nag_DataByObsOrVar sordx, double x[], Integer pdx, double y[],
double w[], Integer *nt, Integer state[], NagError *fail)

3  Description

Let X, denote a matrix of n observations on m variables and y, and w, each denote a vector of length
n. For example, X, might represent a matrix of independent variables, y, the dependent variable and w,
the associated weights in a weighted regression.

nag_rand kfold xyw (g05pvc) generates a series of training datasets, denoted by the matrix, vector,
vector triplet (Xy,y:, w:) of m; observations, and validation datasets, denoted (X,,y,,w,) with n,
observations. These training and validation datasets are generated as follows.

Each of the original n observations is randomly assigned to one of K equally sized groups or folds. For
the kth sample the validation dataset consists of those observations in group k and the training dataset
consists of all those observations not in group k. Therefore at most K samples can be generated.

If n is not divisible by K then the observations are assigned to groups as evenly as possible, therefore
any group will be at most one observation larger or smaller than any other group.

When using K = n the resulting datasets are suitable for leave-one-out cross-validation, or the training
dataset on its own for jack-knifing. When using K # n the resulting datasets are suitable for K-fold
cross-validation. Datasets suitable for reversed cross-validation can be obtained by switching the
training and validation datasets, i.e., use the kth group as the training dataset and the rest of the data as
the validation dataset.

One of the initialization functions nag rand init_repeatable (g05kfc) (for a repeatable sequence if
computed sequentially) or nag_rand init nonrepeatable (g05kgc) (for a non-repeatable sequence) must
be called prior to the first call to nag rand kfold xyw (g05pvc).

4 References

None.

S  Arguments

1: k — Integer Input
On entry: K, the number of folds.

Constraint: 2 <k < n.

2: fold — Integer Input

On entry: the number of the fold to return as the validation dataset.
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On the first call to nag _rand kfold xyw (g05pvc) fold should be set to 1 and then incremented
by one at each subsequent call until all K sets of training and validation datasets have been
produced. See Section 8 for more details on how a different calling sequence can be used.

Constraint: 1 < fold < k.

3: n — Integer Input
On entry: n, the number of observations.

Constraint: n > 1.

4: m — Integer Input
On entry: m, the number of variables.

Constraint: m > 1.

5: sordx — Nag DataByObsOrVar Input
On entry: determines how variables are stored in x.

Constraint: sordx = Nag_DataByVar or Nag_DataByObs.

6: x[dim] — double Input/Output
Note: the dimension, dim, of the array x must be at least

pdx x m when sordx = Nag_DataByVar;
pdx x n when sordx = Nag_DataByObs.

The way the data is stored in x is defined by sordx.

If sordx = Nag_DataByVar, x[(j — 1) x pdx + ¢ — 1] contains the ith observation for the jth
variable, for ¢ =1,2,...,nand j=1,2,..., m.

If sordx = Nag_DataByObs, x[(i — 1) x pdx + j — 1] contains the ith observation for the jth
variable, for 1 =1,2,...,nand j=1,2,... ,m.

On entry: if fold = 1, x must hold X, the values of X for the original dataset, otherwise, X must
not be changed since the last call to nag rand kfold xyw (g05pvc).

On exit: values of X for the training and validation datasets, with X; held in observations 1 to nt
and X, in observations nt + 1 to n.

7 pdx — Integer Input
On entry: the stride separating row elements in the two-dimensional data stored in the array x.
Constraints:

if sordx = Nag_DataByObs, pdx > m;
otherwise pdx > n.

8: y[n] — double Input/Output
If the original dataset does not include y, then y must be set to NULL.

On entry: if fold # 1, y must not be changed since the last call to nag_rand kfold xyw (g05pvc).
On exit: values of y for the training and validation datasets, with y; held in elements 1 to nt and
Yy in elements nt+ 1 to n.

9: w[n] — double Input/Output

If the original dataset does not include w, then w must be set to NULL.

On entry: if fold # 1, w must not be changed since the last call to nag rand kfold xyw
(g05pve).
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12:

6

On exit: values of w for the training and validation datasets, with w; held in elements 1 to nt and
w, in elements nt+ 1 to n.
nt — Integer * Output

On exit: n;, the number of observations in the training dataset.

state[dim] — Integer Communication Array

Note: the dimension, dim, of this array is dictated by the requirements of associated functions
that must have been previously called. This array MUST be the same array passed as argument
state in the previous call to nag rand init repeatable (g05kfc) or nag rand init nonrepeatable

(g05kgc).
On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

fail — NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_ARRAY_SIZE

On entry, pdx = (value) and m = (value).
Constraint: if sordx = Nag_DataByObs, pdx > m.

On entry, pdx = (value) and n = (value).
Constraint: if sordx = Nag_DataByVar, pdx > n.

NE_BAD PARAM

On entry, argument (value) had an illegal value.

NE_INT

On entry, m = (value).
Constraint: m > 1.

On entry, n = (value).
Constraint: n > 1.

NE_INT_2

On entry, fold = (value) and k = (value).
Constraint: 1 < fold < k.

On entry, k = (value) and n = (value).
Constraint: 2 < k <n.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.
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An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in How to Use the NAG Library and its Documentation for further information.
NE_INVALID_STATE

On entry, state vector has been corrupted or not initialized.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.

See Section 3.6.5 in How to Use the NAG Library and its Documentation for further information.
NW_POTENTIAL_PROBLEM

More than 50% of the data did not move when the data was shuffled. (value) of the (value)
observations stayed put.

7  Accuracy

Not applicable.

8 Further Comments

nag rand kfold xyw (g05pvc) will be computationality more efficient if each observation in x is
contiguous, that is sordx = Nag_DataByObs.

Because of the way nag rand kfold xyw (g05pvc) stores the data you should usually generate the K
training and validation datasets in order, i.e., set fold = 1 on the first call and increment it by one at
each subsequent call. However, there are times when a different calling sequence would be beneficial,
for example, when performing different cross-validation analyses on different threads. This is possible,
as long as the following is borne in mind:

nag_rand kfold xyw (g05pvc) must be called with fold = 1 first.

Other than the first set, you can obtain the training and validation dataset in any order, but for a
given X you can only obtain each once.

For example, if you have three threads, you would call nag rand kfold xyw (g05pvc) once with
fold = 1. You would then copy the x returned onto each thread and generate the remaing k — 1 sets of
data by splitting them between the threads. For example, the first thread runs with fold = 2, ..., L, the
second with fold = L; + 1,..., L, and the third with fold = L, +1,... k.

9 Example

This example uses nag _rand kfold xyw (g05pvc) to facilitate K-fold cross-validation.

A set of simulated data is split into 5 training and validation datasets. nag_glm binomial (g02gbc) is
used to fit a logistic regression model to each training dataset and then nag glm predict (g02gpc) is
used to predict the response for the observations in the validation dataset.

The counts of true and false positives and negatives along with the sensitivity and specificity is then
reported.

9.1 Program Text

/* nag_rand_kfold_xyw (g05pvc) Example Program.
NAGPRODCODE Version.

Copyright 2016 Numerical Algorithms Group.
Mark 26, 201l16.

*/

/* Pre-processor includes */
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#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg02.h>
#include <nagg05.h>

int main(void)
{
/* Integer scalar and array declarations */
Integer fn, fold, fp, i, ip, k, pdx, lstate, m,
max_nv, n, nn, np, nt, nv, obs_val, pred_val,
subid, tn, tp, j, pdv, rank, max_iter, print_iter;
Integer exit_status = 0, lseed = 1;
Integer *isx = 0, *state = 0;
Integer seed[1];

/* NAG structures and types */
NagError failj;

Nag_Link 1link;

Nag_IncludeMean mean;
Nag_BaseRNG genid;
Nag_Distributions errfn;
Nag_Boolean vfobs;
Nag_DataByObsOrVar sordx;

/* Double scalar and array declarations */

double ex_power, dev, eps, tol, df, scale;

double *b = 0, *cov = 0, *eta = 0, *pred = 0, *se = 0, *seeta = O,
*sepred = 0, *v = 0, *offset = 0, *wt = 0, *x =

/* Character scalar and array declarations */

char c¢l1link[40], cmean[40], cgenid[40];

/* Initialize the error structure */
INIT_FAIL(fail);

printf("nag_rand_kfold_xyw (gO5pvc) Example Program Results\n\n");

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("s*["\n] ");
#else

scanf ("s*["\n] ");
#endif

/* Set variables required by the regression (g0O2gbc) ... */
/* Read in the type of link function, whether a mean is required */

/* and the problem size */
#ifdef _WIN32

scanf_s("%39s%39s%" NAG_IFMT "%" NAG_IFMT "%*[*\n] ", clink,
(unsigned)_countof (clink), cmean, (unsigned)_countof (cmean),
&n, &m) ;
#else

scanf ("%$39s%39s%" NAG_IFMT "%" NAG_IFMT "%*["\n] ", clink, cmean, &n, &m);
#endif

link = (Nag_Link) nag_enum_name_to_value(clink) ;

mean = (Nag_IncludeMean) nag_enum_name_to_value(cmean) ;

/* Set storage order for gO5pvc */
/* (pick the one required by g02gbc and g02gpc) */
sordx = Nag_DataByObs;

= NAG_ALLOC(pdx * n, double)) ||
NAG_ALLOC(n, double)) ||
= NAG_ALLOC(n, double)) || !(isx = NAG_ALLOC(m, Integer)))

g % 8
Il

printf("Allocation failure\n");
exit_status = -1;
goto END;
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}

/* This example is not using an offset or weights */
offset = 0;
wt = 0;

/* Read in data */
for (i = 0; i < n; i++) {
for (j = 0; J < m; Jj++) {
#ifdef _WIN32
scanf_s("$1f", &x[i * pdx + jl);
#else
scanf ("$1f", &x[i * pdx + jl);
#endif

}
#ifdef _WIN32
scanf_s("%1fs1fs*["\n] ", &yl[il]l, &t[i]);
#else
scanf ("%1fs1f%*[*\n] ", &yl[i], &tl[il]);
#endif
b

/* Read in variable inclusion flags */
for (j = 0; j < m; j++) {
#ifdef _WIN32
scanf_s("%" NAG_IFMT "", &isx[j]);
#else
scanf ("%" NAG_IFMT "", &isx[j]);
#endif
3
#ifdef _WIN32
scanf_s("s*["\n] ");
#else
scanf ("s*[*\n] ");
#endif

/* Read in control parameters for the regression */
#ifdef _WIN32
scanf_s("%" NAG_IFMT "%1f%1f%" NAG_IFMT "%*["\n] ", &print_iter, &eps,
&tol, &max_iter);
#else
scanf ("%" NAG_IFMT "%$1f%1f%" NAG_IFMT "%*["\n] ", &print_iter, &eps,
&tol, &max_iter);
#endif

/* Calculate IP */
for (ip = 0, 1 = 0; 1 < m; i++)
ip += (isx[i] > 0);
if (mean == Nag_MeanInclude)
ip++;
/* ... End of setting variables required by the regression */

/* Set variables required by data sampling routine (gO5pvc) ... */

/* Read in the base generator information and seed */
#ifdef _WIN32

scanf_s("%39s%" NAG_IFMT "%" NAG_IFMT "s*["\n] ", cgenid,

(unsigned)_countof (cgenid), &subid, &seed[0]);

#else

scanf ("%39s%" NAG_IFMT "%" NAG_IFMT "%*[*\n] ", cgenid, &subid, &seed[O0]);
#endif

genid = (Nag_BaseRNG) nag_enum_name_to_value(cgenid) ;

/* Initial call to gO05kfc to get size of STATE array */

lstate = 0;

nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate,
NAGERR_DEFAULT) ;

/* Allocate state array */

if (! (state = NAG_ALLOC(lstate, Integer)))
{
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printf("Allocation failure\n");
exit_status = -1;
goto END;

¥

/* Initialize the generator to a repeatable sequence using gO5kfc */
nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate,
NAGERR_DEFAULT) ;

/* Read in the number of folds */
#ifdef _WIN32
scanf_s("%" NAG_IFMT "%*["\n] ", &k);
#else
scanf ("%" NAG_IFMT "%*["\n] ", &k);
#endif
/* ... End of setting variables required by data sampling routine */

/* Set variables required by prediction routine (g0O2gpc) ... */

/* Regression is performed using g02gbc so error structure is binomial */
errfn = Nag_Binomial;

/* This example does not use the predicted standard errors, so */

/* it doesn’t matter what VFOBS is set to */

vfobs = Nag_FALSE;

/* The error and link being used in the linear model don’t use scale */
/* and ex_power so they can be set to anything */

ex_power = 0.0;

scale = 0.0;

/* ... End of setting variables required by prediction routine */

/* This is the maximum size for a validation dataset */
max_nv = (Integer) (((double) n / (double) k) + 0.5);

/* Allocate arrays */

b = NAG_ALLOC(ip, double)) ||
= NAG_ALLOC(ip, double)) ||
v = NAG_ALLOC(ip * (ip + 1) / 2, double)) ||
= NAG_ALLOC(n * pdv, double)) |
\

|

|
! (seeta = NAG_ALLOC (max_nv, double)) |
! (pred = NAG_ALLOC (max_nv, double))

(
(
(
(
(eta = NAG_ALLOC (max_nv, double))
( |
( [
(sepred = NAG_ALLOC (max_nv, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

b

/* Initialize counts */
tp = tn = fp = fn = 0O;

/* Loop over each fold */
for (fold = 1; fold <= k; fold++)
{
/* Use gO05pvc to split the data into training and validation datasets */
nag_rand_kfold_xyw(k, fold, n, m, sordx, x, pdx, y, t, &nt, state, &fail);
if (fail.code != NE_NOERROR) {
printf ("Error from nag_rand_kfold_xyw (gO5pvc) .\n%s\n", fail.message) ;
exit_status = 1;
if (fail.code != NW_POTENTIAL_PROBLEM)
goto END;
¥

/* Calculate the size of the validation dataset */
nv = n - nt;

/* Call g02gbc to fit generalized linear model, with Binomial */
/* errors to training data */
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nag_glm_binomial(link, mean, nt, x, pdx, m, isx, ip, VY,
offset, &dev, &df, b, &rank, se, cov,

tol, max_iter, print_iter, "", eps,
if (fail.code != NE_NOERROR) {
printf("Error from nag_glm_binomial (g02gbc) .\n%s\n",
exit_status = 1;
goto END;

t,

wt,
v, pdv,
sfail);

fail.message);

/* Call gO2gpc to predict the response for the observations in the */

/* validation dataset */

/* We want to start passing X and T at the (NT+1)th observation, */
/* These start at (i,j)=(nt+1l,1), hence the (nt*pdx+0)th element */

/* of X and the nt’th element of T */

nag_glm_predict(errfn, link, mean, nv, &x[nt * pdx], pdx, m,

&t[nt], offset, wt, scale, ex_power,
seeta, pred, sepred, &fail);

if (fail.code != NE_NOERROR) {
printf ("Error from nag_glm_predict (g02gpc) .\n%s\n",
exit_status = 1;
goto END;

}

/* Count the true/false positives/negatives */
for (i = 0; 1 < nv; i++) {

obs_val = (Integer) ylnt + i];
pred_val = (pred[i] >= 0.5 2 1 : 0);
if (obs_val) {
/* Positive */
if (pred_val) {
/* True positive */
tpt++;
}
else {
/* False Negative */
fn++;
}
3
else {
/* Negative */
if (pred_val) {
/* False positive */
fp++;
}
else {
/* True negative */
tn++;
¥
}
3
}
/* Display results */
np = tp + fn;
nn = fp + tn;
printf (" Observed\n") ;
printf(" 0 —mmmmmmmmm e \n");
printf (" Predicted | Negative Positive Total\n");
printf(" -—-------—--m \n") ;
printf (" Negative | %5" NAG_IFMT " %5" NAG_IFMT "
"\n", tn, fn, tn + fn);
printf (" Positive | %5" NAG_IFMT " %$5" NAG_IFMT "
"\n", fp, tp, fp + tp);
printf (" Total | %5" NAG_IFMT " %5" NAG_IFMT "
"\n", nn, np, nn + np);
printf ("\n");
if (np != 0) {
printf (" True Positive Rate (Sensitivity): %4.2f\n",

(double) tp / (double) np);

g05pvc.§

cov,
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isx, ip,
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vfobs, eta,

fail.message) ;

NAG_IFMT

NAG_IFMT

NAG_IFMT
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}

else {

printf (" True Positive Rate

b

if (nn != 0) {

¥

else {

printf (" True Negative Rate (Specificity): %4.2f\n",
(double) tn / (double) nn);
printf (" True Negative Rate (Specificity): No negatives in data\n")

b

END:
NAG_FREE (isx) ;
NAG_FREE (state) ;
NAG_FREE (b) ;
NAG_FREE (cov) ;
NAG_FREE (eta) ;
NAG_FREE (pred) ;
NAG_FREE (se) ;

NAG_FREE (seeta) ;

NAG_FREE (sepred) ;

NAG_FREE (V) ;
NAG_FREE (offset) ;
NAG_FREE (wt) ;
NAG_FREE (x) ;
NAG_FREE (y) ;
NAG_FREE (t) ;

return (exit

9.2 Program Data

nag_rand_kfold_xyw
Nag_Logistic

0.0 -0.1 0.0 1.
0.4 -1.1 1.0 1.
-0.5 0.2 1.0 O.
0.6 1.1 1.0 O.
-0.3 -1.0 1.0 1.
2.8 -1.8 0.0 1.
0.4 -0.7 0.0 1.
-0.4 -0.3 1.0 O.
0.5 -2.0 0.0 O.
-l1.0 -0.3 1.0 1.
0.4 0.0 1.0 O.
-1.0 0.0 1.0 1.
0.0 0.4 1.0 1.
-0.1 0.7 1.0 1.
-0.2 1.8 1.0 1.
-0.9 0.7 1.0 1.
-1.1 -0.5 1.0 1.
-0.1 -2.2 1.0 1.
-1.8 -0.5 1.0 1.
-0.8 -0.9 0.0 1.
1.9 -0.1 1.0 1.
0.3 1.4 1.0 1.
0.4 -1.2 1.0 O.
2.2 1.8 1.0 O.
1.4 -0.4 0.0 1.
0.4 2.4 1.0 1.
-0.0 1.1 1.0 1.
1.4 -0.0 1.0 1.
-0.1 -0.1 0.0 O.
-0.6 -0.4 0.0 O.
0.6 -0.2 1.0 1.
-1.8 -0.3 1.0 1.
-0.3 1.0 1.0 1.
Mark 26
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-0.6 0.8 0.0 1.0 0.0 1.0
0.3 -0.5 0.0 0.0 1.0 1.0
1.6 1.4 1.0 1.0 0.0 1.0
-1.1 0.6 1.0 1.0 0.0 1.0
-0.3 0.6 1.0 1.0 0.0 1.0
-0.6 0.1 1.0 1.0 0.0 1.0
1.0 0.6 1.0 1.0 1.0 1.0 End of x, y, t
1 1 1 1 :: isx
0O 0.0 0.0 O :: print_iter,eps,tol,max_iter
Nag_MRG32k3a 0 42321 :: genid, subid, seed
5 i k

9.3 Program Results

nag_rand_kfold_xyw (gO05pvc) Example Program Results

Observed

Predicted | Negative Positive Total

Negative | 18 8 26
Positive | 4 10 14
Total | 22 18 40

True Positive Rate (Sensitivity): 0.56
True Negative Rate (Specificity): 0.82
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