
NAG Library Function Document

nag_sparse_nsym_fac (f11dac)

1 Purpose

nag_sparse_nsym_fac (f11dac) computes an incomplete LU factorization of a real sparse nonsymmetric
matrix, represented in coordinate storage format. This factorization may be used as a preconditioner in
combination with nag_sparse_nsym_fac_sol (f11dcc).

2 Specification

#include <nag.h>
#include <nagf11.h>

void nag_sparse_nsym_fac (Integer n, Integer nnz, double *a[], Integer *la,
Integer *irow[], Integer *icol[], Integer lfill, double dtol,
Nag_SparseNsym_Piv pstrat, Nag_SparseNsym_Fact milu, Integer ipivp[],
Integer ipivq[], Integer istr[], Integer idiag[], Integer *nnzc,
Integer *npivm, NagError *fail)

3 Description

nag_sparse_nsym_fac (f11dac) computes an incomplete LU factorization (Meijerink and Van der Vorst
(1977) and Meijerink and Van der Vorst (1981)) of a real sparse nonsymmetric n by n matrix A. The
factorization is intended primarily for use as a preconditioner with the iterative solver
nag_sparse_nsym_fac_sol (f11dcc).

The decomposition is written in the form

A ¼ M þR

where

M ¼ PLDUQ

and L is lower triangular with unit diagonal elements, D is diagonal, U is upper triangular with unit
diagonals, P and Q are permutation matrices, and R is a remainder matrix.

The amount of fill-in occurring in the factorization can vary from zero to complete fill, and can be
controlled by specifying either the maximum level of fill lfill, or the drop tolerance dtol.

The argument pstrat defines the pivoting strategy to be used. The options currently available are no
pivoting, user-defined pivoting, partial pivoting by columns for stability, and complete pivoting by rows
for sparsity and by columns for stability. The factorization may optionally be modified to preserve the
row-sums of the original matrix.

The sparse matrix A is represented in coordinate storage (CS) format (see Section 2.1.2 in the f11
Chapter Introduction). The array a stores all the nonzero elements of the matrix A, while arrays irow
and icol store the corresponding row and column indices respectively. Multiple nonzero elements may
not be specified for the same row and column index.

The preconditioning matrix M is returned in terms of the CS representation of the matrix

C ¼ LþD�1 þ U � 2I:

Further algorithmic details are given in Section 9.3.

f11 – Large Scale Linear Systems f11dac

Mark 26 f11dac.1

4 References

Meijerink J and Van der Vorst H (1977) An iterative solution method for linear systems of which the
coefficient matrix is a symmetric M-matrix Math. Comput. 31 148–162

Meijerink J and Van der Vorst H (1981) Guidelines for the usage of incomplete decompositions in
solving sets of linear equations as they occur in practical problems J. Comput. Phys. 44 134–155

Salvini S A and Shaw G J (1996) An evaluation of new NAG Library solvers for large sparse
unsymmetric linear systems NAG Technical Report TR2/96

5 Arguments

1: n – Integer Input

On entry: the order of the matrix A.

Constraint: n � 1.

2: nnz – Integer Input

On entry: the number of nonzero elements in the matrix A.

Constraint: 1 � nnz � n2.

3: a½la� – double * Input/Output

On entry: the nonzero elements in the matrix A, ordered by increasing row index, and by
increasing column index within each row. Multiple entries for the same row and column indices
are not permitted. The function nag_sparse_nsym_sort (f11zac) may be used to order the
elements in this way.

On exit: the first nnz entries of a contain the nonzero elements of A and the next nnzc entries
contain the elements of the matrix C. Matrix elements are ordered by increasing row index, and
by increasing column index within each row.

4: la – Integer * Input/Output

On entry: the second dimension of the arrays a, irow and icol.

These arrays must be of sufficient size to store both A (nnz elements) and C (nnzc elements); for
this reason the length of the arrays may be changed internally by calls to realloc. It is therefore
imperative that these arrays are allocated using NAG_ALLOC and not declared as automatic arrays

On exit: if internal allocation has taken place then la is set to nnzþ nnzc, otherwise it remains
unchanged.

Constraint: la � 2� nnz.

5: irow½la� – Integer * Input/Output
6: icol½la� – Integer * Input/Output

On entry: the row and column indices of the nonzero elements supplied in a.

Constraints:

irow and icol must satisfy the following constraints (which may be imposed by a call to
nag_sparse_nsym_sort (f11zac)):;
1 � irow½i� � n and 1 � icol½i� � n, for i ¼ 0; 1; . . . ; nnz� 1;
irow½i � 1� < irow½i� or irow½i � 1� ¼ irow½i� and icol½i � 1� < icol½i�, for
i ¼ 1; 2; . . . ;nnz� 1.

On exit: the row and column indices of the nonzero elements returned in a.

f11dac NAG Library Manual

f11dac.2 Mark 26

7: lfill – Integer Input

On entry: if lfill � 0 its value is the maximum level of fill allowed in the decomposition (see
Section 9.2). A negative value of lfill indicates that dtol will be used to control the fill instead.

8: dtol – double Input

On entry: if lfill < 0 then dtol is used as a drop tolerance to control the fill-in (see Section 9.2);
otherwise dtol is not referenced.

Constraint: if lfill < 0, dtol � 0:0.

9: pstrat – Nag_SparseNsym_Piv Input

On entry: specifies the pivoting strategy to be adopted as follows:

if pstrat ¼ Nag SparseNsym NoPiv, no pivoting is carried out;

if pstrat ¼ Nag SparseNsym UserPiv, pivoting is carried out according to the user-defined
input value of ipivp and ipivq;

if pstrat ¼ Nag SparseNsym PartialPiv, partial pivoting by columns for stability is carried
out;

if pstrat ¼ Nag SparseNsym CompletePiv, complete pivoting by rows for sparsity, and by
columns for stability, is carried out.

Suggested value: pstrat ¼ Nag SparseNsym CompletePiv.

C o n s t r a i n t : pstrat ¼ Nag SparseNsym NoPiv, Nag SparseNsym UserPiv,
Nag SparseNsym PartialPiv or Nag SparseNsym CompletePiv.

10: milu – Nag_SparseNsym_Fact Input

On entry: indicates whether or not the factorization should be modified to preserve row sums (see
Section 9.4):

if milu ¼ Nag SparseNsym ModFact, the factorization is modified (milu);

if milu ¼ Nag SparseNsym UnModFact, the factorization is not modified.

Constraint: milu ¼ Nag SparseNsym ModFact or Nag SparseNsym UnModFact.

11: ipivp½n� – Integer Input/Output
12: ipivq½n� – Integer Input/Output

On entry: if pstrat ¼ Nag SparseNsym UserPiv, ipivp½k� 1� and ipivq½k� 1� must specify the
row and column indices of the element used as a pivot at elimination stage k. Otherwise ipivp
and ipivq need not be initialized.

Constraint: if pstrat ¼ Nag SparseNsym UserPiv, ipivp and ipivq must both hold valid
permutations of the integers on 1; n½ �.
On exit: the pivot indices. If ipivp½k� 1� ¼ i and ipivq½k� 1� ¼ j then the element in row i and
column j was used as the pivot at elimination stage k.

13: istr½nþ 1� – Integer Output

On exit: istr½i � 1� � 1, for i ¼ 1; 2; . . . ;n is the index of arrays a, irow and icol where row i of
the matrix C starts. istr½n� � 1 is the address of the last nonzero element in C plus one.

14: idiag½n� – Integer Output

On exit: idiag½i � 1�, for i ¼ 1; 2; . . . ;n holds the index in the arrays a, irow and icol which holds
the diagonal element in row i of the matrix C.

f11 – Large Scale Linear Systems f11dac

Mark 26 f11dac.3

15: nnzc – Integer * Output

On exit: the number of nonzero elements in the matrix C.

16: npivm – Integer * Output

On exit: if npivm > 0 it gives the number of pivots which were modified during the factorization
to ensure that M exists.

If npivm ¼ �1 no pivot modifications were required, but a local restart occurred (Section 9.4).
The quality of the preconditioner will generally depend on the returned value of npivm. If npivm
is large the preconditioner may not be satisfactory. In this case it may be advantageous to call
nag_sparse_nsym_fac (f11dac) again with an increased value of lfill, a reduced value of dtol, or
pstrat ¼ Nag SparseNsym CompletePiv.

17: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_2_INT_ARG_LT

On entry, la ¼ valueh i while nnz ¼ valueh i. These arguments must satisfy la � 2� nnz.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument milu had an illegal value.

On entry, argument pstrat had an illegal value.

NE_INT_2

On entry, nnz ¼ valueh i, n ¼ valueh i.
Constraint: 1 � nnz � n2:.

NE_INT_ARG_LT

On entry, n ¼ valueh i.
Constraint: n � 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_INVALID_ROWCOL_PIVOT

On entry, pstrat ¼ Nag SparseNsym UserPiv, but one or both of the arrays ipivp and ipivq does
not represent a valid permutation of the integers in 1; n½ �. An input value of ipivp or ipivq is
either out of range or repeated.

NE_NONSYMM_MATRIX_DUP

A nonzero matrix element has been supplied which does not lie within the matrix A, is out of
order or has duplicate row and column indices, i.e., one or more of the following constraints has
been violated:

f11dac NAG Library Manual

f11dac.4 Mark 26

1 � irow½i� � n, 1 � icol½i� � n, for i ¼ 0; 1; . . . ;nnz� 1.

irow½i � 1� < irow½i�, or
irow½i � 1� ¼ irow½i� and icol½i � 1� < icol½i�, for i ¼ 1; 2; . . . ; nnz� 1.
Call nag_sparse_nsym_sort (f11zac) to reorder and sum or remove duplicates.

NE_REAL_INT_ARG_CONS

On entry, dtol ¼ valueh i and lfill ¼ valueh i. These arguments must satisfy dtol � 0:0 if lfill < 0.

7 Accuracy

The accuracy of the factorization will be determined by the size of the elements that are dropped and
the size of any modifications made to the pivot elements. If these sizes are small then the computed
factors will correspond to a matrix close to A. The factorization can generally be made more accurate
by increasing lfill, or by reducing dtol with lfill < 0.

If nag_sparse_nsym_fac (f11dac) is used in combination with nag_sparse_nsym_fac_sol (f11dcc), the
more accurate the factorization the fewer iterations will be required. However, the cost of the
decomposition will also generally increase.

8 Parallelism and Performance

nag_sparse_nsym_fac (f11dac) is not threaded in any implementation.

9 Further Comments

9.1 Timing

The time taken for a call to nag_sparse_nsym_fac (f11dac) is roughly proportional to nnzc2=n.

9.2 Control of Fill-in

If lfill � 0 the amount of fill-in occurring in the incomplete factorization is controlled by limiting the
maximum level of fill-in to lfill. The original nonzero elements of A are defined to be of level 0. The
fill level of a new nonzero location occurring during the factorization is defined as:

k ¼ max ke; kcð Þ þ 1;

where ke is the level of fill of the element being eliminated, and kc is the level of fill of the element
causing the fill-in.

If lfill < 0 the fill-in is controlled by means of the drop tolerance dtol. A potential fill-in element aij
occurring in row i and column j will not be included if:

aij
�
�

�
� < dtol� �;

where � is the maximum absolute value element in the matrix A.

For either method of control, any elements which are not included are discarded unless
milu ¼ Nag SparseNsym ModFact, in which case their contributions are subtracted from the pivot
element in the relevant elimination row, to preserve the row-sums of the original matrix.

Should the factorization process break down a local restart process is implemented as described in
Section 9.4. This will affect the amount of fill present in the final factorization.

9.3 Algorithmic Details

The factorization is constructed row by row. At each elimination stage a row index is chosen. In the
case of complete pivoting this index is chosen in order to reduce fill-in. Otherwise the rows are treated
in the order given, or some user-defined order.

f11 – Large Scale Linear Systems f11dac

Mark 26 f11dac.5

The chosen row is copied from the original matrix A and modified according to those previous
elimination stages which affect it. During this process any fill-in elements are either dropped or kept
according to the values of lfill or dtol . In the case of a modified factorization
(milu ¼ Nag SparseNsym ModFact) the sum of the dropped terms for the given row is stored.

Finally the pivot element for the row is chosen and the multipliers are computed for this elimination
stage. For partial or complete pivoting the pivot element is chosen in the interests of stability as the
element of largest absolute value in the row. Otherwise the pivot element is chosen in the order given,
or some user-defined order.

If the factorization breaks down because the chosen pivot element is zero, or there is no nonzero pivot
available, a local restart recovery process is implemented. The modification of the given pivot row
according to previous elimination stages is repeated, but this time keeping all fill. Note that in this case
the final factorization will include more fill than originally specified by the user-supplied value of lfill
or dtol. The local restart usually results in a suitable nonzero pivot arising. The original criteria for
dropping fill-in elements is then resumed for the next elimination stage (hence the local nature of the
restart process). Should this restart process also fail to produce a nonzero pivot element an arbitrary unit
pivot is introduced in an arbitrarily chosen column. nag_sparse_nsym_fac (f11dac) returns an integer
argument npivm which gives the number of these arbitrary unit pivots introduced. If no pivots were
modified but local restarts occurred npivm ¼ �1 is returned.

9.4 Choice of Parameters

There is unfortunately no choice of the various algorithmic arguments which is optimal for all types of
matrix, and some experimentation will generally be required for each new type of matrix encountered.

If the matrix A is not known to have any particular special properties the following strategy is
recommended. Start with lfill ¼ 0 and pstrat ¼ Nag SparseNsym CompletePiv. If the value returned
for npivm is significantly larger than zero, i.e., a large number of pivot modifications were required to
ensure that M existed, the preconditioner is not likely to be satisfactory. In this case increase lfill until
npivm falls to a value close to zero.

If A has non-positive off-diagonal elements, is nonsingular, and has only non-negative elements in its
inverse, it is called an ‘M-matrix’. It can be shown that no pivot modifications are required in the
incomplete LU factorization of an M-matrix (Meijerink and Van der Vorst (1977)). In this case a good
preconditioner can generally be expected by setting lfill ¼ 0, pstrat ¼ Nag SparseNsym NoPiv and
milu ¼ Nag SparseNsym ModFact.

Some illustrations of the application of nag_sparse_nsym_fac (f11dac) to linear systems arising from
the discretization of two-dimensional elliptic partial differential equations, and to random-valued
randomly structured linear systems, can be found in Salvini and Shaw (1996).

9.5 Direct Solution of Sparse Linear Systems

Although it is not their primary purpose nag_sparse_nsym_fac (f11dac) and nag_sparse_nsym_preco
n_ilu_solve (f11dbc) may be used together to obtain a direct solution to a nonsingular sparse linear
system. To achieve this the call to nag_sparse_nsym_precon_ilu_solve (f11dbc) should be preceded by
a complete LU factorization

A ¼ PLDUQ ¼ M:

A complete factorization is obtained from a call to nag_sparse_nsym_fac (f11dac) with lfill < 0 and
dtol ¼ 0:0, provided npivm � 0 on exit. A positive value of npivm indicates that A is singular, or ill-
conditioned. A factorization with positive npivm may serve as a preconditioner, but will not result in a
direct solution. It is therefore essential to check the output value of npivm if a direct solution is
required.

The use of nag_sparse_nsym_fac (f11dac) and nag_sparse_nsym_precon_ilu_solve (f11dbc) as a direct
method is illustrated in Section 10 in nag_sparse_nsym_precon_ilu_solve (f11dbc).

f11dac NAG Library Manual

f11dac.6 Mark 26

10 Example

This example program reads in a sparse matrix A and calls nag_sparse_nsym_fac (f11dac) to compute
an incomplete LU factorization. It then outputs the nonzero elements of both A and
C ¼ LþD�1 þ U � 2I.

The call to nag_sparse_nsym_fac (f11dac) has lfill ¼ 0, and pstrat ¼ Nag SparseNsym CompletePiv,
giving an unmodified zero-fill LU factorization, with row pivoting for sparsity and column pivoting for
stability.

10.1 Program Text

/* nag_sparse_nsym_fac (f11dac) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

#include <nag.h>
#include <nag_stdlib.h>
#include <nag_string.h>
#include <stdio.h>
#include <nagf11.h>

int main(void)
{

double dtol;
double *a = 0;
Integer *icol = 0, *irow = 0, *istr = 0, *idiag = 0, *ipivp = 0;
Integer *ipivq = 0;
Integer nnzc, exit_status = 0, i, n, lfill, npivm, nnz, num;
char nag_enum_arg[40];
Nag_SparseNsym_Fact milu;
Nag_SparseNsym_Piv pstrat;
NagError fail;

INIT_FAIL(fail);

printf("nag_sparse_nsym_fac (f11dac) Example Program Results\n");
/* Skip heading in data file */

#ifdef _WIN32
scanf_s("%*[^\n]");

#else
scanf("%*[^\n]");

#endif

#ifdef _WIN32
scanf_s("%" NAG_IFMT "%*[^\n]", &n);

#else
scanf("%" NAG_IFMT "%*[^\n]", &n);

#endif
#ifdef _WIN32

scanf_s("%" NAG_IFMT "%*[^\n]", &nnz);
#else

scanf("%" NAG_IFMT "%*[^\n]", &nnz);
#endif
#ifdef _WIN32

scanf_s("%" NAG_IFMT "%lf%*[^\n]", &lfill, &dtol);
#else

scanf("%" NAG_IFMT "%lf%*[^\n]", &lfill, &dtol);
#endif

#ifdef _WIN32
scanf_s("%39s%*[^\n]", nag_enum_arg, (unsigned)_countof(nag_enum_arg));

#else
scanf("%39s%*[^\n]", nag_enum_arg);

f11 – Large Scale Linear Systems f11dac

Mark 26 f11dac.7

#endif
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/

pstrat = (Nag_SparseNsym_Piv) nag_enum_name_to_value(nag_enum_arg);

#ifdef _WIN32
scanf_s("%39s%*[^\n]", nag_enum_arg, (unsigned)_countof(nag_enum_arg));

#else
scanf("%39s%*[^\n]", nag_enum_arg);

#endif
milu = (Nag_SparseNsym_Fact) nag_enum_name_to_value(nag_enum_arg);

num = 2 * nnz;
istr = NAG_ALLOC(n + 1, Integer);
idiag = NAG_ALLOC(n, Integer);
ipivp = NAG_ALLOC(n, Integer);
ipivq = NAG_ALLOC(n, Integer);
irow = NAG_ALLOC(num, Integer);
icol = NAG_ALLOC(num, Integer);
a = NAG_ALLOC(num, double);

if (!istr || !idiag || !ipivp || !ipivq || !irow || !icol || !a) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
return exit_status;

}

/* Read the matrix a */

for (i = 1; i <= nnz; ++i)
#ifdef _WIN32

scanf_s("%lf%" NAG_IFMT "%" NAG_IFMT "%*[^\n]", &a[i - 1], &irow[i - 1],
&icol[i - 1]);

#else
scanf("%lf%" NAG_IFMT "%" NAG_IFMT "%*[^\n]", &a[i - 1], &irow[i - 1],

&icol[i - 1]);
#endif

/* Calculate incomplete LU factorization */

/* nag_sparse_nsym_fac (f11dac).
* Incomplete LU factorization (nonsymmetric)
*/

nag_sparse_nsym_fac(n, nnz, &a, &num, &irow, &icol, lfill, dtol, pstrat,
milu, ipivp, ipivq, istr, idiag, &nnzc, &npivm, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_sparse_nsym_fac (f11dac).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Output original matrix */

printf(" Original Matrix \n n = %6" NAG_IFMT "\n", n);
printf(" nnz = %6" NAG_IFMT "\n", nnz);

for (i = 1; i <= nnz; ++i)
printf("%8" NAG_IFMT "%16.6e%8" NAG_IFMT "%8" NAG_IFMT "\n", i, a[i - 1],

irow[i - 1], icol[i - 1]);
printf("\n");

/* Output details of the factorization */

printf(" Factorization \n n = %6" NAG_IFMT "\n", n);
printf(" nnz = %6" NAG_IFMT "\n", nnzc);
printf(" npivm = %6" NAG_IFMT "\n", npivm);

for (i = nnz + 1; i <= nnz + nnzc; ++i)
printf("%8" NAG_IFMT "%16.6e%8" NAG_IFMT "%8" NAG_IFMT "\n", i, a[i - 1],

f11dac NAG Library Manual

f11dac.8 Mark 26

irow[i - 1], icol[i - 1]);

printf("\n i ipivp[i-1] ipivq[i-1] \n"); /* */

for (i = 1; i <= n; ++i)
printf("%10" NAG_IFMT "%10" NAG_IFMT "%10" NAG_IFMT "\n", i, ipivp[i - 1],

ipivq[i - 1]);

END:
NAG_FREE(istr);
NAG_FREE(idiag);
NAG_FREE(ipivp);
NAG_FREE(ipivq);
NAG_FREE(irow);
NAG_FREE(icol);
NAG_FREE(a);

return exit_status;
}

10.2 Program Data

nag_sparse_nsym_fac (f11dac) Example Program Data
4 n
11 nnz
1 0.0 lfill, dtol
Nag_SparseNsym_CompletePiv pstrat
Nag_SparseNsym_UnModFact milu
1. 1 2
1. 1 3

-1. 2 1
2. 2 3
2. 2 4
3. 3 1

-2. 3 4
1. 4 1

-2. 4 2
1. 4 3
1. 4 4 a[i-1], irow[i-1], icol[i-1], i=1,...,nnz

10.3 Program Results

nag_sparse_nsym_fac (f11dac) Example Program Results
Original Matrix
n = 4
nnz = 11

1 1.000000e+00 1 2
2 1.000000e+00 1 3
3 -1.000000e+00 2 1
4 2.000000e+00 2 3
5 2.000000e+00 2 4
6 3.000000e+00 3 1
7 -2.000000e+00 3 4
8 1.000000e+00 4 1
9 -2.000000e+00 4 2

10 1.000000e+00 4 3
11 1.000000e+00 4 4

Factorization
n = 4
nnz = 11
npivm = 0

12 1.000000e+00 1 1
13 1.000000e+00 1 3
14 3.333333e-01 2 2
15 -6.666667e-01 2 4
16 -3.333333e-01 3 2
17 5.000000e-01 3 3
18 6.666667e-01 3 4
19 -2.000000e+00 4 1

f11 – Large Scale Linear Systems f11dac

Mark 26 f11dac.9

20 3.333333e-01 4 2
21 1.500000e+00 4 3
22 -3.000000e+00 4 4

i ipivp[i-1] ipivq[i-1]
1 1 2
2 3 1
3 2 3
4 4 4

f11dac NAG Library Manual

f11dac.10 (last) Mark 26

	f11dac
	1 Purpose
	2 Specification
	3 Description
	4 References
	Meijerink and Van der Vorst (1977)
	Meijerink and Van der Vorst (1981)
	Salvini and Shaw (1996)

	5 Arguments
	n
	nnz
	a
	la
	irow
	icol
	lfill
	dtol
	pstrat
	milu
	ipivp
	ipivq
	istr
	idiag
	nnzc
	npivm
	fail

	6 Error Indicators and Warnings
	NE_2_INT_ARG_LT
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT_2
	NE_INT_ARG_LT
	NE_INTERNAL_ERROR
	NE_INVALID_ROWCOL_PIVOT
	NE_NONSYMM_MATRIX_DUP
	NE_REAL_INT_ARG_CONS

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	9.1 Timing
	9.2 Control of Fill-in
	9.3 Algorithmic Details
	9.4 Choice of Parameters
	9.5 Direct Solution of Sparse Linear Systems

	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

