NAG Library Chapter Contents

f07 - Linear Equations (LAPACK)

f07 Chapter Introduction - a description of the Chapter and an overview of the algorithms available

Function Name	Mark of Introduction	Purpose
f07aac	23	nag_dgesv
f07abc	23	Computes the solution to a real system of linear equations nag dgesvx
f07acc	23	Uses the $L U$ factorization to compute the solution, error-bound and condition estimate for a real system of linear equations nag_dsgesv
		Computes the solution to a real system of linear equations using mixed precision arithmetic
f07adc	7	nag_dgetrf
		$L U$ factorization of real m by n matrix
f07aec	7	nag_dgetrs
		Solution of real system of linear equations, multiple right-hand sides, matrix already factorized by nag_dgetrf (f07adc)
f07afc	23	nag_dgeequ
		Computes row and column scalings intended to equilibrate a general real matrix and reduce its condition number
f07agc	7	nag_dgecon
		Estimate condition number of real matrix, matrix already factorized by nag_dgetrf (f07adc)
f07ahc	7	nag_dgerfs
		Refined solution with error bounds of real system of linear equations, multiple right-hand sides
f07ajc	7	nag_dgetri
f07anc	23	Inverse of real matrix, matrix already factorized by nag_dgetrf (f07adc) nag_zgesv
f07apc	23	Computes the solution to a complex system of linear equations nag zgesvx
f07aqc	23	Uses the $L U$ factorization to compute the solution, error-bound and condition estimate for a complex system of linear equations nag_zcgesv
		Computes the solution to a complex system of linear equations using mixed precision arithmetic
f07arc	7	nag_zgetrf
f07asc	7	$L U$ factorization of complex m by n matrix nag zgetrs
		Solution of complex system of linear equations, multiple right-hand sides, matrix already factorized by nag zgetrf (f07arc)
f07atc	23	nag_zgeequ
		Computes row and column scalings intended to equilibrate a general complex matrix and reduce its condition number
f07auc	7	nag_zgecon
		Estimate condition number of complex matrix, matrix already factorized by nag_zgetrf (f07arc)
f07avc	7	nag_zgerfs
		Refined solution with error bounds of complex system of linear equations, multiple right-hand sides
f07awc	7	nag_zgetri
		Inverse of complex matrix, matrix already factorized by nag_zgetrf (f07arc)

\(\left.\left.$$
\begin{array}{lll}\text { f07bac } & 23 & \begin{array}{l}\text { nag_dgbsv } \\
\text { Computes the solution to a real banded system of linear equations }\end{array} \\
\text { f07bbc } & 23 & \begin{array}{l}\text { nag_dgbsvx } \\
\text { Uses the } L U\end{array} \\
\text { f07bdc factorization to compute the solution, error-bound and } \\
\text { condition estimate for a real banded system of linear equations } \\
\text { nag_dgbtrf }\end{array}
$$\right] \begin{array}{l}LU factorization of real m by n band matrix

nag_dgbtrs\end{array}\right]\)| f07bec |
| :--- |
| f07bfc |

f07crc	23	nag zgttrf
f07csc	23	$L U$ factorization of complex tridiagonal matrix nag_zgttrs
		Solves a complex tridiagonal system of linear equations using the $L U$ factorization computed by nag_dgttrf (f07cdc)
f07cuc	23	nag_zgtcon
f07cve	23	Estimates the reciprocal of the condition number of a complex tridiagonal matrix using the $L U$ factorization computed by nag_dgttrf (f07cdc) nag_zgtrfs
		Refined solution with error bounds of complex tridiagonal system of linear equations, multiple right-hand sides
f07fac	23	nag_dposv
f07fbc	23	Computes the solution to a real symmetric positive definite system of linear equations nag dposvx
		Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite system of linear equations
f07fdc	7	nag_dpotrf
f07fec	7	Cholesky factorization of real symmetric positive definite matrix nag_dpotrs
f07ffc	23	Solution of real symmetric positive definite system of linear equations, multiple right-hand sides, matrix already factorized by nag_dpotrf (f07fdc) nag_dpoequ
		Computes row and column scalings intended to equilibrate a real symmetric positive definite matrix and reduce its condition number
f07fgc	7	nag_dpocon
		Estimate condition number of real symmetric positive definite matrix, matrix already factorized by nag dpotrf (f07fdc)
f07fhc	7	nag_dporfs
f07fjc	7	Refined solution with error bounds of real symmetric positive definite system of linear equations, multiple right-hand sides nag_dpotri
		Inverse of real symmetric positive definite matrix, matrix already factorized by nag_dpotrf (f07fdc)
f07fnc	23	nag_zposv
		Computes the solution to a complex Hermitian positive definite system of linear equations
f07fpc	23	nag_zposvx
		Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite system of linear equations
f07frc	7	nag_zpotrf
f07fsc	7	Cholesky factorization of complex Hermitian positive definite matrix nag_zpotrs
f07ftc	23	Solution of complex Hermitian positive definite system of linear equations, multiple right-hand sides, matrix already factorized by nag_zpotrf (f07frc) nag_zpoequ
f07fuc	7	Computes row and column scalings intended to equilibrate a complex Hermitian positive definite matrix and reduce its condition number nag zpocon
		Estimate condition number of complex Hermitian positive definite matrix, matrix already factorized by nag_zpotrf (f07frc)
f07fve	7	nag_zporfs
f07fwc	7	Refined solution with error bounds of complex Hermitian positive definite system of linear equations, multiple right-hand sides nag zpotri
		Inverse of complex Hermitian positive definite matrix, matrix already factorized by nag_zpotrf (f07frc)

f07gac	23	nag_dppsv
f07gbc	23	Computes the solution to a real symmetric positive definite system of linear equations, packed storage nag dppsvx
		Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite system of linear equations, packed storage
f07gdc	7	nag_dpptrf
		Cholesky factorization of real symmetric positive definite matrix, packed storage
f07gec	7	nag_dpptrs
		Solution of real symmetric positive definite system of linear equations, multiple right-hand sides, matrix already factorized by nag_dpptrf (f07gdc), packed storage
f 07 gfc	23	nag_dppequ
f07ggc	7	Computes row and column scalings intended to equilibrate a real symmetric positive definite matrix and reduce its condition number, packed storage nag_dppcon
		Estimate condition number of real symmetric positive definite matrix, matrix already factorized by nag_dpptrf (f07gdc), packed storage
f07ghc	7	nag_dpprfs
		Refined solution with error bounds of real symmetric positive definite system of linear equations, multiple right-hand sides, packed storage
f07gjc	7	nag_dpptri
		Inverse of real symmetric positive definite matrix, matrix already factorized by nag_dpptrf (f07gdc), packed storage
f07gnc	23	nag_zppsv
		Computes the solution to a complex Hermitian positive definite system of linear equations, packed storage
f07gpc	23	nag_zppsvx Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite system of linear equations, packed storage
f07grc	7	nag_zpptrf Cholesky factorization of complex Hermitian positive definite matrix, packed storage
f07gsc	7	nag_zpptrs Solution of complex Hermitian positive definite system of linear equations, multiple right-hand sides, matrix already factorized by nag_zpptrf (f07grc), packed storage
f07gtc	23	nag_zppequ Computes row and column scalings intended to equilibrate a complex Hermitian positive definite matrix and reduce its condition number, packed storage
f07guc	7	nag_zppcon Estimate condition number of complex Hermitian positive definite matrix, matrix already factorized by nag_zpptrf (f07grc), packed storage
f07gve	7	nag_zpprfs Refined solution with error bounds of complex Hermitian positive definite system of linear equations, multiple right-hand sides, packed storage
f07gwe	7	nag_zpptri Inverse of complex Hermitian positive definite matrix, matrix already factorized by nag_zpptrf (f07grc), packed storage
f07hac	23	nag_dpbsv Computes the solution to a real symmetric positive definite banded system of linear equations

f07hbc	23	nag_dpbsvx
		Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite banded system of linear equations
f07hdc	7	nag_dpbtrf
f07hec	7	Cholesky factorization of real symmetric positive definite band matrix nag_dpbtrs
		Solution of real symmetric positive definite band system of linear equations, multiple right-hand sides, matrix already factorized by nag_dpbtrf (f07hdc)
f07hfc	23	nag_dpbequ
		Computes row and column scalings intended to equilibrate a real symmetric positive definite banded matrix and reduce its condition number
f07hgc	7	nag_dpbcon
		Estimate condition number of real symmetric positive definite band matrix, matrix already factorized by nag dpbtrf (f07hdc)
f07hhc	7	nag_dpbrfs
		Refined solution with error bounds of real symmetric positive definite band system of linear equations, multiple right-hand sides
f07hnc	23	nag_zpbsv
		Computes the solution to a complex Hermitian positive definite banded system of linear equations
f07hpe	23	nag_zpbsvx
		Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite banded system of linear equations
f07hrc	7	nag_zpbtrf
f07hsc	7	Cholesky factorization of complex Hermitian positive definite band matrix nag_zpbtrs
		Solution of complex Hermitian positive definite band system of linear equations, multiple right-hand sides, matrix already factorized by nag_zpbtrf (f07hrc)
f07htc	23	nag_zpbequ
		Computes row and column scalings intended to equilibrate a complex
	7	Hermitian positive definite banded matrix and reduce its condition number nag_zpbcon
f07huc		Estimate condition number of complex Hermitian positive definite band matrix, matrix already factorized by nag zpbtrf (f07hrc)
f07hve	7	nag_zpbrfs
		Refined solution with error bounds of complex Hermitian positive definite band system of linear equations, multiple right-hand sides
f07jac	23	nag_dptsv
	23	Computes the solution to a real symmetric positive definite tridiagonal system of linear equations nag dptsvx
f07jbc	23	Uses the $\mathrm{LDL}^{\mathrm{T}}$ factorization to compute the solution, error-bound and condition estimate for a real symmetric positive definite tridiagonal system of linear equations nag_dpttrf
f07jdc	23	Computes the $\mathrm{LDL}^{\mathrm{T}}$ factorization of a real symmetric positive definite tridiagonal matrix nag_dpttrs
f07jec	23	Solves a real symmetric positive definite tridiagonal system using the $\mathrm{LDL}^{\mathrm{T}}$ factorization computed by nag_dpttrf (f07jdc) nag_dptcon
f07jgc		Computes the reciprocal of the condition number of a real symmetric positive definite tridiagonal system using the $\mathrm{LDL}^{\mathrm{T}}$ factorization computed by nag_dpttrf (f07jdc)

f07jhe	23	nag_dptrfs
f07jnc	23	Refined solution with error bounds of real symmetric positive definite tridiagonal system of linear equations, multiple right-hand sides nag_zptsv
f07jpe	23	Computes the solution to a complex Hermitian positive definite tridiagonal system of linear equations
		Uses the $\mathrm{LDL}^{\mathrm{T}}$ factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive definite tridiagonal system of linear equations
f07jrc	23	nag_zpttrf
		Computes the LDL $^{\mathrm{H}}$ factorization of a complex Hermitian positive definite tridiagonal matrix
f07jsc	23	nag_zpttrs
		Solves a complex Hermitian positive definite tridiagonal system using the $\mathrm{LDL}^{\mathrm{H}}$ factorization computed by nag zpttrf (f07jrc)
f07juc	23	nag_zptcon
		Computes the reciprocal of the condition number of a complex Hermitian positive definite tridiagonal system using the $\operatorname{LDL}^{\mathrm{H}}$ factorization computed by nag_zpttrf (f07jrc)
f07jve	23	nag_zptrfs
f07kdc	25	Refined solution with error bounds of complex Hermitian positive definite tridiagonal system of linear equations, multiple right-hand sides nag dpstrf
		Cholesky factorization, with complete pivoting, of a real, symmetric, positive semidefinite matrix
f07krc	25	nag_zpstrf
f07mac	23	Cholesky factorization of complex Hermitian positive semidefinite matrix nag_dsysv
$\mathrm{f07mbc}$	23	Computes the solution to a real symmetric system of linear equations nag_dsysvx
		Uses the diagonal pivoting factorization to compute the solution to a real symmetric system of linear equations
f 07 mdc	7	nag_dsytrf
f07mec	7	Bunch-Kaufman factorization of real symmetric indefinite matrix nag_dsytrs
		Solution of real symmetric indefinite system of linear equations, multiple right-hand sides, matrix already factorized by nag_dsytrf (f07mdc)
f 07 mgc	7	nag_dsycon
		Estimate condition number of real symmetric indefinite matrix, matrix already factorized by nag_dsytrf (f07mdc)
f 07 mhc	7	nag_dsyrfs
		Refined solution with error bounds of real symmetric indefinite system of linear equations, multiple right-hand sides
f07mjc	7	nag_dsytri
		Inverse of real symmetric indefinite matrix, matrix already factorized by nag_dsytrf (f07mdc)
f 07 mnc	23	nag_zhesv
$\mathrm{f07mpc}$	23	Computes the solution to a complex Hermitian system of linear equations nag_zhesvx
		Uses the diagonal pivoting factorization to compute the solution to a complex Hermitian system of linear equations
f 07 mrc	7	nag_zhetrf
f 07 msc	7	Bunch-Kaufman factorization of complex Hermitian indefinite matrix nag zhetrs
		Solution of complex Hermitian indefinite system of linear equations, multiple right-hand sides, matrix already factorized by nag_zhetrf (f07mrc)

f07muc	7	nag_zhecon
		Estimate condition number of complex Hermitian indefinite matrix, matrix already factorized by nag zhetrf (f 07 mrc)
f 07 mvc	7	nag zherfs
		Refined solution with error bounds of complex Hermitian indefinite system of linear equations, multiple right-hand sides
f07mwc	7	nag_zhetri
		Inverse of complex Hermitian indefinite matrix, matrix already factorized by nag_zhetrf (f07mrc)
f07nnc	23	nag_zsysv
	23	Computes the solution to a complex symmetric system of linear equations nag_zsysvx
f07npc		Uses the diagonal pivoting factorization to compute the solution to a complex symmetric system of linear equations
f 07 nrc	7	nag_zsytrf
	7	Bunch-Kaufman factorization of complex symmetric matrix nag_zsytrs
f07nsc		Solution of complex symmetric system of linear equations, multiple righthand sides, matrix already factorized by nag_zsytrf (f07nrc)
f07nuc	7	nag_zsycon
		Estimate condition number of complex symmetric matrix, matrix already factorized by nag zsytrf (f07nrc)
f07nve	7	nag_zsyrfs
		Refined solution with error bounds of complex symmetric system of linear equations, multiple right-hand sides
f07nwc	7	nag_zsytri
		Inverse of complex symmetric matrix, matrix already factorized by nag_zsytrf (f07nrc)
f07pac	23	nag_dspsv
		Computes the solution to a real symmetric system of linear equations, packed storage
f07pbc	23	nag_dspsvx
		Uses the diagonal pivoting factorization to compute the solution to a real symmetric system of linear equations, packed storage. Error bounds and a condition estimate are also computed.
f07pdc	7	nag_dsptrf
		Bunch-Kaufman factorization of real symmetric indefinite matrix, packed storage
f07pec	7	nag_dsptrs
		Solution of real symmetric indefinite system of linear equations, multiple right-hand sides, matrix already factorized by nag_dsptrf (f07pdc), packed storage
f07pgc	7	nag_dspeon
		Estimate condition number of real symmetric indefinite matrix, matrix already factorized by nag_dsptrf (f07pdc), packed storage
f07phc	7	nag_dsprfs
		Refined solution with error bounds of real symmetric indefinite system of linear equations, multiple right-hand sides, packed storage
	7	nag_dsptri
f07pjc		Inverse of real symmetric indefinite matrix, matrix already factorized by nag_dsptrf (f07pdc), packed storage
f07pnc	23	nag_zhpsv
		Computes the solution to a complex Hermitian system of linear equations, packed storage
f07ppc	23	nag_zhpsvx
		Uses the diagonal pivoting factorization to compute the solution to a complex, Hermitian, system of linear equations, error bounds and condition estimates. Packed storage

f07prc	7	nag_zhptrf
f07psc	7	Bunch-Kaufman factorization of complex Hermitian indefinite matrix, packed storage nag_zhptrs
		Solution of complex Hermitian indefinite system of linear equations, multiple right-hand sides, matrix already factorized by nag_zhptrf (f07prc), packed storage
f07puc	7	nag_zhpcon
f07pve	7	Estimate condition number of complex Hermitian indefinite matrix, matrix already factorized by nag_zhptrf (f07prc), packed storage nag_zhprfs
		Refined solution with error bounds of complex Hermitian indefinite system of linear equations, multiple right-hand sides, packed storage
f07pwc	7	nag_zhptri
		Inverse of complex Hermitian indefinite matrix, matrix already factorized by nag_zhptrf (f07prc), packed storage
f07qnc	23	nag_zspsv
		Computes the solution to a complex symmetric system of linear equations, packed storage
f07qpe	23	nag_zspsvx Uses the diagonal pivoting factorization to compute the solution to a complex, symmetric, system of linear equations, error bounds and condition estimates. Packed storage
f07qre	7	nag_zsptrf
		Bunch-Kaufman factorization of complex symmetric matrix, packed storage
f07qsc	7	nag_zsptrs
f07quc	7	Solution of complex symmetric system of linear equations, multiple righthand sides, matrix already factorized by nag_zsptrf (f07qre), packed storage nag_zspcon
		Estimate condition number of complex symmetric matrix, matrix already factorized by nag_zsptrf (f07qrc), packed storage
f07qve	7	nag_zsprfs
		Refined solution with error bounds of complex symmetric system of linear equations, multiple right-hand sides, packed storage
f07qwe	7	nag_zsptri
		Inverse of complex symmetric matrix, matrix already factorized by nag_zsptrf (f07qre), packed storage
f07tec	7	nag_dtrtrs
		Solution of real triangular system of linear equations, multiple right-hand sides
f07tgc	7	nag_dtrcon
f07thc	7	Estimate condition number of real triangular matrix nag dtrrfs
		Error bounds for solution of real triangular system of linear equations, multiple right-hand sides
f07tjc	7	nag_dtrtri
		Inverse of real triangular matrix
f07tsc	7	nag_ztrtrs
		Solution of complex triangular system of linear equations, multiple righthand sides
f07tuc	7	nag_ztrcon
f07tve	7	Estimate condition number of complex triangular matrix nag_ztrrfs
		Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides
f07twc	7	nag_ztrtri
		Inverse of complex triangular matrix

f07uec	7	nag_dtptrs
		Solution of real triangular system of linear equations, multiple right-hand sides, packed storage
f07ugc	7	nag_dtpcon
f07uhc	7	Estimate condition number of real triangular matrix, packed storage nag_dtprfs
		Error bounds for solution of real triangular system of linear equations, multiple right-hand sides, packed storage
f07ujc	7	nag_dtptri
f07usc	7	Inverse of real triangular matrix, packed storage nag_ztptrs
		Solution of complex triangular system of linear equations, multiple righthand sides, packed storage
f07uuc	7	nag_ztpcon
f07uve	7	Estimate condition number of complex triangular matrix, packed storage nag_ztprfs
		Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides, packed storage
f07uwc	7	nag_ztptri
	7	Inverse of complex triangular matrix, packed storage nag_dtbtrs
f07vec		Solution of real band triangular system of linear equations, multiple righthand sides
$\mathrm{f07} \mathrm{vgc}$	7	nag_dtbcon
f07vhc	7	Estimate condition number of real band triangular matrix nag dtbrfs
	7	Error bounds for solution of real band triangular system of linear equations, multiple right-hand sides nag_ztbtrs
f07vsc		Solution of complex band triangular system of linear equations, multiple right-hand sides
f07vuc	7	nag_ztbcon
	7	Estimate condition number of complex band triangular matrix nag_ztbrfs
$\mathrm{f07} \mathrm{vvc}$	25	Error bounds for solution of complex band triangular system of linear equations, multiple right-hand sides
$\mathrm{f07wdc}$	25	Cholesky factorization of real symmetric positive definite matrix, Rectangular Full Packed format
f07wec	25	nag_dpftrs Solution of real symmetric positive definite system of linear equations, multiple right-hand sides, coefficient matrix already factorized by nag dpftrf (f07wdc), Rectangular Full Packed format
f07wjc	25	nag_dpftri Inverse of real symmetric positive definite matrix, matrix already factorized by nag_dpftrf (f07wdc), Rectangular Full Packed format
$\mathrm{f07wkc}$	25	nag_dtftri
	25	Inverse of real triangular matrix, Rectangular Full Packed format nag_zpftrf
f07wrc	25	Cholesky factorization of complex Hermitian positive definite matrix, Rectangular Full Packed format nag_zpftrs
f07wsc		Solution of complex Hermitian positive definite system of linear equations, multiple right-hand sides, coefficient matrix already factorized by nag_zpftrf (f07wrc), Rectangular Full Packed format

f07wwc	25	nag_zpftri Inverse of complex Hermitian positive definite matrix, matrix already factorized by nag_zpftrf (f07wrc), Rectangular Full Packed format
f07wxc	25	nag_ztftri
	Inverse of complex triangular matrix, Rectangular Full Packed format	

