202 — Correlation and Regression Analysis g02eec

NAG Library Function Document
nag_step regsn (g02eec)

1 Purpose

nag_step _regsn (g02eec) carries out one step of a forward selection procedure in order to enable the
‘best’ linear regression model to be found.

2 Specification

#include <nag.h>
#include <nagg02.h>

void nag_step_regsn (Nag_OrderType order, Integer *istep,
Nag_IncludeMean mean, Integer n, Integer m, const double x[],
Integer pdx, const char *var_names[], const Integer sx[], Integer maxip,
const double y[], const double wt[], double fin, Nag_Boolean *addvar,
const char *newvar[], double *chrss, double *f, const char *modell[],
Integer *nterm, double *rss, Integer *idf, Integer *ifr,
const char *free_vars[], double exss[], double gl[]l, Integer pdq,
double p[], NagError *fail)

3 Description

One method of selecting a linear regression model from a given set of independent variables is by
forward selection. The following procedure is used:

(1) Select the best fitting independent variable, i.e., the independent variable which gives the smallest
residual sum of squares. If the F-test for this variable is greater than a chosen critical value, F¢,
then include the variable in the model, else stop.

(i1) Find the independent variable that leads to the greatest reduction in the residual sum of squares
when added to the current model.

(ii1) If the F-test for this variable is greater than a chosen critical value, F¢, then include the variable in
the model and go to (ii), otherwise stop.

At any step the variables not in the model are known as the free terms.

nag_step_regsn (g02eec) allows you to specify some independent variables that must be in the model,
these are known as forced variables.

The computational procedure involves the use of QR decompositions, the R and the () matrices being
updated as each new variable is added to the model. In addition the matrix QT Xj.., where Xpe. is the
matrix of variables not included in the model, is updated.

nag_step_regsn (g02eec) computes one step of the forward selection procedure at a call. The results
produced at each step may be printed or used as inputs to nag_regsn_mult _linear upd model (g02ddc),
in order to compute the regression coefficients for the model fitted at that step. Repeated calls to
nag_step_regsn (g02eec) should be made until F' < F; is indicated.

4 References
Draper N R and Smith H (1985) Applied Regression Analysis (2nd Edition) Wiley
Weisberg S (1985) Applied Linear Regression Wiley

Mark 26 g02eec.1

g02eec NAG Library Manual

S Arguments

Note: after the initial call to nag_step regsn (g02eec) with istep = 0 all arguments except fin must not
be changed by you between calls.

1: order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_ RowMajor. See Section 2.3.1.3 in How to Use the NAG Library and its
Documentation for a more detailed explanation of the use of this argument.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: istep — Integer * Input/Output
On entry: indicates which step in the forward selection process is to be carried out.

istep =0
The process is initialized.

Constraint: istep > 0.

On exit: is incremented by 1.

3: mean — Nag IncludeMean Input
On entry: indicates if a mean term is to be included.

mean = Nag MeanlInclude
A mean term, intercept, will be included in the model.

mean = Nag_MeanZero
The model will pass through the origin, zero-point.

Constraint: mean = Nag MeanInclude or Nag MeanZero.

4: n — Integer Input
On entry: n, the number of observations.

Constraint: n > 2.

5: m — Integer Input
On entry: m, the total number of independent variables in the dataset.

Constraint: m > 1.

6: x[dim| — const double Input
Note: the dimension, dim, of the array x must be at least

max(1, pdx x m) when order = Nag_ColMajor;
max(1,n x pdx) when order = Nag_RowMajor.

Where X(4,j) appears in this document, it refers to the array element

x[(j — 1) x pdx + ¢ — 1] when order = Nag_ColMajor;
x[(¢ — 1) x pdx + j — 1] when order = Nag_RowMajor.

On entry: X(i,j) must contain the ith observation for the jth independent variable, for
1=1,2,...,mand j=1,2,...,m.
7: pdx — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array X.

g02eec.2 Mark 26

202 — Correlation and Regression Analysis g02eec

Constraints:

if order = Nag_ColMajor, pdx > n;
if order = Nag_RowMajor, pdx > m.

8: var_names/m| — const char * Input
On entry: var_names|; — 1] must contain the name of the independent variable in row ¢ of x, for
1=1,2,...,m.

9: sx[m| — const Integer Input

On entry: indicates which independent variables could be considered for inclusion in the
regression.

sx[j—1]>2
The variable contained in the jth column of x is automatically included in the regression
model, for j=1,2,...,m.

sx[j—1]=1
The variable contained in the jth column of x is considered for inclusion in the regression
model, for j=1,2,..., m.

sx[j—1] =0
The variable in the jth column is not considered for inclusion in the model, for
7=12,... m.

Constraint: sx[j — 1] > 0 and at least one value of sx[j— 1] =1, for j=1,2,...,m.

10: maxip — Integer Input

On entry: the maximum number of independent variables to be included in the model.
Constraints:
if mean = Nag_Meanlnclude, maxip > 1 + number of values of sx > 0;
if mean = Nag_MeanZero, maxip > number of values of sx > 0.
11: y[n] — const double Input
On entry: the dependent variable.

12: wt[dim] — const double Input
Note: the dimension, dim, of the array wt must be at least n.
On entry: W, wt must contain the weights to be used in the weighted regression.

If wt[i — 1] = 0.0, then the ith observation is not included in the model, in which case the
effective number of observations is the number of observations with nonzero weights.

If weights are not provided then wt must be set to the null pointer, i.e., (double *)0, and the
effective number of observations is n.

Constraint: if wt is not NULL, wt[i;| > 0.0, for i =0,1,...,n— 1.

13: fin — double Input
On entry: the critical value of the F' statistic for the term to be included in the model, Ft.
Suggested value: 2.0 is a commonly used value in exploratory modelling.

Constraint: fin > 0.0.

Mark 26 g02eec.3

g02eec NAG Library Manual

14:

16:

17:

18:

19:

20:

21:

22:

addvar — Nag Boolean * Output
On exit: indicates if a variable has been added to the model.

addvar = Nag_ TRUE
A variable has been added to the model.

addvar = Nag FALSE
No variable had an F' value greater than F; and none were added to the model.
newvar|[l] — const char * Output

On exit: if addvar = Nag_TRUE, newvar contains the name of the variable added to the model.

chrss — double * Output
On exit: if addvar = Nag_TRUE, chrss contains the change in the residual sum of squares due to
adding variable newvar.

f — double * Output
On exit: if addvar = Nag TRUE, f contains the F' statistic for the inclusion of the variable in
newvar.

model[maxip] — const char * Input/Output
On entry: if istep = 0, model need not be set.

If istep # 0, model must contain the values returned by the previous call to nag step regsn
(g02eec).

On exit: the names of the variables in the current model.

nterm — Integer * Input/Output
On entry: if istep = 0, nterm need not be set.

If istep # 0, nterm must contain the value returned by the previous call to nag step regsn
(g02eec).

On exit: the number of independent variables in the current model, not including the mean, if
any.

rss — double * Input/Output
On entry: if istep = 0, rss need not be set.

If istep # 0, rss must contain the value returned by the previous call to nag_step regsn (g02eec).

On exit: the residual sums of squares for the current model.

idf — Integer * Input/Output
On entry: if istep = 0, idf need not be set.
If istep # 0, idf must contain the value returned by the previous call to nag_step_regsn (g02eec).

On exit: the degrees of freedom for the residual sum of squares for the current model.

ifr — Integer * Input/Output
On entry: if istep = 0, ifr need not be set.
If istep # 0, ifr must contain the value returned by the previous call to nag_step regsn (g02eec).

On exit: the number of free independent variables, i.e., the number of variables not in the model
that are still being considered for selection.

g02eec.4 Mark 26

202 — Correlation and Regression Analysis g02eec

23:

24:

25:

26:

27:

28:

free_vars[maxip| — const char * Input/Output
On entry: if istep = 0, free_vars need not be set.

If istep # 0, free_vars must contain the values returned by the previous call to nag_step regsn
(g02eec).

On exit: the first ifr values of free_vars contain the names of the free variables.

exss[maxip] — double Output

On exit: the first ifr values of exss contain what would be the change in regression sum of
squares if the free variables had been added to the model, i.e., the extra sum of squares for the
free variables. exss[i — 1] contains what would be the change in regression sum of squares if the
variable free_vars[i — 1] had been added to the model.

q[dim] — double Input/Output

Note: the dimension, dim, of the array q must be at least

max(1, pdq x maxip + 2) when order = Nag_ColMajor;
max(1,n x pdq) when order = Nag_RowMajor.

The (i,j)th element of the matrix @ is stored in

q[(j — 1) x pdq + i — 1] when order = Nag_ColMajor;
q[(i — 1) x pdq + j — 1] when order = Nag_RowMajor.

On entry: if istep = 0, q need not be set.
If istep # 0, q must contain the values returned by the previous call to nag_step regsn (g02eec).

On exit: the results of the QR decomposition for the current model:

the first column of q contains ¢ = QTy (or QTW%y where W is the vector of weights if
used);

the upper triangular part of columns 2 to p+ 1 contain the R matrix;

the strictly lower triangular part of columns 2 to p+ 1 contain details of the () matrix;
the remaining p+ 1 to p + ifr columns of contain Q' Xy, (or QTW%XfTee),

where p = nterm, or p = nterm + 1 if mean = Nag_MeanlInclude.

pdq — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array q.

Constraints:

if order = Nag_ColMajor, pdq > n;

if order = Nag_RowMajor, pdq > maxip + 2.
p[maxip + 1] — double Input/Output
On entry: if istep = 0, p need not be set.
If istep # 0, p must contain the values returned by the previous call to nag_step regsn (g02eec).
On exit: the first p elements of p contain details of the QR decomposition, where p = nterm, or
p = nterm + 1 if mean = Nag_MeanInclude.
fail — NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

Mark 26 g02eec.5

g02eec NAG Library Manual

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_DENOM_ZERO

Denominator of f statistic is < 0.0.

NE_FREE_VARS

There are no free variables in the regression.

NE_FULL_RANK

Forced variables not of full rank.

NE_INT

On entry, istep = (value).
Constraint: istep > 0.

On entry, m = (value).
Constraint: m > 1.

On entry, n = (value).
Constraint: n > 2.

On entry, pdq = (value).
Constraint: pdq > 0.

On entry, pdx = (value).
Constraint: pdx > 0.
NE_INT 2
On entry, istep and nterm are inconsistent: istep = (value) and nterm = (value).

On entry, pdq = (value) and n = (value).
Constraint: pdq > n.

On entry, pdx = (value) and m = (value).
Constraint: pdx > m.

On entry, pdx = (value) and n = (value).
Constraint: pdx > n.

NE_INT_ARRAY

On entry, maxip is too small for number of terms given by sx: maxip = (value).

NE_INT_ARRAY ELEM_CONS
On entry, sx[(value)] < 0.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

g02eec.6 Mark 26

202 — Correlation and Regression Analysis g02eec

An unexpected error has been triggered by this function. Please contact NAG.

See Section 3.6.6 in How to Use the NAG Library and its Documentation for further information.
NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.

See Section 3.6.5 in How to Use the NAG Library and its Documentation for further information.
NE_REAL

On entry, fin = (value).
Constraint: fin > 0.0.

On entry, with nonzero istep, rss < 0.0: rss = (value).

NE_REAL_ARRAY_ELEM_CONS
On entry, wt[(value)] < 0.0.

NE_ZERO_DF
Degrees of freedom for error will equal O if new variable is added.

On entry, number of forced variables > n, i.e., idf would be zero.

NE_ZERO_VARS

Maximum number of variables to be included is 0.

7 Accuracy

As nag step regsn (g02eec) uses a QR transformation the results will often be more accurate than
traditional algorithms using methods based on the cross-products of the dependent and independent
variables.

8 Parallelism and Performance

nag_step regsn (g02eec) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

nag_step_regsn (g02eec) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Notefor your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

The data, from an oxygen uptake experiment, is given by Weisberg (1985). The names of the variables
are as given in Weisberg (1985). The independent and dependent variables are read and nag_step regsn
(g02eec) is repeatedly called until addvar = Nag FALSE. At each step the F' statistic, the free
variables and their extra sum of squares are printed; also, except for when addvar = Nag FALSE, the
new variable, the change in the residual sum of squares and the terms in the model are printed.

Mark 26 g02eec.7

g02eec NAG Library Manual

10.1 Program Text

/* nag_step_regsn (g02eec) Example Program.
NAGPRODCODE Version.
Copyright 2016 Numerical Algorithms Group.

Mark 26, 2016.

#include <stdio.h>
#include <string.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg02.h>

int main(void)
{
/* Scalars */
double chrss, £, fin, rss;
Integer exit_status, i, idf, ifr, istep, j, m, maxip, n, nterm, pdq, pdx;
/* Arrays */
char nag_enum_arg[40];
char *newvar = 0O;
double *exss = 0, *p = 0, *g = 0, *wt = 0, *x = 0, *y = 0;
double *wtptr = O;
Integer *sx = 0;
char **free_vars = 0, **model = O;
const char *vname([] = { "DAY", "BOD", "TKN", "TS", "TVS", "COD" };
/* NAG Types */
Nag_OrderType order;
Nag_IncludeMean mean;
Nag_Boolean addvar = Nag_FALSE, weight;
NagError fail;

#ifdef NAG_COLUMN_MAJOR

#define X(I, J) x[(J-1)*pdx + I - 1]
order = Nag_ColMajor;

#else

#define X(I, J) x[(I-1)*pdx + J - 1]
order = Nag_RowMajor;

#endif

INIT FAIL(fail);

exit_status = 0;
printf("nag_step_regsn (gO02eec) Example Program Results\n");

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("s*["\nl");
#else

scanf ("s*[*\nl");
#endif

#ifdef _WIN32
scanf_s("%" NAG_IFMT "%" NAG_IFMT "'", &n, &m);
#else
scanf ("%" NAG_IFMT "%" NAG_IFMT "", &n, &m);
#endif
#ifdef _WIN32
scanf_s (" %39s", nag_enum_arg, (unsigned)_countof(nag_enum_arg)) ;
#else
scanf (" %39s", nag_enum_arg);
#endif
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*
/
mean = (Nag_IncludeMean) nag_enum_name_to_value(nag_enum_arg) ;
#ifdef _WIN32

g02eec.8 Mark 26

202 — Correlation and Regression Analysis

scanf_s (" %39s", nag_enum_arg, (unsigned)_countof(nag_enum_arg)) ;
#else
scanf (" %39s", nag_enum_arg) ;
#endif
weight = (Nag_Boolean) nag_enum_name_to_value(nag_enum_arg) ;
maxip = m;

/* Allocate memory */

if (! (exss = NAG_ALLOC(maxip, double)) ||

! (p = NAG_ALLOC (maxip + 1, double)) ||

= NAG_ALLOC(n * (maxip + 2), double)) ||
t = NAG_ALLOC(n, double)) ||
NAG_ALLOC(n * m, double)) ||
= NAG_ALLOC(n, double)) ||

x = NAG_ALLOC(m, Integer)) ||

ree_vars = NAG_ALLOC(maxip, char *)) ||
model = NAG_ALLOC(maxip, char *))

Hh N X S ,Q
I

(
H(
H(
L
L(
H(
H(

(

{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
#ifdef NAG_COLUMN_MAJOR
pdx = n;
pdq = n;
#else
pdx = m;
pdg = maxip + 2;

#endif

if (weight) {
for (i = 1; i <= n; ++1i) {
#ifdef _WIN32

for (7 = 1; J <= m; ++3j)
scanf_s("s1f", &X(i, J3));
#else
for (j = 1; j <= m; ++j)
scanf ("s1f", &X(i, 3));
#endif

#ifdef _WIN32
scanf_s("slfs1fs*["\nl", &yl[i - 1], &wt[i - 1]);
#else
scanf ("%1fs1fs*[*"\n]", &y[i - 1], &wt[i - 1]);
#endif
wtptr = wt;
}
¥
else {
for (i = 1; 1 <= n; ++1i) {
#ifdef _WIN32
for (j = 1; j <= m; ++3)
(II

scanf_s("s1f", &X(i, j));
#else
for (3 = 1; j <= m; ++3)
scanf ("s1f", &X(i, j));
#endif

#ifdef _WIN32
scanf_s("$1fs*[*\n] ", &yli - 11);
#else
scanf ("$1fs*[*\n] ", &yl[i - 11);
#endif
¥
3

#ifdef _WIN32
for (j = 0; j < m; ++3)
scanf_s("%" NAG_IFMT "", &sx[]jl);
#else
for (j = 0; j < m; ++3)

Mark 26

g02eec

g02eec.9

g02eec NAG Library Manual

scanf ("%" NAG_IFMT "", &sx[j]);

#endif
#ifdef _WIN32

scanf_s("s*["\nl");
#else

scanf ("s*["\nl");
#endif
#ifdef _WIN32

scanf_s("$1f%*[*\n]", &fin);

#else

scanf ("$1fs*["\nl]", &fin);
#endif

printf ("\n");

istep = 0;

for (i = 1; 1 <= m; ++1i) {

/* nag_step_regsn (g02eec).
* Fits a linear regression model by forward selection
*
/
nag_step_regsn(order, &istep, mean, n, m, x, pdx, vname, SX, maxip, VY,
wtptr, fin, &addvar, (const char **) &newvar, &chrss, &f,
(const char **) model, &nterm, &rss, &idf, &ifr,
(const char **) free_vars, exss, q, pdq, p, &fail);

if (fail.code != NE_NOERROR) {
printf ("Error from nag_step_regsn (g02eec).\n%s\n", fail.message) ;
exit_status = 1;
goto END;

}

printf("Step %" NAG_IFMT "\n", istep);

if (taddvar) {
printf ("No further variables added maximum F =%7.2f\n", f);
printf ("Free variables: ");

for (3 = 1; j <= ifr; ++3)
printf("%3.3s %s", free_vars[j - 1], 7 % 6 == 0
| I j - ifr ? |l\n|| . n mn) ;

printf ("\nChange in residual sums of squares for free variables:\n");
printf (" ");

for (j = 1; j <= ifr; ++j) {
printf ("%9.4£f", exss[j - 11);

printf("ss", j $ 6 == 0 || j == ifr 2 "\n" : " ");
}
goto END;
}
else {
printf ("Added variable is %3s\n", newvar) ;
printf ("Change in residual sum of squares =%13.4e\n", chrss);
printf ("F Statistic = %7.2f\n\n", f);
printf("vVariables in model: ");
for (j = 1; j <= nterm; ++j)
printf("%3s %s", model[j - 1], J $ 6 == 0 || j == nterm 2 "\n" : " ");
printf ("Residual sum of squares = %13.4e\n", rss);
printf ("Degrees of freedom = %" NAG_IFMT "\n\n", idf);
if (ifr == 0) {
printf("No free variables remaining\n") ;
goto END;
}
printf("%s%6s", "Free variables: ", "");
for (jJ = 1; j <= ifr; ++3j) {
printf("%3.3s ", free_vars[j - 11);
printf(j $ 6 == 0 || j == ifr 2 "\n" : " ");
}
printf ("Change in residual sums of squares for free variables:\n");
printf (" ");

g02eec.10 Mark 26

202 — Correlation and Regression Analysis g02eec

for (3 = 1; j <= ifr; ++3)
printf("%9.4f%s", exss[j - 1], J % =0 || j == ifr 2 "\n" : " ");
printf ("\n")
}
b

END:
NAG_FREE (model) ;
NAG_FREE (free_vars) ;
NAG_FREE (exss) ;
NAG_FREE (p)
NAG_FREE (

NAG_FREE (
NAG_FREE (
NAG_FREE (
NAG_FREE (

return exit_status;

10.2 Program Data

nag_step_regsn (g02eec) Example Program Data
20 6 Nag_MeanInclude Nag_FALSE

0. 1125.0 232.0 7160.0 85.9 8905.0 1.5563
7. 920.0 268.0 8804.0 86.5 7388.0 0.8976
15. 835.0 271.0 8108.0 85.2 5348.0 0.7482
22. 1000.0 237.0 6370.0 83.8 8056.0 0.7160
29. 1150.0 192.0 6441.0 82.1 6960.0 0.3010
37. 990.0 202.0 5154.0 79.2 5690.0 0.3617
44. 840.0 184.0 5896.0 81.2 6932.0 0.1139
58. 650.0 200.0 5336.0 80.6 5400.0 0.1139
65. 640.0 180.0 5041.0 78.4 3177.0 -0.2218
72. 583.0 165.0 5012.0 79.3 4461.0 -0.1549
80. 570.0 151.0 4825.0 78.7 3901.0 0.0000
86. 570.0 171.0 4391.0 78.0 5002.0 0.0000
93. 510.0 243.0 4320.0 72.3 4665.0 -0.0969
100. 555.0 147.0 3709.0 74.9 4642.0 -0.2218
107. 460.0 286.0 3969.0 74.4 4840.0 -0.3979
122. 275.0 198.0 3558.0 72.5 4479.0 -0.1549
129. 510.0 196.0 4361.0 57.7 4200.0 -0.2218
151. 165.0 210.0 3301.0 71.8 3410.0 -0.3979
171. 244.0 327.0 2964.0 72.5 3360.0 -0.5229
220. 79.0 334.0 2777.0 71.9 2599.0 -0.0458
0 1 1 1 1 2
2.0

Mark 26 g02eec.11

g02eec

10.3 Program Results

nag_step_regsn (g02eec) Example Program Results

Step 1

Added variable is TS

Change in residual sum of squares = 4.7126e-01
F Statistic = 7.38

Variables in model: COD TS
Residual sum of squares = 1.0850e+00
Degrees of freedom = 17

Free variables: TKN BOD TVS

Change in residual sums of squares for free variables:

0.1175 0.0600 0.2276

Step 2
No further variables added maximum F = 1.59
Free variables: TKN BOD TVS

Change in residual sums of squares for free variables:

0.0979 0.0207 0.0217

NAG Library Manual

g02eec.12 (last)

Mark 26

	g02eec
	1 Purpose
	2 Specification
	3 Description
	4 References
	Draper and Smith (1985)
	Weisberg (1985)

	5 Arguments
	order
	istep
	mean
	n
	m
	x
	pdx
	var_names
	sx
	maxip
	y
	wt
	fin
	addvar
	newvar
	chrss
	f
	model
	nterm
	rss
	idf
	ifr
	free_vars
	exss
	q
	pdq
	p
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_DENOM_ZERO
	NE_FREE_VARS
	NE_FULL_RANK
	NE_INT
	NE_INT_2
	NE_INT_ARRAY
	NE_INT_ARRAY_ELEM_CONS
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NE_REAL
	NE_REAL_ARRAY_ELEM_CONS
	NE_ZERO_DF
	NE_ZERO_VARS

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

