NAG Library Function Document nag_dtpmqrt (f08bcc)

1 Purpose

nag_dtpmqrt (f08bcc) multiplies an arbitrary real matrix C by the real orthogonal matrix Q from a $Q R$ factorization computed by nag_dtpqrt (f08bbc).

2 Specification

```
#include <nag.h>
#include <nagf08.h>
void nag_dtpmqrt (Nag_OrderType order, Nag_SideType side,
    Nag_TransType trans, Integer m, Integer n, Integer k, Integer l,
    Integer nb, const double v[], Integer pdv, const double t[],
    Integer pdt, double cl[], Integer pdcl, double c2[], Integer pdc2,
    NagError *fail)
```


3 Description

nag_dtpmqrt (f08bcc) is intended to be used after a call to nag_dtpqrt (f08bbc) which performs a $Q R$ factorization of a triangular-pentagonal matrix containing an upper triangular matrix A over a pentagonal matrix B. The orthogonal matrix Q is represented as a product of elementary reflectors.
This function may be used to form the matrix products

$$
Q C, Q^{\mathrm{T}} C, C Q \text { or } C Q^{\mathrm{T}},
$$

where the real rectangular m_{c} by n_{c} matrix C is split into component matrices C_{1} and C_{2}.
If Q is being applied from the left $\left(Q C\right.$ or $\left.Q^{\mathrm{T}} C\right)$ then

$$
C=\binom{C_{1}}{C_{2}}
$$

where C_{1} is k by n_{c}, C_{2} is m_{v} by $n_{c}, m_{c}=k+m_{v}$ is fixed and m_{v} is the number of rows of the matrix V containing the elementary reflectors (i.e., \mathbf{m} as passed to nag_dtpqrt (f08bbc)); the number of columns of V is n_{v} (i.e., \mathbf{n} as passed to nag_dtpqrt (f08bbc)).
If Q is being applied from the right $\left(C Q\right.$ or $\left.C Q^{\mathrm{T}}\right)$ then

$$
C=\left(\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right)
$$

where C_{1} is m_{c} by k, and C_{2} is m_{c} by m_{v} and $n_{c}=k+m_{v}$ is fixed.
The matrices C_{1} and C_{2} are overwriten by the result of the matrix product.
A common application of this routine is in updating the solution of a linear least squares problem as illustrated in Section 10 in nag_dtpqrt (f08bbc).

4 References

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University Press, Baltimore

5 Arguments

1: order - Nag_OrderType
Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., rowmajor ordering or column-major ordering. C language defined storage is specified by order $=$ Nag_RowMajor. See Section 2.3.1.3 in How to Use the NAG Library and its Documentation for a more detailed explanation of the use of this argument.
Constraint: order $=$ Nag_RowMajor or Nag_ColMajor.
2: \quad side - Nag_SideType 2
On entry: indicates how Q or Q^{T} is to be applied to C.
side $=$ Nag_LeftSide
Q or Q^{T} is applied to C from the left.
side $=$ Nag_RightSide
Q or Q^{T} is applied to C from the right.
Constraint: side $=$ Nag_LeftSide or Nag_RightSide.
3: \quad trans - Nag_TransType
On entry: indicates whether Q or Q^{T} is to be applied to C.
$\boldsymbol{t r a n s}=$ Nag_NoTrans $^{\text {N }}$
Q is applied to C.
$\boldsymbol{t r a n s}=$ Nag_Trans $^{\text {I }}$
Q^{T} is applied to C.
Constraint: $\operatorname{trans}=$ Nag_NoTrans or Nag_Trans.
4: $\quad \mathbf{m}$ - Integer
Input
On entry: the number of rows of the matrix C_{2}, that is,
if side $=$ Nag_LeftSide
then m_{v}, the number of rows of the matrix V;
if side $=$ Nag_RightSide
then m_{c}, the number of rows of the matrix C.
Constraint: $\mathbf{m} \geq 0$.
5: $\quad \mathbf{n}$ - Integer
Input
On entry: the number of columns of the matrix C_{2}, that is,
if side $=$ Nag_LeftSide
then n_{c}, the number of columns of the matrix C;
if side $=$ Nag_RightSide
then n_{v}, the number of columns of the matrix V.
Constraint: $\mathbf{n} \geq 0$.
6: $\quad \mathbf{k}$ - Integer
Input
On entry: k, the number of elementary reflectors whose product defines the matrix Q.
Constraint: $\mathbf{k} \geq 0$.

7: \quad l - Integer
Input
On entry: l, the number of rows of the upper trapezoidal part of the pentagonal composite matrix V, passed (as b) in a previous call to nag_dtpqrt (f08bbc). This must be the same value used in the previous call to nag_dtpqrt (f08bbc) (see lin nag_dtpqrt (f08bbc)).
Constraint: $0 \leq \mathbf{l} \leq \mathbf{k}$.
8: $\quad \mathbf{n b}$ - Integer
Input
On entry: nb, the blocking factor used in a previous call to nag_dtpqrt (f08bbc) to compute the $Q R$ factorization of a triangular-pentagonal matrix containing composite matrices A and B.

Constraints:

```
nb \geq1;
if k}>0,\mathbf{nb}\leq\mathbf{k}
```

9: $\quad \mathbf{v}[\operatorname{dim}]-$ const double
Input
Note: the dimension, dim, of the array \mathbf{v} must be at least

```
max}(1,\mathbf{pdv}\times\mathbf{k})\mathrm{ when order = Nag_ColMajor;
max}(1,\mathbf{m}\times\mathbf{pdv})\mathrm{ when order = Nag_RowMajor and side = Nag_LeftSide;
max}(1,\mathbf{n}\times\mathbf{pdv})\mathrm{ when order = Nag_RowMajor and side = Nag_RightSide.
```

The (i, j) th element of the matrix V is stored in

$$
\begin{aligned}
& \mathbf{v}[(j-1) \times \mathbf{p d v}+i-1] \text { when } \text { order }=\text { Nag_ColMajor; } \\
& \mathbf{v}[(i-1) \times \mathbf{p d v}+j-1] \text { when order }=\text { Nag_RowMajor. }
\end{aligned}
$$

On entry: the m_{v} by n_{v} matrix V; this should remain unchanged from the array \mathbf{b} returned by a previous call to nag_dtpqrt (f08bbc).
pdv - Integer
Input
On entry: the stride separating row or column elements (depending on the value of order) in the array \mathbf{v}.

Constraints:

if order = Nag_ColMajor,
if side $=\operatorname{Nag}$ LeftSide, $\mathbf{p d v} \geq \max (1, \mathbf{m})$;
if side $=$ Nag_RightSide, $\mathbf{p d v} \geq \max (1, \mathbf{n})$;
if $\boldsymbol{o r d e r}=$ Nag_RowMajor, $\mathbf{p d v} \geq \max (1, \mathbf{k})$.
11: $\quad \mathbf{t}[$ dim $]$ - const double
Input
Note: the dimension, dim, of the array \mathbf{t} must be at least

```
max}(1,\mathbf{pdt}\times\mathbf{k})\mathrm{ when order = Nag_ColMajor;
max}(1,\mathbf{nb}\times\mathbf{pdt})\mathrm{ when order = Nag_RowMajor.
```

The (i, j) th element of the matrix T is stored in
$\mathbf{t}[(j-1) \times \mathbf{p d t}+i-1]$ when order $=$ Nag_ColMajor;
$\mathbf{t}[(i-1) \times \mathbf{p d t}+j-1]$ when order $=$ Nag_RowMajor.

On entry: this must remain unchanged from a previous call to nag_dtpqrt (f08bbc) (see \mathbf{t} in nag_dtpqrt (f08bbc)).
pdt - Integer
Input
On entry: the stride separating row or column elements (depending on the value of order) in the array \mathbf{t}.

Constraints:

if order $=$ Nag_ColMajor, pdt $\geq \mathbf{n b}$;
if order $=$ Nag_RowMajor, $\mathbf{p d t} \geq \max (1, \mathbf{k})$.
c1 [dim] - double
Input/Output
Note: the dimension, dim, of the array $\mathbf{c 1}$ must be at least
$\max (1$, pdc1 $\times \mathbf{n})$ when side $=$ Nag_LeftSide and order $=$ Nag_ColMajor;
$\max (1, \mathbf{k} \times \mathbf{p d c 1})$ when side $=$ Nag_LeftSide and order $=$ Nag_RowMajor;
$\max (1$, pdc $1 \times \mathbf{k})$ when side $=$ Nag_RightSide and order $=$ Nag_ColMajor;
$\max (1, \mathbf{m} \times \mathbf{p d c 1})$ when side $=$ Nag_RightSide and order $=$ Nag_RowMajor.
On entry: C_{1}, the first part of the composite matrix C :
if side $=$ Nag_LeftSide
then $\mathbf{c} 1$ contains the first k rows of C;
if side $=$ Nag_RightSide
then $\mathbf{c} 1$ contains the first k columns of C.
On exit: $\mathbf{c 1}$ is overwritten by the corresponding block of $Q C$ or $Q^{\mathrm{T}} C$ or $C Q$ or $C Q^{\mathrm{T}}$.
pdc1 - Integer
Input
On entry: the stride separating row or column elements (depending on the value of order) in the array c1.

Constraints:
if order $=$ Nag_ColMajor,
if side $=$ Nag_LeftSide, $\mathbf{p d c} 1 \geq \max (1, \mathbf{k})$;
if side $=\operatorname{Nag}$ RightSide, $\mathbf{p d c} 1 \geq \max (1, \mathbf{m})$.;
if order $=$ Nag_RowMajor,
if side $=$ Nag_LeftSide, $\mathbf{p d c} 1 \geq \max (1, \mathbf{n})$;
if side $=$ Nag_RightSide, pdc1 $\geq \max (1, \mathbf{k})$. .
15: $\mathbf{c 2}[\mathrm{dim}]$ - double
Input/Output
Note: the dimension, dim, of the array c2 must be at least
$\max (1, \mathbf{p d c} 2 \times \mathbf{n})$ when order $=$ Nag_ColMajor;
$\max (1, \mathbf{m} \times \mathbf{p d c} 2)$ when order $=$ Nag_RowMajor.
On entry: C_{2}, the second part of the composite matrix C.
if side $=$ Nag_LeftSide
then $\mathbf{c 2}$ contains the remaining m_{v} rows of C;
if side $=$ Nag_RightSide
then $\mathbf{c 2}$ contains the remaining m_{v} columns of C;
On exit: $\mathbf{c 2}$ is overwritten by the corresponding block of $Q C$ or $Q^{\mathrm{T}} C$ or $C Q$ or $C Q^{\mathrm{T}}$.
pdc2 - Integer
Input
On entry: the stride separating row or column elements (depending on the value of order) in the array c2.
Constraints:
if $\mathbf{o r d e r}=$ Nag_ColMajor, pdc2 $\geq \max (1, \mathbf{m}) ;$
if $\boldsymbol{\text { order}}=$ Nag_RowMajor, pdc $2 \geq \max (1, \mathbf{n})$.

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in How to Use the NAG Library and its Documentation for further information.

NE_BAD_PARAM

On entry, argument $\langle v a l u e\rangle$ had an illegal value.

NE_ENUM_INT_3

On entry, side $=\langle$ value $\rangle, \mathbf{k}=\langle$ value $\rangle, \mathbf{m}=\langle$ value \rangle and $\mathbf{p d c} \mathbf{1}=\langle$ value \rangle.
Constraint: if side $=$ Nag_LeftSide, $\mathbf{p d c} 1 \geq \max (1, \mathbf{k})$;
if side $=$ Nag_RightSide, $\mathbf{p d c} 1 \geq \max (1, \mathbf{m})$.
On entry, side $=\langle$ value $\rangle, \mathbf{m}=\langle$ value $\rangle, \mathbf{n}=\langle$ value \rangle and $\mathbf{p d v}=\langle$ value \rangle.
Constraint: if side $=$ Nag_LeftSide, $\mathbf{p d v} \geq \max (1, \mathbf{m})$;
if side $=$ Nag_RightSide, $\mathbf{p d v} \geq \max (1, \mathbf{n})$.
On entry, side $=\langle$ value $\rangle, \mathbf{p d c} \mathbf{1}=\langle$ value $\rangle, \mathbf{n}=\langle$ value \rangle and $\mathbf{k}=\langle$ value \rangle.
Constraint: if side $=$ Nag_LeftSide, $\mathbf{p d c} \mathbf{1} \geq \max (1, \mathbf{n})$;
if side $=$ Nag_RightSide, $\mathbf{p d c} 1 \geq \max (1, \mathbf{k})$.

NE INT

On entry, $\mathbf{k}=\langle$ value \rangle.
Constraint: $\mathbf{k} \geq 0$.
On entry, $\mathbf{m}=\langle$ value \rangle.
Constraint: $\mathbf{m} \geq 0$.
On entry, $\mathbf{n}=\langle$ value \rangle.
Constraint: $\mathbf{n} \geq 0$.

NE_INT_2

On entry, $\mathbf{l}=\langle$ value \rangle and $\mathbf{k}=\langle$ value \rangle.
Constraint: $0 \leq \mathbf{l} \leq \mathbf{k}$.
On entry, $\mathbf{m}=\langle$ value \rangle and pdc2 $=\langle$ value \rangle.
Constraint: pdc2 $\geq \max (1, \mathbf{m})$.
On entry, $\mathbf{n b}=\langle$ value \rangle and $\mathbf{k}=\langle$ value \rangle.
Constraint: nb ≥ 1 and
if $\mathbf{k}>0, \mathbf{n b} \leq \mathbf{k}$.
On entry, pdc2 $=\langle$ value \rangle and $\mathbf{n}=\langle$ value \rangle.
Constraint: pdc2 $\geq \max (1, \mathbf{n})$.
On entry, pdt $=\langle$ value \rangle and $\mathbf{k}=\langle$ value \rangle.
Constraint: pdt $\geq \max (1, \mathbf{k})$.
On entry, pdt $=\langle$ value \rangle and $\mathbf{n b}=\langle$ value \rangle.
Constraint: pdt $\geq \mathbf{n b}$.
On entry, $\mathbf{p d v}=\langle$ value \rangle and $\mathbf{k}=\langle$ value \rangle.
Constraint: $\mathbf{p d v} \geq \max (1, \mathbf{k})$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

$$
\|E\|_{2}=O(\epsilon)\|C\|_{2}
$$

where ϵ is the machine precision.

8 Parallelism and Performance

nag_dtpmqrt (f08bcc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Notefor your implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately $2 n k(2 m-k)$ if side $=$ Nag_LeftSide and $2 m k(2 n-k)$ if side $=$ Nag_RightSide.

The complex analogue of this function is nag_ztpmqrt (f08bqc).

10 Example

See Section 10 in nag_dtpqrt (f08bbc).

