
NAG Library Function Document

nag_zhpsvx (f07ppc)

1 Purpose

nag_zhpsvx (f07ppc) uses the diagonal pivoting factorization

A ¼ UDUH or A ¼ LDLH

to compute the solution to a complex system of linear equations

AX ¼ B;

where A is an n by n Hermitian matrix stored in packed format and X and B are n by r matrices. Error
bounds on the solution and a condition estimate are also provided.

2 Specification

#include <nag.h>
#include <nagf07.h>

void nag_zhpsvx (Nag_OrderType order, Nag_FactoredFormType fact,
Nag_UploType uplo, Integer n, Integer nrhs, const Complex ap[],
Complex afp[], Integer ipiv[], const Complex b[], Integer pdb,
Complex x[], Integer pdx, double *rcond, double ferr[], double berr[],
NagError *fail)

3 Description

nag_zhpsvx (f07ppc) performs the following steps:

1. If fact ¼ Nag NotFactored, the diagonal pivoting method is used to factor A as A ¼ UDUH if
uplo ¼ Nag Upper or A ¼ LDLH if uplo ¼ Nag Lower, where U (or L) is a product of
permutation and unit upper (lower) triangular matrices and D is Hermitian and block diagonal with
1 by 1 and 2 by 2 diagonal blocks.

2. If some dii ¼ 0, so that D is exactly singular, then the function returns with fail:errnum ¼ i and
fail:code ¼ NE_SINGULAR. Otherwise, the factored form of A is used to estimate the condition
number of the matrix A. If the reciprocal of the condition number is less than machine precision,
fail:code ¼ NE_SINGULAR_WP is returned as a warning, but the function still goes on to solve
for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for it.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

f07 – Linear Equations (LAPACK) f07ppc

Mark 26 f07ppc.1

http://www.netlib.org/lapack/lug

5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.3.1.3 in How to Use the NAG Library and its
Documentation for a more detailed explanation of the use of this argument.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: fact – Nag_FactoredFormType Input

On entry: specifies whether or not the factorized form of the matrix A has been supplied.

fact ¼ Nag Factored
afp and ipiv contain the factorized form of the matrix A. afp and ipiv will not be
modified.

fact ¼ Nag NotFactored
The matrix A will be copied to afp and factorized.

Constraint: fact ¼ Nag Factored or Nag NotFactored.

3: uplo – Nag_UploType Input

On entry: if uplo ¼ Nag Upper, the upper triangle of A is stored.

If uplo ¼ Nag Lower, the lower triangle of A is stored.

Constraint: uplo ¼ Nag Upper or Nag Lower.

4: n – Integer Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: n � 0.

5: nrhs – Integer Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: nrhs � 0.

6: ap½dim� – const Complex Input

Note: the dimension, dim, of the array ap must be at least max 1;n� nþ 1ð Þ=2ð Þ.
On entry: the n by n Hermitian matrix A, packed by rows or columns.

The storage of elements Aij depends on the order and uplo arguments as follows:

if order ¼ Nag ColMajor and uplo ¼ Nag Upper,
Aij is stored in ap½ j� 1ð Þ � j=2þ i� 1�, for i � j;

if order ¼ Nag ColMajor and uplo ¼ Nag Lower,
Aij is stored in ap½ 2n� jð Þ � j� 1ð Þ=2þ i� 1�, for i � j;

if order ¼ Nag RowMajor and uplo ¼ Nag Upper,
Aij is stored in ap½ 2n� ið Þ � i� 1ð Þ=2þ j� 1�, for i � j;

if order ¼ Nag RowMajor and uplo ¼ Nag Lower,
Aij is stored in ap½ i� 1ð Þ � i=2þ j� 1�, for i � j.

7: afp½dim� – Complex Input/Output

Note: the dimension, dim, of the array afp must be at least max 1; n� nþ 1ð Þ=2ð Þ.

f07ppc NAG Library Manual

f07ppc.2 Mark 26

On entry: if fact ¼ Nag Factored, afp contains the block diagonal matrix D and the multipliers
used to obtain the factor U or L from the factorization A ¼ UDUH or A ¼ LDLH as computed
by nag_zhptrf (f07prc), stored as a packed triangular matrix in the same storage format as A.

On exit: if fact ¼ Nag NotFactored, afp contains the block diagonal matrix D and the multipliers
used to obtain the factor U or L from the factorization A ¼ UDUH or A ¼ LDLH as computed
by nag_zhptrf (f07prc), stored as a packed triangular matrix in the same storage format as A.

8: ipiv½n� – Integer Input/Output

On entry: if fact ¼ Nag Factored, ipiv contains details of the interchanges and the block structure
of D, as determined by nag_zhptrf (f07prc).

if ipiv½i� 1� ¼ k > 0, dii is a 1 by 1 pivot block and the ith row and column of A were
interchanged with the kth row and column;

if uplo ¼ Nag Upper and ipiv½i� 2� ¼ ipiv½i� 1� ¼ �l < 0, di�1;i�1
�di;i�1

�di;i�1 dii

� �
is a 2 by

2 pivot block and the i� 1ð Þth row and column of A were interchanged with the lth row
and column;

if uplo ¼ Nag Lower and ipiv½i� 1� ¼ ipiv½i� ¼ �m < 0, dii diþ1;i
diþ1;i diþ1;iþ1

� �
is a 2 by 2

pivot block and the iþ 1ð Þth row and column of A were interchanged with the mth row
and column.

On exit: if fact ¼ Nag NotFactored, ipiv contains details of the interchanges and the block
structure of D, as determined by nag_zhptrf (f07prc), as described above.

9: b½dim� – const Complex Input

Note: the dimension, dim, of the array b must be at least

max 1;pdb� nrhsð Þ when order ¼ Nag ColMajor;
max 1;n� pdbð Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix B is stored in

b½ j� 1ð Þ � pdbþ i� 1� when order ¼ Nag ColMajor;
b½ i� 1ð Þ � pdbþ j� 1� when order ¼ Nag RowMajor.

On entry: the n by r right-hand side matrix B.

10: pdb – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array b.

Constraints:

if order ¼ Nag ColMajor, pdb � max 1; nð Þ;
if order ¼ Nag RowMajor, pdb � max 1; nrhsð Þ.

11: x½dim� – Complex Output

Note: the dimension, dim, of the array x must be at least

max 1;pdx� nrhsð Þ when order ¼ Nag ColMajor;
max 1;n� pdxð Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix X is stored in

x½ j� 1ð Þ � pdxþ i� 1� when order ¼ Nag ColMajor;
x½ i� 1ð Þ � pdxþ j� 1� when order ¼ Nag RowMajor.

On exit: if fail:code ¼ NE_NOERROR or NE_SINGULAR_WP, the n by r solution matrix X.

f07 – Linear Equations (LAPACK) f07ppc

Mark 26 f07ppc.3

12: pdx – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array x.

Constraints:

if order ¼ Nag ColMajor, pdx � max 1; nð Þ;
if order ¼ Nag RowMajor, pdx � max 1; nrhsð Þ.

13: rcond – double * Output

On exit: the estimate of the reciprocal condition number of the matrix A. If rcond ¼ 0:0, the
matrix may be exactly singular. This condition is indicated by fail:code ¼ NE_SINGULAR.
Otherwise, if rcond is less than the machine precision, the matrix is singular to working
precision. This condition is indicated by fail:code ¼ NE_SINGULAR_WP.

14: ferr½nrhs� – double Output

On exit: if fail:code ¼ NE_NOERROR or NE_SINGULAR_WP, an estimate of the forward error
bound for each computed solution vector, such that x̂j � xj

�� ��
1= xj

�� ��
1 � ferr½j� 1� where x̂j is

the jth column of the computed solution returned in the array x and xj is the corresponding
column of the exact solution X. The estimate is as reliable as the estimate for rcond, and is
almost always a slight overestimate of the true error.

15: berr½nrhs� – double Output

On exit: if fail:code ¼ NE_NOERROR or NE_SINGULAR_WP, an estimate of the component-
wise relative backward error of each computed solution vector x̂j (i.e., the smallest relative
change in any element of A or B that makes x̂j an exact solution).

16: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, n ¼ valueh i.
Constraint: n � 0.

On entry, nrhs ¼ valueh i.
Constraint: nrhs � 0.

On entry, pdb ¼ valueh i.
Constraint: pdb > 0.

On entry, pdx ¼ valueh i.
Constraint: pdx > 0.

f07ppc NAG Library Manual

f07ppc.4 Mark 26

NE_INT_2

On entry, pdb ¼ valueh i and n ¼ valueh i.
Constraint: pdb � max 1; nð Þ.
On entry, pdb ¼ valueh i and nrhs ¼ valueh i.
Constraint: pdb � max 1; nrhsð Þ.
On entry, pdx ¼ valueh i and n ¼ valueh i.
Constraint: pdx � max 1;nð Þ.
On entry, pdx ¼ valueh i and nrhs ¼ valueh i.
Constraint: pdx � max 1;nrhsð Þ.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in How to Use the NAG Library and its Documentation for further information.

NE_SINGULAR

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor D is exactly singular, so the solution and error bounds could not be computed.
rcond ¼ 0:0 is returned.

NE_SINGULAR_WP

D is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular
to working precision. Nevertheless, the solution and error bounds are computed because there are
a number of situations where the computed solution can be more accurate than the value of
rcond would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution x̂ is the exact solution of a perturbed system of
equations Aþ Eð Þx̂ ¼ b, where

Ek k1 ¼ O �ð Þ Ak k1;
where � is the machine precision. See Chapter 11 of Higham (2002) for further details.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ

where cond A; x̂; bð Þ ¼ A�1
�� �� Aj j x̂j j þ bj jð Þ�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
�� �� Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in berr½j� 1� and a bound on x� x̂k k1= x̂k k1 is returned in
ferr½j� 1�. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

nag_zhpsvx (f07ppc) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

f07 – Linear Equations (LAPACK) f07ppc

Mark 26 f07ppc.5

nag_zhpsvx (f07ppc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Notefor your
implementation for any additional implementation-specific information.

9 Further Comments

The factorization of A requires approximately 4
3n

3 floating-point operations.

For each right-hand side, computation of the backward error involves a minimum of 16n2 floating-point
operations. Each step of iterative refinement involves an additional 24n2 operations. At most five steps
of iterative refinement are performed, but usually only one or two steps are required. Estimating the
forward error involves solving a number of systems of equations of the form Ax ¼ b; the number is
usually 4 or 5 and never more than 11. Each solution involves approximately 8n2 operations.

The real analogue of this function is nag_dspsvx (f07pbc). The complex symmetric analogue of this
function is nag_zspsvx (f07qpc).

10 Example

This example solves the equations

AX ¼ B;

where A is the Hermitian matrix

A ¼
�1:84 0:11� 0:11i �1:78� 1:18i 3:91� 1:50i
0:11þ 0:11i �4:63 �1:84þ 0:03i 2:21þ 0:21i

�1:78þ 1:18i �1:84� 0:03i �8:87 1:58� 0:90i
3:91þ 1:50i 2:21� 0:21i 1:58þ 0:90i �1:36

0
B@

1
CA

and

B ¼
2:98� 10:18i 28:68� 39:89i

�9:58þ 3:88i �24:79� 8:40i
�0:77� 16:05i 4:23� 70:02i
7:79þ 5:48i �35:39þ 18:01i

0
B@

1
CA:

Error estimates for the solutions, and an estimate of the reciprocal of the condition number of the
matrix A are also output.

10.1 Program Text

/* nag_zhpsvx (f07ppc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

#include <stdio.h>
#include <nag.h>
#include <nagx04.h>
#include <nag_stdlib.h>
#include <nagf07.h>

int main(void)
{

/* Scalars */

f07ppc NAG Library Manual

f07ppc.6 Mark 26

double rcond;
Integer exit_status = 0, i, j, n, nrhs, pdb, pdx;

/* Arrays */
Complex *afp = 0, *ap = 0, *b = 0, *x = 0;
double *berr = 0, *ferr = 0;
Integer *ipiv = 0;
char nag_enum_arg[40];

/* Nag Types */
NagError fail;
Nag_OrderType order;
Nag_UploType uplo;

#ifdef NAG_COLUMN_MAJOR
#define A_UPPER(I, J) ap[J*(J-1)/2 + I - 1]
#define A_LOWER(I, J) ap[(2*n-J)*(J-1)/2 + I - 1]
#define B(I, J) b[(J-1)*pdb + I - 1]

order = Nag_ColMajor;
#else
#define A_LOWER(I, J) ap[I*(I-1)/2 + J - 1]
#define A_UPPER(I, J) ap[(2*n-I)*(I-1)/2 + J - 1]
#define B(I, J) b[(I-1)*pdb + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

printf("nag_zhpsvx (f07ppc) Example Program Results\n\n");

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

#ifdef _WIN32
scanf_s("%" NAG_IFMT "%" NAG_IFMT "%*[^\n]", &n, &nrhs);

#else
scanf("%" NAG_IFMT "%" NAG_IFMT "%*[^\n]", &n, &nrhs);

#endif
if (n < 0 || nrhs < 0) {

printf("Invalid n or nrhs\n");
exit_status = 1;
goto END;

}
#ifdef _WIN32

scanf_s(" %39s%*[^\n]", nag_enum_arg, (unsigned)_countof(nag_enum_arg));
#else

scanf(" %39s%*[^\n]", nag_enum_arg);
#endif

/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/

uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg);

/* Allocate memory */
if (!(afp = NAG_ALLOC(n * (n + 1) / 2, Complex)) ||

!(ap = NAG_ALLOC(n * (n + 1) / 2, Complex)) ||
!(b = NAG_ALLOC(n * nrhs, Complex)) ||
!(x = NAG_ALLOC(n * nrhs, Complex)) ||
!(berr = NAG_ALLOC(nrhs, double)) ||
!(ferr = NAG_ALLOC(nrhs, double)) || !(ipiv = NAG_ALLOC(n, Integer)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
#ifdef NAG_COLUMN_MAJOR

pdb = n;

f07 – Linear Equations (LAPACK) f07ppc

Mark 26 f07ppc.7

pdx = n;
#else

pdb = nrhs;
pdx = nrhs;

#endif

/* Read the triangular part of the matrix A from data file */
if (uplo == Nag_Upper)

for (i = 1; i <= n; ++i)
for (j = i; j <= n; ++j)

#ifdef _WIN32
scanf_s(" (%lf , %lf)", &A_UPPER(i, j).re, &A_UPPER(i, j).im);

#else
scanf(" (%lf , %lf)", &A_UPPER(i, j).re, &A_UPPER(i, j).im);

#endif
else if (uplo == Nag_Lower)

for (i = 1; i <= n; ++i)
for (j = 1; j <= i; ++j)

#ifdef _WIN32
scanf_s(" (%lf , %lf)", &A_LOWER(i, j).re, &A_LOWER(i, j).im);

#else
scanf(" (%lf , %lf)", &A_LOWER(i, j).re, &A_LOWER(i, j).im);

#endif
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

/* Read B from data file */
for (i = 1; i <= n; ++i)

for (j = 1; j <= nrhs; ++j)
#ifdef _WIN32

scanf_s(" (%lf , %lf)", &B(i, j).re, &B(i, j).im);
#else

scanf(" (%lf , %lf)", &B(i, j).re, &B(i, j).im);
#endif
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

/* Solve the equations AX = B for X using nag_zhpsvx (f07ppc). */
nag_zhpsvx(order, Nag_NotFactored, uplo, n, nrhs, ap, afp, ipiv, b, pdb, x,

pdx, &rcond, ferr, berr, &fail);
if (fail.code != NE_NOERROR && fail.code != NE_SINGULAR) {

printf("Error from nag_zhpsvx (f07ppc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print solution using nag_gen_complx_mat_print_comp (x04dbc). */
fflush(stdout);
nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,

nrhs, x, pdx, Nag_BracketForm, "%7.4f",
"Solution(s)", Nag_IntegerLabels, 0,
Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

/* Print error bounds and condition number */
printf("\nBackward errors (machine-dependent)\n");
for (j = 0; j < nrhs; ++j)

printf("%11.1e%s", berr[j], j % 7 == 6 ? "\n" : " ");

printf("\n\nEstimated forward error bounds (machine-dependent)\n");

f07ppc NAG Library Manual

f07ppc.8 Mark 26

for (j = 0; j < nrhs; ++j)
printf("%11.1e%s", ferr[j], j % 7 == 6 ? "\n" : " ");

printf("\n\nEstimate of reciprocal condition number\n%11.1e\n", rcond);
if (fail.code == NE_SINGULAR) {

printf("Error from nag_zhpsvx (f07ppc).\n%s\n", fail.message);
exit_status = 1;

}
END:

NAG_FREE(afp);
NAG_FREE(ap);
NAG_FREE(b);
NAG_FREE(x);
NAG_FREE(berr);
NAG_FREE(ferr);
NAG_FREE(ipiv);

return exit_status;
}

#undef A_UPPER
#undef A_LOWER
#undef B

10.2 Program Data

nag_zhpsvx (f07ppc) Example Program Data
4 2 : n, nrhs
Nag_Upper

(-1.84, 0.00) (0.11, -0.11) (-1.78, -1.18) (3.91, -1.50)
(-4.63 , 0.00) (-1.84, 0.03) (2.21, 0.21)

(-8.87, 0.00) (1.58, -0.90)
(-1.36 , 0.00) : matrix A

(2.98,-10.18) (28.68,-39.89)
(-9.58, 3.88) (-24.79, -8.40)
(-0.77,-16.05) (4.23,-70.02)
(7.79, 5.48) (-35.39, 18.01) : matrix B

10.3 Program Results

nag_zhpsvx (f07ppc) Example Program Results

Solution(s)
1 2

1 (2.0000, 1.0000) (-8.0000, 6.0000)
2 (3.0000,-2.0000) (7.0000,-2.0000)
3 (-1.0000, 2.0000) (-1.0000, 5.0000)
4 (1.0000,-1.0000) (3.0000,-4.0000)

Backward errors (machine-dependent)
5.1e-17 5.9e-17

Estimated forward error bounds (machine-dependent)
2.5e-15 3.0e-15

Estimate of reciprocal condition number
1.5e-01

f07 – Linear Equations (LAPACK) f07ppc

Mark 26 f07ppc.9 (last)

	f07ppc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Anderson et al. (1999)
	Golub and Van Loan (1996)
	Higham (2002)

	5 Arguments
	order
	fact
	uplo
	n
	nrhs
	ap
	afp
	ipiv
	b
	pdb
	x
	pdx
	rcond
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NE_SINGULAR
	NE_SINGULAR_WP

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

