
NAG Library Function Document

nag_opt_nlp (e04ucc)

1 Purpose

nag_opt_nlp (e04ucc) is designed to minimize an arbitrary smooth function subject to constraints
(which may include simple bounds on the variables, linear constraints and smooth nonlinear constraints)
using a sequential quadratic programming (SQP) method. You should supply as many first derivatives
as possible; any unspecified derivatives are approximated by finite differences. It is not intended for
large sparse problems.

nag_opt_nlp (e04ucc) may also be used for unconstrained, bound-constrained and linearly constrained
optimization.

2 Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_nlp (Integer n, Integer nclin, Integer ncnlin, const double a[],
Integer tda, const double bl[], const double bu[],

void (*objfun)(Integer n, const double x[], double *objf, double g[],
Nag_Comm *comm),

void (*confun)(Integer n, Integer ncnlin, const Integer needc[],
const double x[], double conf[], double conjac[], Nag_Comm *comm),

double x[], double *objf, double g[], Nag_E04_Opt *options,
Nag_Comm *comm, NagError *fail)

3 Description

nag_opt_nlp (e04ucc) is designed to solve the nonlinear programming problem – the minimization of a
smooth nonlinear function subject to a set of constraints on the variables. The problem is assumed to be
stated in the following form:

minimize
x2Rn

F xð Þ subject to l �
x

ALx
c xð Þ

8<
:

9=
; � u; ð1Þ

where F xð Þ (the objective function) is a nonlinear function, AL is an nL by n constant matrix, and c xð Þ
is an nN element vector of nonlinear constraint functions. (The matrix AL and the vector c xð Þ may be
empty.) The objective function and the constraint functions are assumed to be smooth, i.e., at least
twice-continuously differentiable. (The method of nag_opt_nlp (e04ucc) will usually solve (1) if there
are only isolated discontinuities away from the solution.)

Note that although the bounds on the variables could be included in the definition of the linear
constraints, we prefer to distinguish between them for reasons of computational efficiency. For the same
reason, the linear constraints should not be included in the definition of the nonlinear constraints. Upper
and lower bounds are specified for all the variables and for all the constraints. An equality constraint
can be specified by setting li ¼ ui. If certain bounds are not present, the associated elements of l or u
can be set to special values that will be treated as �1 or þ1. (See the description of the optional
parameter options:inf bound in Section 12.2.)

If there are no nonlinear constraints in (1) and F is linear or quadratic, then one of nag_opt_lp
(e04mfc), nag_opt_lin_lsq (e04ncc) or nag_opt_qp (e04nfc) will generally be more efficient.

e04 – Minimizing or Maximizing a Function e04ucc

Mark 26 e04ucc.1

You must supply an initial estimate of the solution to (1), together with functions that define F xð Þ; c xð Þ
and as many first partial derivatives as possible; unspecified derivatives are approximated by finite
differences.

The objective function is defined by function objfun, and the nonlinear constraints are defined by
function confun. On every call, these functions must return appropriate values of the objective and
nonlinear constraints. You should also provide the available partial derivatives. Any unspecified
derivatives are approximated by finite differences; see Section 12.2 for a discussion of the optional
parameters options:obj deriv and options:con deriv. Just before either objfun or confun is called,
each element of the current gradient array g or conjac is initialized to a special value. On exit, any
element that retains the value is estimated by finite differences. Note that if there are any nonlinear
constraints, then the first call to confun will precede the first call to objfun.

For maximum reliability, it is preferable if you provide all partial derivatives (see Chapter 8 of Gill et
al. (1981), for a detailed discussion). If all gradients cannot be provided, it is similarly advisable to
provide as many as possible. While developing the functions objfun and confun, the optional parameter
options:verify grad (see Section 12.2) should be used to check the calculation of any known gradients.

The method used by nag_opt_nlp (e04ucc) is described in detail in Section 11.

4 References

Dennis J E Jr and Moré J J (1977) Quasi-Newton methods, motivation and theory SIAM Rev. 19 46–89

Dennis J E Jr and Schnabel R B (1981) A new derivation of symmetric positive-definite secant updates
nonlinear programming (eds O L Mangasarian, R R Meyer and S M Robinson) 4 167–199 Academic
Press

Dennis J E Jr and Schnabel R B (1983) Numerical Methods for Unconstrained Optimization and
Nonlinear Equations Prentice–Hall

Fletcher R (1987) Practical Methods of Optimization (2nd Edition) Wiley

Gill P E, Hammarling S, Murray W, Saunders M A and Wright M H (1986) Users' guide for LSSOL
(Version 1.0) Report SOL 86-1 Department of Operations Research, Stanford University

Gill P E, Murray W, Saunders M A and Wright M H (1983) Documentation for FDCALC and
FDCORE Technical Report SOL 83–6 Stanford University

Gill P E, Murray W, Saunders M A and Wright M H (1984a) Users' Guide for SOL/QPSOL Version 3.2
Report SOL 84–5 Department of Operations Research, Stanford University

Gill P E, Murray W, Saunders M A and Wright M H (1984b) Procedures for optimization problems
with a mixture of bounds and general linear constraints ACM Trans. Math. Software 10 282–298

Gill P E, Murray W, Saunders M A and Wright M H (1986a) Some theoretical properties of an
augmented Lagrangian merit function Report SOL 86–6R Department of Operations Research, Stanford
University

Gill P E, Murray W, Saunders M A and Wright M H (1986b) Users' guide for NPSOL (Version 4.0): a
Fortran package for nonlinear programming Report SOL 86-2 Department of Operations Research,
Stanford University

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

Hock W and Schittkowski K (1981) Test Examples for Nonlinear Programming Codes. Lecture Notes in
Economics and Mathematical Systems 187 Springer–Verlag

Murtagh B A and Saunders M A (1983) MINOS 5.0 user's guide Report SOL 83-20 Department of
Operations Research, Stanford University

Powell M J D (1974) Introduction to constrained optimization Numerical Methods for Constrained
Optimization (eds P E Gill and W Murray) 1–28 Academic Press

Powell M J D (1983) Variable metric methods in constrained optimization Mathematical Programming:
the State of the Art (eds A Bachem, M GrÎtschel and B Korte) 288–311 Springer–Verlag

e04ucc NAG Library Manual

e04ucc.2 Mark 26

5 Arguments

1: n – Integer Input

On entry: n, the number of variables.

Constraint: n > 0.

2: nclin – Integer Input

On entry: nL, the number of general linear constraints.

Constraint: nclin � 0.

3: ncnlin – Integer Input

On entry: nN , the number of nonlinear constraints.

Constraint: ncnlin � 0.

4: a½nclin� tda� – const double Input

On entry: the ith row of a must contain the coefficients of the ith general linear constraint (the
ith row of the matrix AL in (1)). The ijth element of AL must be stored in a½i � 1� tdaþ j� 1�,
for i ¼ 1; 2; . . . ; nL.

If nclin ¼ 0 then the array a is not referenced.

5: tda – Integer Input

On entry: the stride separating matrix column elements in the array a.

Constraint: if nclin > 0, tda � n

6: bl½nþ nclinþ ncnlin� – const double Input
7: bu½nþ nclinþ ncnlin� – const double Input

On entry: bl must contain the lower bounds and bu the upper bounds, for all the constraints in
the following order. The first n elements of each array must contain the bounds on the variables,
the next nL elements the bounds for the general linear constraints (if any), and the next nN

elements the bounds for the nonlinear constraints (if any). To specify a nonexistent lower bound
(i.e., lj ¼ �1), set bl½j� 1� � �options:inf bound, and to specify a nonexistent upper bound (i.
e., uj ¼ þ1), set bu½j� 1� � options:inf bound, where options:inf bound is one of the
optional parameters (default value 1020, see Section 12.2). To specify the jth constraint as an
equality, set bl½j� 1� ¼ bu½j� 1� ¼ �, say, where �j j < options:inf bound.

Constraints:

bl½j � 1� � bu½j � 1�, for j ¼ 1; 2; . . . ;nþ nclinþ ncnlin;
if bl½j� 1� ¼ bu½j� 1� ¼ �, �j j < options:inf bound.

8: objfun – function, supplied by the user External Function

objfun must calculate the objective function F xð Þ and (optionally) its gradient g xð Þ ¼ @F

@xj
for a

specified n element vector x.

The specification of objfun is:

void objfun (Integer n, const double x[], double *objf, double g[],
Nag_Comm *comm)

1: n – Integer Input

On entry: n, the number of variables.

e04 – Minimizing or Maximizing a Function e04ucc

Mark 26 e04ucc.3

2: x½n� – const double Input

On entry: x, the vector of variables at which the value of F and/or all available
elements of its gradient are to be evaluated.

3: objf – double * Output

On exit: if comm!flag ¼ 0 or 2, objfun must set objf to the value of the objective
function F at the current point x. If it is not possible to evaluate F then objfun should
assign a negative value to comm!flag; nag_opt_nlp (e04ucc) will then terminate.

4: g½n� – double Output

On exit: if comm!flag ¼ 2, g must contain the elements of the vector g xð Þ given by

g xð Þ ¼ @F

@x1
;
@F

@x2
; . . . ;

@F

@xn

� �T

;

where
@F

@xi
is the partial derivative of the objective function with respect to the ith

variable evaluated at the point x , for i ¼ 1; 2; . . . ; n.

If the optional parameter options:obj deriv ¼ Nag TRUE (the default), all elements of
g must be set; if options:obj deriv ¼ Nag FALSE, any available elements of the vector
g xð Þ must be assigned to the elements of g; the remaining elements must remain
unchanged.

5: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to objfun.

flag – Integer Input/Output

On entry: objfun is called with comm!flag set to 0 or 2.

If comm!flag ¼ 0 then only objf is referenced.

If comm!flag ¼ 2 then both objf and g are referenced.

On exit: if objfun resets comm!flag to some negative number then nag_opt_nlp
(e04ucc) will terminate immediately with the error indicator NE_USER_STOP. If
fail is supplied to nag_opt_nlp (e04ucc), fail:errnum will be set to your setting
of comm!flag.

first – Nag_Boolean Input

On entry: will be set to Nag_TRUE on the first call to objfun and Nag_FALSE
for all subsequent calls.

nf – Integer Input

On entry: the number of evaluations of the objective function; this value will be
equal to the number of calls made to objfun including the current one.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void * with a C compiler that defines void * and char
* otherwise.

Before calling nag_opt_nlp (e04ucc) these pointers may be allocated memory and
initialized with various quantities for use by objfun when called from
nag_opt_nlp (e04ucc).

e04ucc NAG Library Manual

e04ucc.4 Mark 26

Note: objfun should be tested separately before being used in conjunction with nag_opt_nlp
(e04ucc). The optional parameters options:verify grad and options:max iter can be used to
assist this process. The array x must not be changed by objfun.

If the function objfun does not calculate all of the gradient elements then the optional parameter
options:obj deriv should be set to Nag_FALSE.

9: confun – function, supplied by the user External Function

confun must calculate the vector c xð Þ of nonlinear constraint functions and (optionally) its

Jacobian (¼ @c

@x
) for a specified n element vector x. If there are no nonlinear constraints (i.e.,

ncnlin ¼ 0), confun will never be called and the NAG defined null void function pointer,
NULLFN, can be supplied in the call to nag_opt_nlp (e04ucc). If there are nonlinear constraints the
first call to confun will occur before the first call to objfun.

The specification of confun is:

void confun (Integer n, Integer ncnlin, const Integer needc[],
const double x[], double conf[], double conjac[], Nag_Comm *comm)

1: n – Integer Input

On entry: n, the number of variables.

2: ncnlin – Integer Input

On entry: nN , the number of nonlinear constraints.

3: needc½ncnlin� – const Integer Input

On entry: the indices of the elements of conf and/or conjac that must be evaluated by
confun. If needc½i� 1� > 0 then the ith element of conf and/or the available elements
of the ith row of conjac (see argument comm!flag below) must be evaluated at x.

4: x½n� – const double Input

On entry: the vector of variables x at which the constraint functions and/or all available
elements of the constraint Jacobian are to be evaluated.

5: conf½ncnlin� – double Output

On exit: if needc½i� 1� > 0 and comm!flag ¼ 0 or 2, conf½i� 1� must contain the
value of the ith constraint at x. The remaining elements of conf, corresponding to the
non-positive elements of needc, are ignored.

6: conjac½ncnlin� n� – double Output

On exit: if needc½i� 1� > 0 and comm!flag ¼ 2, the ith row of conjac (i.e., the
elements conjac½ i � 1ð Þ � nþ j � 1�, for j ¼ 1; 2; . . . ; n) must contain the available
elements of the vector rci given by

rci ¼ @ci
@x1

;
@ci
@x2

; . . . ;
@ci
@xn

� �T

;

where
@ci
@xj

is the partial derivative of the ith constraint with respect to the jth variable,

evaluated at the point x. The remaining rows of conjac, corresponding to non-positive
elements of needc, are ignored.

If the optional parameter options:con deriv ¼ Nag TRUE (the default), all elements of
conjac must be set; if options:con deriv ¼ Nag FALSE, then any available partial

e04 – Minimizing or Maximizing a Function e04ucc

Mark 26 e04ucc.5

derivatives of ci xð Þ must be assigned to the elements of conjac; the remaining elements
must remain unchanged.

I f a l l e l em e n t s o f t h e c o n s t r a i n t J a c o b i a n a r e k n ow n (i . e . ,
options:con deriv ¼ Nag TRUE; see Section 12.2), any constant elements may be
assigned to conjac one time only at the start of the optimization. An element of conjac
that is not subsequently assigned in confun will retain its initial value throughout.

Constant elements may be loaded into conjac during the first call to confun. The ability
to preload constants is useful when many Jacobian elements are identically zero, in
which case conjac may be initialized to zero at the first call when
comm!first ¼ Nag TRUE.

It must be emphasized that, if options:con deriv ¼ Nag FALSE, unassigned elements
of conjac are not treated as constant; they are estimated by finite differences, at non-
trivial expense. If you do not supply a value for the optional argument
options:f diff int (the default; see Section 12.2), an interval for each element of x is
computed automatically at the start of the optimization. The automatic procedure can
usually identify constant elements of conjac, which are then computed once only by
finite differences.

7: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to confun.

flag – Integer Input/Output

On entry: confun is called with comm!flag set to 0 or 2.

If comm!flag ¼ 0 then only conf is referenced.

If comm!flag ¼ 2 then both conf and conjac are referenced.

On exit: if confun resets comm!flag to some negative number then nag_opt_nlp
(e04ucc) will terminate immediately with the error indicator NE_USER_STOP. If
fail is supplied to nag_opt_nlp (e04ucc) fail:errnum will be set to your setting of
comm!flag.

first – Nag_Boolean Input

On entry: will be set to Nag_TRUE on the first call to confun and Nag_FALSE
for all subsequent calls.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void * with a C compiler that defines void * and char
* otherwise.

Before calling nag_opt_nlp (e04ucc) these pointers may be allocated memory and
initialized with various quantities for use by confun when called from
nag_opt_nlp (e04ucc).

Note: confun should be tested separately before being used in conjunction with nag_opt_nlp
(e04ucc). The optional parameters options:verify grad and options:max iter can be used to
assist this process. The array x must not be changed by confun.

If confun does not calculate all of the elements of the constraint gradients then the optional
parameter options:con deriv should be set to Nag_FALSE.

10: x½n� – double Input/Output

On entry: an initial estimate of the solution.

On exit: the final estimate of the solution.

e04ucc NAG Library Manual

e04ucc.6 Mark 26

11: objf – double * Output

On exit: the value of the objective function at the final iterate.

12: g½n� – double Output

On exit: the gradient of the objective function at the final iterate (or its finite difference
approximation).

13: options – Nag_E04_Opt * Input/Output

On entry/exit: a pointer to a structure of type Nag_E04_Opt whose members are optional
parameters for nag_opt_nlp (e04ucc). These structure members offer the means of adjusting some
of the argument values of the algorithm and on output will supply further details of the results. A
description of the members of options is given below in Section 12. Some of the results returned
in options can be used by nag_opt_nlp (e04ucc) to perform a ‘warm start’ (see the member
options:start in Section 12.2).

If any of these optional parameters are required, then the structure options should be declared
and initialized by a call to nag_opt_init (e04xxc) immediately before being supplied as a
argument to nag_opt_nlp (e04ucc).

14: comm – Nag_Comm * Input/Output

Note: comm is a NAG defined type (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

On entry/exit: structure containing pointers for communication to the user-supplied functions
objfun and confun, and the optional user-defined printing function; see the description of objfun
and confun and Section 12.3.1 for details. If you do not need to make use of this communication
feature the null pointer NAGCOMM_NULL may be used in the call to nag_opt_nlp (e04ucc); comm
will then be declared internally for use in calls to user-supplied functions.

15: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

5.1 Description of the Printed Output

Intermediate and final results are printed out by default. The level of printed output can be controlled
with the structure members options:print level and options:minor print level (see Section 12.2). The
default setting of options:print level ¼ Nag Soln Iter and options:minor print level ¼ Nag NoPrint
provides a single line of output at each iteration and the final result. This section describes the default
printout produced by nag_opt_nlp (e04ucc).

The following line of summary output (< 80 characters) is produced at every major iteration. In all
cases, the values of the quantities printed are those in effect on completion of the given iteration.

Maj is the major iteration count.

Mnr is the number of minor iterations required by the feasibility and optimality phases of
the QP subproblem. Generally, Mnr will be 1 in the later iterations, since theoretical
analysis predicts that the correct active set will be identified near the solution (see
Section 11).

Note that Mnr may be greater than the optional parameter options:minor max iter
(default value ¼ max 50; 3 nþ nL þ nNð Þð Þ; see Section 12.2) if some iterations are
required for the feasibility phase.

Step is the step taken along the computed search direction. On reasonably well-behaved
problems, the unit step will be taken as the solution is approached.

Merit function is the value of the augmented Lagrangian merit function (12) at the current iterate.
This function will decrease at each iteration unless it was necessary to increase the

e04 – Minimizing or Maximizing a Function e04ucc

Mark 26 e04ucc.7

penalty parameters (see Section 11.3). As the solution is approached, Merit
function will converge to the value of the objective function at the solution.

If the QP subproblem does not have a feasible point (signified by I at the end of the
current output line), the merit function is a large multiple of the constraint
violations, weighted by the penalty parameters. During a sequence of major
iterations with infeasible subproblems, the sequence of Merit Function values will
decrease monotonically until either a feasible subproblem is obtained or
nag_opt_nlp (e04ucc) terminates with fail:code ¼ NW NONLIN NOT FEASIBLE
(no feasible point could be found for the nonlinear constraints).

If no nonlinear constraints are present (i.e., ncnlin ¼ 0), this entry contains
Objective, the value of the objective function F xð Þ. The objective function will
decrease monotonically to its optimal value when there are no nonlinear constraints.

Violtn is the Euclidean norm of the residuals of constraints that are violated or in the
predicted active set (not printed if ncnlin is zero). Violtn will be approximately
zero in the neighbourhood of a solution.

Norm Gz is ZTgFRk k, the Euclidean norm of the projected gradient (see Section 11.1). Norm
Gz will be approximately zero in the neighbourhood of a solution.

Cond Hz is a lower bound on the condition number of the projected Hessian approximation
HZ HZ ¼ ZTHFRZ ¼ RT

ZRZ

� �
; see (6) and (11). The larger this number, the more

difficult the problem.

The line of output may be terminated by one of the following characters:

M is printed if the quasi-Newton update was modified to ensure that the Hessian
approximation is positive definite (see Section 11.4).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences were used to compute the unspecified objective and
constraint gradients. If the value of Step is zero, the switch to central differences
was made because no lower point could be found in the line search. (In this case,
the QP subproblem is re-solved with the central difference gradient and Jacobian.) If
the value of Step is nonzero, central differences were computed because Norm Gz
and Violtn imply that x is close to a Kuhn–Tucker point (see Section 11.1).

L is printed if the line search has produced a relative change in x greater than the
value defined by the optional parameter options:step limit (default value ¼ 2:0; see
Section 12.2). If this output occurs frequently during later iterations of the run,
options:step limit should be set to a larger value.

R is printed if the approximate Hessian has been refactorized. If the diagonal condition
estimator of R indicates that the approximate Hessian is badly conditioned, the
approximate Hessian is refactorized using column interchanges. If necessary, R is
modified so that its diagonal condition estimator is bounded.

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable.

Varbl gives the name (V) and index j, for j ¼ 1; 2; . . . ; n of the variable.

State gives the state of the variable (FR if neither bound is in the active set, EQ if a fixed
variable, LL if on its lower bound, UL if on its upper bound). If Value lies outside
the upper or lower bounds by more than the feasibility tolerances specified by the
opt ional parameters options:lin feas tol and options:nonlin feas tol (see
Section 12.2), State will be ++ or -- respectively.

A key is sometimes printed before State to give some additional information about
the state of a variable.

A Alternative optimum possible. The variable is active at one of its bounds, but
its Lagrange Multiplier is essentially zero. This means that if the variable

e04ucc NAG Library Manual

e04ucc.8 Mark 26

were allowed to start moving away from its bound, there would be no change
to the objective function. The values of the other free variables might change,
giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one of
them could encounter a bound immediately. In either case, the values of the
Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of its
bounds.

I Infeasible. The variable is currently violating one of its bounds by more than
options:lin feas tol.

Value is the value of the variable at the final iteration.

Lower bound is the lower bound specified for the variable j. (None indicates that
bl½j� 1� � options:inf bound, where options:inf bound is the optional parameter.)

Upper bound is the upper bound specified for the variable j. (None indicates that
bu½j� 1� � options:inf bound, where options:inf bound is the optional para-
meter.)

Lagr Mult is the value of the Lagrange multiplier for the associated bound constraint. This will
b e z e r o i f State i s FR un l e s s bl½j� 1� � �options:inf bound and
bu½j� 1� � options:inf bound, in which case the entry will be blank. If x is
optimal, the multiplier should be non-negative if State is LL, and non-positive if
State is UL.

Residual is the difference between the variable Value and the nearer of its (finite) bounds
bl½j� 1� and bu½j� 1�. A blank entry indicates that the associated variable is not
bounded (i.e., bl½j� 1� � �options:inf bound and bu½j� 1� � options:inf bound).

The meaning of the printout for linear and nonlinear constraints is the same as that given above for
variables, with ‘variable’ replaced by ‘constraint’, bl½j� 1� and bu½j� 1� are replaced by bl½nþ j� 1�
and bu½nþ j� 1� respectively, and with the following changes in the heading:

L Con gives the name (L) and index j, for j ¼ 1; 2; . . . ; nL, of the linear constraint.

N Con gives the name (N) and index j� nLð Þ, for j ¼ nL þ 1; nL þ 2; . . . ; nL þ nN of the
nonlinear constraint.

The I key in the State column is printed for general linear constraints which currently violate one of
their bounds by more than options:lin feas tol and for nonlinear constraints which violate one of their
bounds by more than options:nonlin feas tol.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Residual column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

6 Error Indicators and Warnings

NE_2_INT_ARG_LT

On entry, tda ¼ valueh i while n ¼ valueh i. These arguments must satisfy tda � n.
This error message is output only if nclin > 0.

NE_2_INT_OPT_ARG_CONS

On entry, options:con check start ¼ valueh i while options:con check stop ¼ valueh i.
Constraint: options:con check start � options:con check stop.

On entry, options:obj check start ¼ valueh i while options:obj check stop ¼ valueh i.
Constraint: options:obj check start � options:obj check stop.

e04 – Minimizing or Maximizing a Function e04ucc

Mark 26 e04ucc.9

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument options:minor print level had an illegal value.

On entry, argument options:print deriv had an illegal value.

On entry, argument options:print level had an illegal value.

On entry, argument options:start had an illegal value.

On entry, argument options:verify grad had an illegal value.

NE_BOUND

The lower bound for variable valueh i (array element bl½ valueh i�) is greater than the upper bound.

NE_BOUND_EQ

The lower bound and upper bound for variable valueh i (array elements bl½ valueh i� and
bu½ valueh i�) are equal but they are greater than or equal to options:inf bound.

NE_BOUND_EQ_LCON

The lower bound and upper bound for linear constraint valueh i (array elements bl½ valueh i� and
bu½ valueh i�) are equal but they are greater than or equal to options:inf bound.

NE_BOUND_EQ_NLCON

The lower bound and upper bound for nonlinear constraint valueh i (array elements bl½ valueh i�
and bu½ valueh i�) are equal but they are greater than or equal to options:inf bound.

NE_BOUND_LCON

The lower bound for linear constraint valueh i (array element bl½ valueh i�) is greater than the upper
bound.

NE_BOUND_NLCON

The lower bound for nonlinear constraint valueh i (array element bl½ valueh i�) is greater than the
upper bound.

NE_DERIV_ERRORS

Large errors were found in the derivatives of the objective function and/or nonlinear constraints.
This failure will occur if the verification process indicated that at least one gradient or Jacobian
element had no correct figures. You should refer to the printed output to determine which
elements are suspected to be in error.
As a first-step, you should check that the code for the objective and constraint values is correct –
for example, by computing the function at a point where the correct value is known. However,
care should be taken that the chosen point fully tests the evaluation of the function. It is
remarkable how often the values x ¼ 0 or x ¼ 1 are used to test function evaluation procedures,
and how often the special properties of these numbers make the test meaningless.
Gradient checking will be ineffective if the objective function uses information computed by the
constraints, since they are not necessarily computed prior to each function evaluation.
Errors in programming the function may be quite subtle in that the function value is ‘almost’
correct. For example, the function may not be accurate to full precision because of the inaccurate
calculation of a subsidiary quantity, or the limited accuracy of data upon which the function
depends. A common error on machines where numerical calculations are usually performed in
double precision is to include even one single precision constant in the calculation of the
function; since some compilers do not convert such constants to double precision, half the correct
figures may be lost by such a seemingly trivial error.

e04ucc NAG Library Manual

e04ucc.10 Mark 26

NE_INT_ARG_LT

On entry, n ¼ valueh i.
Constraint: n � 1.

On entry, nclin ¼ valueh i.
Constraint: nclin � 0.

On entry, ncnlin ¼ valueh i.
Constraint: ncnlin � 0.

NE_INT_OPT_ARG_GT

On entry, options:con check start ¼ valueh i.
Constraint: options:con check start � n.

On entry, options:con check stop ¼ valueh i.
Constraint: options:con check stop � n.

On entry, options:obj check start ¼ valueh i.
Constraint: options:obj check start � n.

On entry, options:obj check stop ¼ valueh i.
Constraint: options:obj check stop � n.

NE_INT_OPT_ARG_LT

On entry, options:con check start ¼ valueh i.
Constraint: options:con check start � 1.

On entry, options:con check stop ¼ valueh i.
Constraint: options:con check stop � 1.

On entry, options:obj check start ¼ valueh i.
Constraint: options:obj check start � 1.

On entry, options:obj check stop ¼ valueh i.
Constraint: options:obj check stop � 1.

NE_INVALID_INT_RANGE_1

Value valueh i given to options:max iter not valid. Correct range is options:max iter � 0.

Va l u e valueh i g i v e n t o options:minor max iter no t v a l i d . Co r r e c t r a n g e i s
options:minor max iter � 0.

NE_INVALID_REAL_RANGE_EF

Value valueh i given to options:c diff int not valid. Correct range is � � options:c diff int < 1:0.

Value valueh i given to options:f diff int not valid. Correct range is � � options:f diff int < 1:0.

Value valueh i given to options:f prec not valid. Correct range is � � options:f prec < 1:0.

Va l u e valueh i g i v e n t o options:lin feas tol n o t v a l i d . C o r r e c t r a n g e i s
� � options:lin feas tol < 1:0.

Va l u e valueh i g i v e n t o options:nonlin feas tol n o t v a l i d . C o r r e c t r a n g e i s
� � options:nonlin feas tol < 1:0.

Va l u e valueh i g i v e n t o options:optim tol n o t v a l i d . C o r r e c t r a n g e i s
options:f prec � options:optim tol < 1:0.

NE_INVALID_REAL_RANGE_F

Value valueh i given to options:inf bound not valid. Correct range is options:inf bound > 0:0.

Value valueh i given to options:inf step not valid. Correct range is options:inf step > 0:0.

Value valueh i given to options:step limit not valid. Correct range is options:step limit > 0:0.

e04 – Minimizing or Maximizing a Function e04ucc

Mark 26 e04ucc.11

NE_INVALID_REAL_RANGE_FF

Va l u e valueh i g i v e n t o options:crash tol n o t v a l i d . C o r r e c t r a n g e i s
0:0 � options:crash tol � 1:0.

Va l u e valueh i g i v e n t o options:linesearch tol n o t v a l i d . C o r r e c t r a n g e i s
0:0 � options:linesearch tol < 1:0.

NE_NOT_APPEND_FILE

Cannot open file stringh i for appending.

NE_NOT_CLOSE_FILE

Cannot close file stringh i.

NE_OPT_NOT_INIT

Options structure not initialized.

NE_STATE_VAL

options:state½ valueh i� is out of range. options:state½ valueh i� ¼ valueh i.

NE_USER_STOP

User requested termination, user flag value ¼ valueh i.
This exit occurs if you set comm!flag to a negative value in objfun or confun. If fail is
supplied the value of fail:errnum will be the same as your setting of comm!flag.

NE_WRITE_ERROR

Error occurred when writing to file stringh i.

NW_KT_CONDITIONS

The current point cannot be improved upon. The final point does not satisfy the first-order Kuhn–
Tucker conditions and no improved point for the merit function could be found during the final
line search.
The Kuhn–Tucker conditions are specified in Section 11.1, and the merit function is described in
Section 11.3 and Section 12.3.
This sometimes occurs because an overly stringent accuracy has been requested, i.e., the value of
the optional parameter options:optim tol (default value ¼ �0:8r , where �r is the relative precision
of F xð Þ; see Section 12.2) is too small. In this case you should apply the four tests described in
Section 9.1 to determine whether or not the final solution is acceptable (see Gill et al. (1981) for
a discussion of the attainable accuracy).
If many iterations have occurred in which essentially no progress has been made and
nag_opt_nlp (e04ucc) has failed completely to move from the initial point then functions objfun
and /o r confun may be inco r r ec t . You shou ld r e f e r t o commen t s unde r
fail:code ¼ NE DERIV ERRORS and check the gradients using the optional parameter
options:verify grad (default value options:verify grad ¼ Nag SimpleCheck; see Section 12.2).
Unfortunately, there may be small errors in the objective and constraint gradients that cannot be
detected by the verification process. Finite difference approximations to first derivatives are
catastrophically affected by even small inaccuracies. An indication of this situation is a dramatic
alteration in the iterates if the finite difference interval is altered. One might also suspect this
type of error if a switch is made to central differences even when Norm Gz and Violtn (see
Section 5.1) are large.
Another possibility is that the search direction has become inaccurate because of ill conditioning
in the Hessian approximation or the matrix of constraints in the working set; either form of ill
conditioning tends to be reflected in large values of Mnr (the number of iterations required to
solve each QP subproblem; see Section 5.1).
If the condition estimate of the projected Hessian (Cond Hz; see Section 5.1) is extremely large, it
may be worthwhile rerunning nag_opt_nlp (e04ucc) from the final point with the optional

e04ucc NAG Library Manual

e04ucc.12 Mark 26

parameter options:start ¼ Nag Warm (see Section 12.2). In this situation, the optional
parameters options:state and options:lambda should be left unaltered and R (in optional
parameter
options:h) should be reset to the identity matrix.
If the matrix of constraints in the working set is ill conditioned (i.e., Cond T is extremely large;
see Section 12.3), it may be helpful to run nag_opt_nlp (e04ucc) with a relaxed value of the
optional parameters options:lin feas tol and options:nonlin feas tol (default values

ffiffi
�

p
, �0:33 orffiffi

�
p

, respectively, where � is the machine precision; see Section 12.2). (Constraint dependencies
are often indicated by wide variations in size in the diagonal elements of the matrix T , whose
diagonals will be printed if options:print level ¼ Nag Soln Iter Full (default value
options:print level ¼ Nag Soln Iter; see Section 12.2).)

NW_LIN_NOT_FEASIBLE

No feasible point was found for the linear constraints and bounds.
nag_opt_nlp (e04ucc) has terminated without finding a feasible point for the linear constraints
and bounds, which means that either no feasible point exists for the given value of the optional
parameter options:lin feas tol (default value ¼ ffiffi

�
p

, where � is the machine precision; see
Section 12.2), or no feasible point could be found in the number of iterations specified by the
optional parameter options:minor max iter (default value ¼ max 50; 3 nþ nL þ nNð Þð Þ; see
Section 12.2). You should check that there are no constraint redundancies. If the data for the
constraints are accurate only to an absolute precision �, you should ensure that the value of the
optional parameter options:lin feas tol is greater than �. For example, if all elements of AL are
of order unity and are accurate to only three decimal places, options:lin feas tol should be at
least 10�3.

NW_NONLIN_NOT_FEASIBLE

No feasible point could be found for the nonlinear constraints.
The problem may have no feasible solution. This means that there has been a sequence of QP
subproblems for which no feasible point could be found (indicated by I at the end of each terse
line of output; see Section 5.1). This behaviour will occur if there is no feasible point for the
nonlinear constraints. (However, there is no general test that can determine whether a feasible
point exists for a set of nonlinear constraints.) If the infeasible subproblems occur from the very
first major iteration, it is highly likely that no feasible point exists. If infeasibilities occur when
earlier subproblems have been feasible, small constraint inconsistencies may be present. You
should check the validity of constraints with negative values of the optional parameter
options:state. If you are convinced that a feasible point does exist, nag_opt_nlp (e04ucc) should
be restarted at a different starting point.

NW_NOT_CONVERGED

Optimal solution found, but the sequence of iterates has not converged with the requested
accuracy.
The final iterate x satisfies the first-order Kuhn–Tucker conditions (see Section 11.1) to the
accuracy requested, but the sequence of iterates has not yet converged. nag_opt_nlp (e04ucc) was
terminated because no further improvement could be made in the merit function (see
Section 12.3).
This value of fail:code may occur in several circumstances. The most common situation is that
you ask for a solution with accuracy that is not attainable with the given precision of the problem
(as specified by the optional parameter options:f prec (default value ¼ �0:9, where � is the
machine precision; see Section 12.2)). This condition will also occur if, by chance, an iterate is
an ‘exact’ Kuhn–Tucker point, but the change in the variables was significant at the previous
iteration. (This situation often happens when minimizing very simple functions, such as
quadratics.)
If the four conditions listed in Section 9.1 are satisfied then x is likely to be a solution of (1)
even if fail:code ¼ NW NOT CONVERGED.

e04 – Minimizing or Maximizing a Function e04ucc

Mark 26 e04ucc.13

NW_OVERFLOW_WARN

Serious ill conditioning in the working set after adding constraint valueh i. Overflow may occur in
subsequent iterations.
If overflow occurs preceded by this warning then serious ill conditioning has probably occurred
in the working set when adding a constraint. It may be possible to avoid the difficulty by
increasing the magnitude of the optional parameter options:lin feas tol (default value ¼ ffiffi

�
p

,
where � is the machine precision; see Section 12.2) and/or the optional parameter
options:nonlin feas tol (default value �0:33 or

ffiffi
�

p
; see Section 12.2), and rerunning the program.

If the message recurs even after this change, the offending linearly dependent constraint j must
be removed from the problem. If overflow occurs in one of the user-supplied functions (e.g., if
the nonlinear functions involve exponentials or singularities), it may help to specify tighter
bounds for some of the variables (i.e., reduce the gap between the appropriate lj and uj).

NW_TOO_MANY_ITER

The maximum number of iterations, valueh i, have been performed.
The value of the optional parameter options:max iter may be too small. If the method appears to
be making progress (e.g., the objective function is being satisfactorily reduced), increase the
value of the optional parameter options:max iter and rerun nag_opt_nlp (e04ucc); alternatively,
rerun nag_opt_nlp (e04ucc), setting the optional parameter options:start ¼ Nag Warm to specify
the initial working set. If the algorithm seems to be making little or no progress, however, then
you should check for incorrect gradients or ill conditioning as described under
fail:code ¼ NW KT CONDITIONS.
Note that ill conditioning in the working set is sometimes resolved automatically by the
algorithm, in which case performing additional iterations may be helpful. However, ill
conditioning in the Hessian approximation tends to persist once it has begun, so that allowing
additional iterations without altering R is usually inadvisable. If the quasi-Newton update of the
Hessian approximation was reset during the latter iterations (i.e., an R occurs at the end of each
line of output; see Section 5.1), it may be worthwhile setting options:start ¼ Nag Warm and
calling nag_opt_nlp (e04ucc) from the final point.

7 Accuracy

If fail:code ¼ NE NOERROR on exit, then the vector returned in the array x is an estimate of the
solution to an accuracy of approximately options:optim tol (default value ¼ �0:8r , where �r is the
relative precision of F xð Þ; see Section 12.2).

8 Parallelism and Performance

nag_opt_nlp (e04ucc) is not threaded in any implementation.

9 Further Comments

9.1 Termination Criteria

The function exits with fail:code ¼ NE NOERROR if iterates have converged to a point x that satisfies
the Kuhn–Tucker conditions (see Section 11.1) to the accuracy requested by the optional parameter
options:optim tol (default value ¼ �0:8r , see Section 12.2).

You should also examine the printout from nag_opt_nlp (e04ucc) (see Section 5.1 or Section 12.3) to
check whether the following four conditions are satisfied:

(i) the final value of Norm Gz is significantly less than at the starting point;

(ii) during the final major iterations, the values of Step and Mnr are both one;

(iii) the last few values of both Violtn and Norm Gz become small at a fast linear rate; and

(iv) Cond Hz is small.

If all these conditions hold, x is almost certainly a local minimum.

e04ucc NAG Library Manual

e04ucc.14 Mark 26

10 Example

This example is based on Problem 71 in Hock and Schittkowski (1981) and involves the minimization
of the nonlinear function

F xð Þ ¼ x1x4 x1 þ x2 þ x3ð Þ þ x3

subject to the bounds

1 � x1 � 5
1 � x2 � 5
1 � x3 � 5
1 � x4 � 5

to the general linear constraint

x1 þ x2 þ x3 þ x4 � 20;

and to the nonlinear constraints

x21 þ x22 þ x2
3 þ x2

4 � 40;
x1x2x3x4 � 25:

The initial point, which is infeasible, is

x0 ¼ 1; 5; 5; 1ð ÞT;
and F x0ð Þ ¼ 16.

The optimal solution (to five figures) is

x� ¼ 1:0; 4:7430; 3:8211; 1:3794ð ÞT;
and F x�ð Þ ¼ 17:014. One bound constraint and both nonlinear constraints are active at the solution.

The options structure is declared and initialized by nag_opt_init (e04xxc). Two options are read from
the data file by use of nag_opt_read (e04xyc). nag_opt_nlp (e04ucc) is then called to solve the problem
using the function objfun and confun with elements of the objective gradient not being set at all and
only some of the elements of the constraint Jacobian being provided. The memory freeing function
nag_opt_free (e04xzc) is used to free the memory assigned to the pointers in the options structure. You
must not use the standard C function free() for this purpose.

10.1 Program Text

/* nag_opt_nlp (e04ucc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*
*/

#include <nag.h>
#include <stdio.h>
#include <string.h>
#include <nag_stdlib.h>
#include <nage04.h>

#ifdef __cplusplus
extern "C"
{
#endif

static void NAG_CALL objfun(Integer n, const double x[], double *objf,
double objgrd[], Nag_Comm *comm);

static void NAG_CALL confun(Integer n, Integer ncnlin,
const Integer needc[], const double x[],
double conf[], double conjac[], Nag_Comm *comm);

e04 – Minimizing or Maximizing a Function e04ucc

Mark 26 e04ucc.15

#ifdef __cplusplus
}
#endif

static void NAG_CALL objfun(Integer n, const double x[], double *objf,
double objgrd[], Nag_Comm *comm)

{
/* Routine to evaluate objective function and its 1st derivatives. */

if (comm->flag == 0 || comm->flag == 2)
*objf = x[0] * x[3] * (x[0] + x[1] + x[2]) + x[2];

/* Note, elements of the objective gradient have not been
specified.

*/
} /* objfun */

static void NAG_CALL confun(Integer n, Integer ncnlin, const Integer needc[],
const double x[], double conf[], double conjac[],
Nag_Comm *comm)

{
#define CONJAC(I, J) conjac[((I) -1)*n + (J) -1]

/* Routine to evaluate the nonlinear constraints and
* their 1st derivatives.
*/

/* Function Body */
if (needc[0] > 0) {

if (comm->flag == 0 || comm->flag == 2)
conf[0] = x[0] * x[0] + x[1] * x[1] + x[2] * x[2] + x[3] * x[3];

if (comm->flag == 2) {
CONJAC(1, 3) = x[2] * 2.0;
/* Note only one constraint gradient has been specified
* in the first row of the constraint Jacobian.
*/

}
}
if (needc[1] > 0) {

if (comm->flag == 0 || comm->flag == 2)
conf[1] = x[0] * x[1] * x[2] * x[3];

if (comm->flag == 2) {
CONJAC(2, 2) = x[0] * x[2] * x[3];
CONJAC(2, 3) = x[0] * x[1] * x[3];
/* Note only two constraint gradients have been specified
* in the second row of the constraint Jacobian.
*/

}
}

} /* confun */

#define A(I, J) a[(I) *tda + J]

int main(void)
{

const char *optionsfile = "e04ucce.opt";
Integer exit_status = 0, i, j, n, nclin, ncnlin, tda, totalvars;
Nag_Comm comm;
NagError fail;
Nag_E04_Opt options;
double *a = 0, *bl = 0, *bu = 0, objf, *objgrd = 0, *x = 0;

INIT_FAIL(fail);

printf("nag_opt_nlp (e04ucc) Example Program Results\n");
fflush(stdout);

#ifdef _WIN32
scanf_s(" %*[^\n]"); /* Skip heading in data file */

#else
scanf(" %*[^\n]"); /* Skip heading in data file */

e04ucc NAG Library Manual

e04ucc.16 Mark 26

#endif
#ifdef _WIN32

scanf_s("%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%*[^\n]", &n, &nclin,
&ncnlin);

#else
scanf("%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%*[^\n]", &n, &nclin,

&ncnlin);
#endif

if (n > 0 && nclin >= 0 && ncnlin >= 0) {
totalvars = n + nclin + ncnlin;
if (!(x = NAG_ALLOC(n, double)) ||

!(a = NAG_ALLOC(nclin * n, double)) ||
!(bl = NAG_ALLOC(totalvars, double)) ||
!(bu = NAG_ALLOC(totalvars, double)) ||
!(objgrd = NAG_ALLOC(n, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
tda = n;

}
else {

printf("Invalid n or nclin or ncnlin.\n");
exit_status = 1;
return exit_status;

}
/* Read a, bl, bu and x from data file */

/* Read the matrix of linear constraint coefficients */
if (nclin > 0) {

for (i = 0; i < nclin; ++i)
for (j = 0; j < n; ++j)

#ifdef _WIN32
scanf_s("%lf", &A(i, j));

#else
scanf("%lf", &A(i, j));

#endif
}

#ifdef _WIN32
scanf_s("%*[^\n]"); /* Remove remainder of line */

#else
scanf("%*[^\n]"); /* Remove remainder of line */

#endif

/* Read lower bounds */
for (i = 0; i < n + nclin + ncnlin; ++i)

#ifdef _WIN32
scanf_s("%lf", &bl[i]);

#else
scanf("%lf", &bl[i]);

#endif
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

/* Read upper bounds */
for (i = 0; i < n + nclin + ncnlin; ++i)

#ifdef _WIN32
scanf_s("%lf", &bu[i]);

#else
scanf("%lf", &bu[i]);

#endif
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

e04 – Minimizing or Maximizing a Function e04ucc

Mark 26 e04ucc.17

/* Read the initial point x */
for (i = 0; i < n; ++i)

#ifdef _WIN32
scanf_s("%lf", &x[i]);

#else
scanf("%lf", &x[i]);

#endif
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

/* nag_opt_init (e04xxc).
* Initialization function for option setting
*/

nag_opt_init(&options);
/* nag_opt_read (e04xyc).
* Read options from a text file
*/

nag_opt_read("e04ucc", optionsfile, &options, (Nag_Boolean) Nag_TRUE,
"stdout", &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_opt_read (e04xyc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* nag_opt_nlp (e04ucc), see above. */
nag_opt_nlp(n, nclin, ncnlin, a, tda, bl, bu, objfun, confun, x, &objf,

objgrd, &options, &comm, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_opt_nlp (e04ucc).\n%s\n", fail.message);
exit_status = 1;

}

/* nag_opt_free (e04xzc).
* Memory freeing function for use with option setting
*/

nag_opt_free(&options, "all", &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_opt_free (e04xzc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

END:
NAG_FREE(x);
NAG_FREE(a);
NAG_FREE(bl);
NAG_FREE(bu);
NAG_FREE(objgrd);

return exit_status;
}

10.2 Program Data

nag_opt_nlp (e04ucc) Example Program Data
4 1 2 :Values of n, nclin and ncnlin
1.0 1.0 1.0 1.0 :End of matrix A
1.0 1.0 1.0 1.0 -1.0E+25 -1.0E+25 25.0 :End of bl
5.0 5.0 5.0 5.0 20.0 40.0 1.0E+25 :End of bu
1.0 5.0 5.0 1.0 :End of x

nag_opt_nlp (e04ucc) Example Program Optional Parameters

Begin e04ucc
con_deriv = Nag_FALSE
obj_deriv = Nag_FALSE
End

e04ucc NAG Library Manual

e04ucc.18 Mark 26

10.3 Program Results

nag_opt_nlp (e04ucc) Example Program Results

Optional parameter setting for e04ucc.

Option file: e04ucce.opt

con_deriv set to Nag_FALSE
obj_deriv set to Nag_FALSE

Parameters to e04ucc

Number of variables........... 4

Linear constraints............ 1 Nonlinear constraints......... 2
start................... Nag_Cold
step_limit.............. 2.00e+00 machine precision....... 1.11e-16
lin_feas_tol............ 1.05e-08 nonlin_feas_tol......... 1.05e-08
optim_tol............... 3.26e-12 linesearch_tol.......... 9.00e-01
crash_tol............... 1.00e-02 f_prec.................. 4.37e-15
inf_bound............... 1.00e+20 inf_step................ 1.00e+20
max_iter................ 50 minor_max_iter.......... 50
hessian................. Nag_FALSE
f_diff_int.............. Automatic c_diff_int.............. Automatic
obj_deriv............... Nag_FALSE con_deriv............... Nag_FALSE
verify_grad....... Nag_SimpleCheck print_deriv............ Nag_D_Full
print_level......... Nag_Soln_Iter minor_print_level..... Nag_NoPrint
outfile................. stdout

Verification of the objective gradients.
--

The user sets 0 out of 4 objective gradient elements.
Each iteration 4 gradient elements will be estimated numerically.

Verification of the constraint gradients.

The user sets 3 out of 8 constraint gradient elements.
Each iteration, 5 gradient elements will be estimated numerically.

Simple Check:

The Jacobian seems to be ok.

The largest relative error was 5.22e-09 in constraint 1

Finite difference intervals.

j x[j] Forward dx[j] Central dx[j] Error Est.
1 1.00e+00 6.479651e-07 2.645420e-06 2.592083e-06
2 5.00e+00 7.825142e-07 7.936259e-06 1.565074e-06
3 5.00e+00 7.936259e-06 7.936259e-05 1.873839e-08
4 1.00e+00 9.163610e-07 2.645420e-06 1.832879e-06

Maj Mnr Step Merit function Violtn Norm Gz Cond Hz
0 5 0.0e+00 1.738281e+01 1.2e+01 7.1e-01 1.0e+00
1 1 1.0e+00 1.703169e+01 1.9e+00 4.6e-02 1.0e+00
2 1 1.0e+00 1.701442e+01 8.8e-02 2.1e-02 1.0e+00
3 1 1.0e+00 1.701402e+01 5.4e-04 3.1e-04 1.0e+00
4 1 1.0e+00 1.701402e+01 9.9e-08 7.0e-06 1.0e+00

Minor itn 1 -- Re-solve QP subproblem.
5 2 1.0e+00 1.701402e+01 4.7e-11 6.2e-08 1.0e+00 C

Exit from NP problem after 5 major iterations, 11 minor iterations.

e04 – Minimizing or Maximizing a Function e04ucc

Mark 26 e04ucc.19

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual
V 1 LL 1.00000e+00 1.00000e+00 5.00000e+00 1.0879e+00 0.0000e+00
V 2 FR 4.74300e+00 1.00000e+00 5.00000e+00 0.0000e+00 2.5700e-01
V 3 FR 3.82115e+00 1.00000e+00 5.00000e+00 0.0000e+00 1.1789e+00
V 4 FR 1.37941e+00 1.00000e+00 5.00000e+00 0.0000e+00 3.7941e-01

L Con State Value Lower Bound Upper Bound Lagr Mult Residual
L 1 FR 1.09436e+01 None 2.00000e+01 0.0000e+00 9.0564e+00

N Con State Value Lower Bound Upper Bound Lagr Mult Residual
N 1 UL 4.00000e+01 None 4.00000e+01 -1.6147e-01 -3.7126e-11
N 2 LL 2.50000e+01 2.50000e+01 None 5.5229e-01 -2.8749e-11

Optimal solution found.

Final objective value = 1.7014017e+01

11 Further Description

This section gives a detailed description of the algorithm used in nag_opt_nlp (e04ucc). This, and
possibly the next section, Section 12, may be omitted if the more sophisticated features of the algorithm
and software are not currently of interest.

11.1 Overview

nag_opt_nlp (e04ucc) is based on the same algorithm as used in subroutine NPSOL described in Gill et
al. (1986b).

At a solution of (1), some of the constraints will be active, i.e., satisfied exactly. An active simple
bound constraint implies that the corresponding variable is fixed at its bound, and hence the variables
are partitioned into fixed and free variables. Let C denote the m by n matrix of gradients of the active
general linear and nonlinear constraints. The number of fixed variables will be denoted by nFX, with
nFR nFR ¼ n� nFXð Þ the number of free variables. The subscripts ‘FX’ and ‘FR’ on a vector or matrix
will denote the vector or matrix composed of the elements corresponding to fixed or free variables.

A point x is a first-order Kuhn–Tucker point for (1) (see, e.g., Powell (1974)) if the following
conditions hold:

(i) x is feasible;

(ii) there exist vectors � and � (the Lagrange multiplier vectors for the bound and general constraints)
such that

g ¼ CT�þ � ð2Þ
where g is the gradient of F evaluated at x, and �j ¼ 0 if the jth variable is free.

(iii) The Lagrange multiplier corresponding to an inequality constraint active at its lower bound must be
non-negative, and it must be non-positive for an inequality constraint active at its upper bound.

Let Z denote a matrix whose columns form a basis for the set of vectors orthogonal to the rows of CFR;
i.e., CFRZ ¼ 0. An equivalent statement of the condition (2) in terms of Z is

ZTgFR ¼ 0:

The vector ZTgFR is termed the projected gradient of F at x. Certain additional conditions must be
satisfied in order for a first-order Kuhn–Tucker point to be a solution of (1) (see, e.g., Powell (1974)).
nag_opt_nlp (e04ucc) implements a sequential quadratic programming (SQP) method. For an overview
of SQP methods, see, for example, Fletcher (1987), Gill et al. (1981) and Powell (1983).

The basic structure of nag_opt_nlp (e04ucc) involves major and minor iterations. The major iterations
generate a sequence of iterates xkf g that converge to x�, a first-order Kuhn–Tucker point of (1). At a
typical major iteration, the new iterate �x is defined by

e04ucc NAG Library Manual

e04ucc.20 Mark 26

�x ¼ xþ �p ð3Þ
where x is the current iterate, the non-negative scalar � is the step length, and p is the search direction.
(For simplicity, we shall always consider a typical iteration and avoid reference to the index of the
iteration.) Also associated with each major iteration are estimates of the Lagrange multipliers and a
prediction of the active set.

The search direction p in (3) is the solution of a quadratic programming subproblem of the form

Minimize
p

gTpþ 1

2
pTHp subject to �l �

p
ALp
ANp

8<
:

9=
; � �u; ð4Þ

where g is the gradient of F at x, the matrix H is a positive definite quasi-Newton approximation to the
Hessian of the Lagrangian function (see Section 11.4), and AN is the Jacobian matrix of c evaluated at
x. (Finite difference estimates may be used for g and AN ; see the optional parameters options:obj deriv
and options:con deriv in Section 12.2.) Let l in (1) be partitioned into three sections: lB, lL and lN ,
corresponding to the bound, linear and nonlinear constraints. The vector �l in (4) is similarly partitioned,
and is defined as

�lB ¼ lB � x; �lL ¼ lL �ALx; and �lN ¼ lN � c;

where c is the vector of nonlinear constraints evaluated at x. The vector �u is defined in an analogous
fashion.

The estimated Lagrange multipliers at each major iteration are the Lagrange multipliers from the
subproblem (4) (and similarly for the predicted active set). (The numbers of bounds, general linear and
nonlinear constraints in the QP active set are the quantities Bnd, Lin and Nln in the output of
nag_opt_nlp (e04ucc); see Section 12.3.) In nag_opt_nlp (e04ucc), (4) is solved using the same
algorithm as used in function nag_opt_lin_lsq (e04ncc). Since solving a quadratic program is an
iterative procedure, the minor iterations of nag_opt_nlp (e04ucc) are the iterations of nag_opt_lin_lsq
(e04ncc). (More details about solving the subproblem are given in Section 11.2.)

Certain matrices associated with the QP subproblem are relevant in the major iterations. Let the
subscripts ‘FX’ and ‘FR’ refer to the predicted fixed and free variables, and let C denote the m by n
matrix of gradients of the general linear and nonlinear constraints in the predicted active set. First, we
have available the TQ factorization of CFR:

CFRQFR ¼ 0 T
� �

; ð5Þ
where T is a nonsingular m by m reverse-triangular matrix (i.e., tij ¼ 0 if iþ j < m, and the
nonsingular nFR by nFR matrix QFR is the product of orthogonal transformations (see Gill et al.
(1984a)). Second, we have the upper triangular Cholesky factor R of the transformed and re-ordered
Hessian matrix

RTR ¼ HQ � QT ~HQ; ð6Þ
where ~H is the Hessian H with rows and columns permuted so that the free variables are first, and Q is
the n by n matrix

Q ¼ QFR
IFX

� �
ð7Þ

with IFX the identity matrix of order nFX. If the columns of QFR are partitioned so that

QFR ¼ Z Y
� �

;

the nZ nZ � nFR �mð Þ columns of Z form a basis for the null space of CFR. The matrix Z is used to
compute the projected gradient ZTgFR at the current iterate. (The values Nz, Norm Gf and Norm Gz

printed by nag_opt_nlp (e04ucc) give nZ and the norms of gFR and ZTgFR; see Section 12.3.)

A theoretical characteristic of SQP methods is that the predicted active set from the QP subproblem (4)
is identical to the correct active set in a neighbourhood of x�. In nag_opt_nlp (e04ucc), this feature is

e04 – Minimizing or Maximizing a Function e04ucc

Mark 26 e04ucc.21

exploited by using the QP active set from the previous iteration as a prediction of the active set for the
next QP subproblem, which leads in practice to optimality of the subproblems in only one iteration as
the solution is approached. Separate treatment of bound and linear constraints in nag_opt_nlp (e04ucc)
also saves computation in factorizing CFR and HQ.

Once p has been computed, the major iteration proceeds by determining a step length � that produces a
‘sufficient decrease’ in an augmented Lagrangian merit function (see Section 11.3). Finally, the
approximation to the transformed Hessian matrix HQ is updated using a modified BFGS quasi-Newton
update (see Section 11.4) to incorporate new curvature information obtained in the move from x to �x.

On entry to nag_opt_nlp (e04ucc), an iterative procedure from nag_opt_lin_lsq (e04ncc) is executed,
starting with the initial point you provided, to find a point that is feasible with respect to the bounds and
linear constraints (using the tolerance specified by options:lin feas tol; see Section 12.2). If no feasible
point exists for the bound and linear constraints, (1) has no solution and nag_opt_nlp (e04ucc)
terminates. Otherwise, the problem functions will thereafter be evaluated only at points that are feasible
with respect to the bounds and linear constraints. The only exception involves variables whose bounds
differ by an amount comparable to the finite difference interval (see the discussion of options:f diff int
in Section 12.2). In contrast to the bounds and linear constraints, it must be emphasized that the
nonlinear constraints will not generally be satisfied until an optimal point is reached.

Facilities are provided to check whether the gradients you provided appear to be correct (see the
optional parameter options:verify grad in Section 12.2). In general, the check is provided at the first
point that is feasible with respect to the linear constraints and bounds. However, you may request that
the check be performed at the initial point.

In summary, the method of nag_opt_nlp (e04ucc) first determines a point that satisfies the bound and
linear constraints. Thereafter, each iteration includes:

(a) the solution of a quadratic programming subproblem (see Section 11.2);

(b) a linesearch with an augmented Lagrangian merit function (see Section 11.3); and

(c) a quasi-Newton update of the approximate Hessian of the Lagrangian function (Section 11.4).

11.2 Solution of the Quadratic Programming Subproblem

The search direction p is obtained by solving (4) using the algorithm of nag_opt_lin_lsq (e04ncc) (see
Gill et al. (1986)), which was specifically designed to be used within an SQP algorithm for nonlinear
programming.

The method of nag_opt_lin_lsq (e04ncc) is a two-phase (primal) quadratic programming method. The
two phases of the method are: finding an initial feasible point by minimizing the sum of infeasibilities
(the feasibility phase), and minimizing the quadratic objective function within the feasible region (the
optimality phase). The computations in both phases are performed by the same segments of code. The
two-phase nature of the algorithm is reflected by changing the function being minimized from the sum
of infeasibilities to the quadratic objective function.

In general, a quadratic program must be solved by iteration. Let p denote the current estimate of the
solution of (4); the new iterate �p is defined by

�p ¼ pþ �d ð8Þ
where, as in (3), � is a non-negative step length and d is a search direction.

At the beginning of each iteration of nag_opt_lin_lsq (e04ncc), a working set is defined of constraints
(general and bound) that are satisfied exactly. The vector d is then constructed so that the values of
constraints in the working set remain unaltered for any move along d. For a bound constraint in the
working set, this property is achieved by setting the corresponding element of d to zero, i.e., by fixing
the variable at its bound. As before, the subscripts ‘FX’ and ‘FR’ denote selection of the elements
associated with the fixed and free variables.

Let C denote the sub-matrix of rows of

AL

AN

� �

e04ucc NAG Library Manual

e04ucc.22 Mark 26

corresponding to general constraints in the working set. The general constraints in the working set will
remain unaltered if

CFRdFR ¼ 0 ð9Þ
which is equivalent to defining dFR as

dFR ¼ ZdZ ð10Þ
for some vector dZ, where Z is the matrix associated with the TQ factorization (5) of CFR.

The definition of dZ in (10) depends on whether the current p is feasible. If not, dZ is zero except for an
element � in the jth position, where j and � are chosen so that the sum of infeasibilities is decreasing
along d. (For further details, see Gill et al. (1986).) In the feasible case, dZ satisfies the equations

RT
ZRZdZ ¼ �ZTqFR ð11Þ

where RZ is the Cholesky factor of ZTHFRZ and q is the gradient of the quadratic objective function
q ¼ gþHpð Þ. (The vector ZTqFR is the projected gradient of the QP.) With (11), pþ d is the minimizer
of the quadratic objective function subject to treating the constraints in the working set as equalities.

If the QP projected gradient is zero, the current point is a constrained stationary point in the subspace
defined by the working set. During the feasibility phase, the projected gradient will usually be zero only
at a vertex (although it may vanish at non-vertices in the presence of constraint dependencies). During
the optimality phase, a zero projected gradient implies that p minimizes the quadratic objective function
when the constraints in the working set are treated as equalities. In either case, Lagrange multipliers are
computed. Given a positive constant 	 of the order of the machine precision, the Lagrange multiplier
j

corresponding to an inequality constraint in the working set at its upper bound is said to be optimal if

j � 	 when the jth constraint is at its upper bound, or if
j � �	 when the associated constraint is at
its lower bound. If any multiplier is non-optimal, the current objective function (either the true objective
or the sum of infeasibilities) can be reduced by deleting the corresponding constraint from the working
set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is nonzero, no
feasible point exists. The QP algorithm will then continue iterating to determine the minimum sum of
infeasibilities. At this point, the Lagrange multiplier
j will satisfy � 1þ 	ð Þ �
j � 	 for an inequality
constraint at its upper bound, and �	 �
j � 1þ 	ð Þ for an inequality at its lower bound. The Lagrange
multiplier for an equality constraint will satisfy
j

�� �� � 1þ 	.

The choice of step length � in the QP iteration (8) is based on remaining feasible with respect to the
satisfied constraints. During the optimality phase, if pþ d is feasible, � will be taken as unity. (In this
case, the projected gradient at �p will be zero.) Otherwise, � is set to �M , the step to the ‘nearest’
constraint, which is added to the working set at the next iteration.

Each change in the working set leads to a simple change to CFR: if the status of a general constraint
changes, a row of CFR is altered; if a bound constraint enters or leaves the working set, a column of CFR

changes. Explicit representations are recurred of the matrices T , QFR and R, and of the vectors QTq and
QTg.

11.3 The Merit Function

After computing the search direction as described in Section 11.2, each major iteration proceeds by
determining a step length � in (3) that produces a ‘sufficient decrease’ in the augmented Lagrangian
merit function

L x; �; sð Þ ¼ F xð Þ �
X
i

�i ci xð Þ � sið Þ þ 1

2

X
i

�i ci xð Þ � sið Þ2; ð12Þ

where x, � and s vary during the linesearch. The summation terms in (12) involve only the nonlinear
constraints. The vector � is an estimate of the Lagrange multipliers for the nonlinear constraints of (1).
The non-negative slack variables sif g allow nonlinear inequality constraints to be treated without
introducing discontinuities. The solution of the QP subproblem (4) provides a vector triple that serves
as a direction of search for the three sets of variables. The non-negative vector � of penalty parameters
is initialized to zero at the beginning of the first major iteration. Thereafter, selected elements are

e04 – Minimizing or Maximizing a Function e04ucc

Mark 26 e04ucc.23

increased whenever necessary to ensure descent for the merit function. Thus, the sequence of norms of
� (the printed quantity Penalty; see Section 12.3) is generally nondecreasing, although each �i may be
reduced a limited number of times.

The merit function (12) and its global convergence properties are described in Gill et al. (1986a).

11.4 The Quasi–Newton Update

The matrix H in (4) is a positive definite quasi-Newton approximation to the Hessian of the Lagrangian
function. (For a review of quasi-Newton methods, see Dennis and Schnabel (1983).) At the end of each
major iteration, a new Hessian approximation �H is defined as a rank-two modification of H. In
nag_opt_nlp (e04ucc), the BFGS quasi-Newton update is used:

�H ¼ H � 1

sTHs
HssTH þ 1

yTs
yyT; ð13Þ

where s ¼ �x� x (the change in x).

In nag_opt_nlp (e04ucc), H is required to be positive definite. If H is positive definite, �H defined by
(13) will be positive definite if and only if yTs is positive (see, e.g., Dennis and Moré (1977)). Ideally, y
in (13) would be taken as yL, the change in gradient of the Lagrangian function

yL ¼ �g� �AT
N
N � gþAT

N
N ð14Þ
where
N denotes the QP multipliers associated with the nonlinear constraints of the original problem.
If yTLs is not sufficiently positive, an attempt is made to perform the update with a vector y of the form

y ¼ yL þ
X
i

!i ai �xð Þci �xð Þ � ai xð Þci xð Þð Þ;

where !i � 0. If no such vector can be found, the update is performed with a scaled yL; in this case, M
is printed to indicate that the update was modified.

Rather than modifying H itself, the Cholesky factor of the transformed Hessian HQ (6) is updated,
where Q is the matrix from (5) associated with the active set of the QP subproblem. The update (12) is
equivalent to the following update to HQ:

�HQ ¼ HQ � 1

sTQHQsQ
HQsQs

T
QHQ þ 1

yTQsQ
yQy

T
Q; ð15Þ

where yQ ¼ QTy, and sQ ¼ QTs. This update may be expressed as a rank-one update to R (see Dennis
and Schnabel (1981)).

12 Optional Parameters

A number of optional input and output arguments to nag_opt_nlp (e04ucc) are available through the
structure argument options, type Nag_E04_Opt. a argument may be selected by assigning an
appropriate value to the relevant structure member; those arguments not selected will be assigned
default values. If no use is to be made of any of the optional parameters you should use the NAG
defined null pointer, E04_DEFAULT, in place of options when calling nag_opt_nlp (e04ucc); the default
settings will then be used for all arguments.

Before assigning values to options directly the structure must be initialized by a call to the function
nag_opt_init (e04xxc). Values may then be assigned to the structure members in the normal C manner.

Option settings may also be read from a text file using the function nag_opt_read (e04xyc) in which
case initialization of the options structure will be performed automatically if not already done. Any
subsequent direct assignment to the options structure must not be preceded by initialization.

If assignment of functions and memory to pointers in the options structure is required, this must be
done directly in the calling program; they cannot be assigned using nag_opt_read (e04xyc).

e04ucc NAG Library Manual

e04ucc.24 Mark 26

12.1 Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for nag_opt_nlp
(e04ucc) together with their default values where relevant. The number � is a generic notation for
machine precision (see nag_machine_precision (X02AJC)).

Nag_Start start Nag Cold
Boolean list Nag_TRUE
Nag_PrintType print_level Nag Soln Iter
Nag_PrintType minor_print_level Nag NoPrint
char outfile[80] stdout
void (*print_fun)() NULL
Boolean obj_deriv Nag_TRUE
Boolean con_deriv Nag_TRUE
Nag_GradChk verify_grad Nag SimpleCheck
Nag_DPrintType print_deriv Nag D Full
Integer obj_check_start 1
Integer obj_check_stop n
Integer con_check_start 1
Integer con_check_stop n
double f_diff_int Computed automatically
double c_diff_int Computed automatically
Integer max_iter max 50; 3 nþ nclinð Þ þ 10ncnlinð Þ
Integer minor_max_iter max 50; 3 nþ nclinþ ncnlinð Þð Þ
double f_prec �0:9

double optim_tol options:f prec0:8

double lin_feas_tol
ffiffi
�

p
double nonlin_feas_tol �0:33 or

ffiffi
�

p
double linesearch_tol 0.9
double step_limit 2:0
double crash_tol 0.01
double inf_bound 1020

double inf_step max options:inf bound; 1020
� �

double *conf size ncnlin
double *conjac size ncnlin*n
Integer *state size nþ nclinþ ncnlin
double *lambda size nþ nclinþ ncnlin
double *h size n*n
Boolean hessian Nag_FALSE
Integer iter
Integer nf

12.2 Description of the Optional Parameters

start – Nag_Start Default ¼ Nag Cold

On entry: specifies how the initial working set is chosen in both the procedure for finding a feasible
point for the linear constraints and bounds, and in the first QP subproblem thereafter. With
options:start ¼ Nag Cold, nag_opt_nlp (e04ucc) chooses the initial working set based on the values of
the variables and constraints at the initial point. Broadly speaking, the initial working set will include
equality constraints and bounds or inequality constraints that violate or ‘nearly’ satisfy their bounds (to
within the value of optional parameter options:crash tol; see below).

With options:start ¼ Nag Warm, you must provide a valid definition of every array element of the
optional parameters options:state, options:lambda and options:h (see below for their definitions). The
options:state values associated with bounds and linear constraints determine the initial working set of
the procedure to find a feasible point with respect to the bounds and linear constraints. The
options:state values associated with nonlinear constraints determine the initial working set of the first
QP subproblem after such a feasible point has been found. nag_opt_nlp (e04ucc) will override your

e04 – Minimizing or Maximizing a Function e04ucc

Mark 26 e04ucc.25

specification of options:state if necessary, so that a poor choice of the working set will not cause a fatal
error. For instance, any elements of options:state which are set to �2, �1 or 4 will be reset to zero, as
will any elements which are set to 3 when the corresponding elements of bl and bu are not equal. A
warm start will be advantageous if a good estimate of the initial working set is available – for example,
when nag_opt_nlp (e04ucc) is called repeatedly to solve related problems.

Constraint: options:start ¼ Nag Cold or Nag Warm.

list – Nag_Boolean Default ¼ Nag TRUE

On entry: if options:list ¼ Nag TRUE the argument settings in the call to nag_opt_nlp (e04ucc) will be
printed.

print level – Nag_PrintType Default ¼ NagSolnIter

On entry: the level of results printout produced by nag_opt_nlp (e04ucc) at each major iteration. The
following values are available:

Nag NoPrint No output.

Nag Soln The final solution only.

Nag Iter One line of output for each iteration.

Nag Iter Long A longer line of output for each iteration with more information (line exceeds 80
characters).

Nag Soln Iter The final solution and one line of output for each iteration.

Nag Soln Iter Long The final solution and one long line of output for each iteration (line exceeds 80
characters).

Nag Soln Iter Const As Nag Soln Iter Long with the objective function, the values of the variables,
the Euclidean norm of the nonlinear constraint violations, the nonlinear
constraint values, c, and the linear constraint values ALx also printed at each
iteration.

Nag Soln Iter Full As Nag Soln Iter Const with the diagonal elements of the upper triangular
matrix T associated with the TQ factorization (5) of the QP working set, and the
diagonal elements of R, the triangular factor of the transformed and re-ordered
Hessian (6).

Details of each level of results printout are described in Section 12.3.

Constraint: options:print level ¼ Nag NoPrint, Nag Soln, Nag Iter, Nag Soln Iter, Nag Iter Long,
Nag Soln Iter Long, Nag Soln Iter Const or Nag Soln Iter Full.

minor print level – Nag_PrintType Default ¼ Nag NoPrint

On entry: the level of results printout produced by the minor iterations of nag_opt_nlp (e04ucc) (i.e.,
the iterations of the QP subproblem). The following values are available:

Nag NoPrint No output.

Nag Soln The final solution only.

Nag Iter One line of output for each iteration.

Nag Iter Long A longer line of output for each iteration with more information (line exceeds 80
characters).

Nag Soln Iter The final solution and one line of output for each iteration.

Nag Soln Iter Long The final solution and one long line of output for each iteration (line exceeds 80
characters).

Nag Soln Iter Const As Nag Soln Iter Long with the Lagrange multipliers, the variables x, the
constraint values ALx and the constraint status also printed at each iteration.

Nag Soln Iter Full

e04ucc NAG Library Manual

e04ucc.26 Mark 26

As Nag Soln Iter Const with the diagonal elements of the upper triangular
matrix T associated with the TQ factorization (4) of the working set, and the
diagonal elements of the upper triangular matrix R printed at each iteration.

Details of each level of results printout are described in Section 12 in nag_opt_lin_lsq (e04ncc).
(options:minor print level in the present function is equivalent to options:print level.)

C o n s t r a i n t : options:minor print level ¼ Nag NoPrint, Nag Soln, Nag Iter, Nag Soln Iter,
Nag Iter Long, Nag Soln Iter Long, Nag Soln Iter Const or Nag Soln Iter Full.

outfile – const char[80] Default ¼ stdout

On entry: the name of the file to which results should be printed. If options:outfile½0� ¼ n0 then the
stdout stream is used.

print fun – pointer to function Default ¼ NULL

On entry: printing function defined by you; the prototype of options:print fun is

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

See Section 12.3.1 for further details.

obj deriv – Nag_Boolean Default ¼ Nag TRUE

On entry: this argument indicates whether you have provided all the derivatives of the objective
function in objfun. If none or only some of the derivatives are being supplied by objfun then
options:obj deriv should be set to Nag_FALSE.

Whenever possible you should supply all derivatives, since nag_opt_nlp (e04ucc) is more reliable and
will usually be more efficient when all derivatives are exact.

If options:obj deriv ¼ Nag FALSE, nag_opt_nlp (e04ucc) will approximate the unspecified compo-
nents of the objective gradient, using finite differences. The computation of finite difference
approximations usually increases the total run-time, since a call to objfun is required for each
unspecified element. Furthermore, less accuracy can be attained in the solution (see Chapter 8 of Gill et
al. (1986b), for a discussion of limiting accuracy).

At times, central differences are used rather than forward differences, in which case twice as many calls
to objfun are needed. (The switch to central differences is not under your control.)

con deriv – Nag_Boolean Default ¼ Nag TRUE

On entry: this argument indicates whether you have provided all derivatives for the constraint Jacobian
in confun. If none or only some of the derivatives are being supplied by confun then options:con deriv
should be set to Nag_FALSE.

Whenever possible you should supply all derivatives, since nag_opt_nlp (e04ucc) is more reliable and
will usually be more efficient when all derivatives are exact.

If options:con deriv ¼ Nag FALSE, nag_opt_nlp (e04ucc) will approximate unspecified elements of
the Jacobian. One call to confun is needed for each variable for which partial derivatives are not
available. For example, if the constraint Jacobian has the form

� � � �
� ? ? �
� � ? �
� � � �

0
B@

1
CA

where � indicates a provided element and ‘?’ indicates an unspecified element, nag_opt_nlp (e04ucc)
will call confun twice: once to estimate the missing element in column 2, and again to estimate the two
missing elements in column 3. (Since columns 1 and 4 are known, they require no calls to confun.)

At times, central differences are used rather than forward differences, in which case twice as many calls
to confun are needed. (The switch to central differences is not under your control.)

e04 – Minimizing or Maximizing a Function e04ucc

Mark 26 e04ucc.27

verify grad – Nag_GradChk Default ¼ Nag SimpleCheck

On entry: specifies the level of derivative checking to be performed by nag_opt_nlp (e04ucc) on the
gradient elements computed by objfun and confun.

The following values are available:

Nag NoCheck No derivative checking is performed.

Nag SimpleCheck Perform a simple check of both the objective and constraint gradients.

Nag CheckObj Perform a component check of the objective gradient elements.

Nag CheckCon Perform a component check of the constraint gradient elements.

Nag CheckObjCon Perform a component check of both the objective and constraint gradient
elements.

Nag XSimpleCheck Perform a simple check of both the objective and constraint gradients at the
initial value of x specified in x.

Nag XCheckObj Perform a component check of the objective gradient elements at the initial
value of x specified in x.

Nag XCheckCon Perform a component check of the constraint gradient elements at the initial
value of x specified in x.

Nag XCheckObjCon Perform a component check of both the objective and constraint gradient
elements at the initial value of x specified in x.

If options:verify grad ¼ Nag SimpleCheck or Nag XSimpleCheck then a simple ‘cheap’ test is
performed, which requires only one call to objfun and one call to confun . If
options:verify grad ¼ Nag CheckObj, Nag CheckCon or Nag CheckObjCon then a more reliable
(but more expensive) test will be made on individual gradient components. This component check will
be made in the range specified by the optional parameters options:obj check start and
options:obj check stop for the objective gradient, with default values being 1 and n respectively.
For the cons t ra in t gradient the range is specified by options:con check start and
options:con check stop, with default values being 1 and n.

The procedure for the derivative check is based on finding an interval that produces an acceptable
estimate of the second derivative, and then using that estimate to compute an interval that should
produce a reasonable forward-difference approximation. The gradient element is then compared with
the difference approximation. (The method of finite difference interval estimation is based on Gill et al.
(1983).) The result of the test is printed out by nag_opt_nlp (e04ucc) if optional parameter
options:print deriv 6¼ Nag D NoPrint.

Constraint: options:verify grad ¼ Nag NoCheck, Nag SimpleCheck, Nag CheckObj, Nag CheckCon,
Nag CheckObjCon, Nag XSimpleCheck, Nag XCheckObj, Nag XCheckCon or Nag XCheckObjCon.

print deriv – Nag_DPrintType Default ¼ NagDFull

On entry: controls whether the results of any derivative checking are printed out (see optional parameter
options:verify grad).

If a component derivative check has been carried out, then full details will be printed if
options:print deriv ¼ Nag D Full. For a printout summarising the results of a component derivative
check set options:print deriv ¼ Nag D Sum. If only a simple derivative check is requested then
Nag D Sum and Nag D Full will give the same level of output. To prevent any printout from a
derivative check set options:print deriv ¼ Nag D NoPrint.

Constraint: options:print deriv ¼ Nag D NoPrint, Nag D Sum or Nag D Full.

obj check start – Integer Default ¼ 1
obj check stop – Integer Default ¼ n

These options take effect only when options:verify grad ¼ Nag CheckObj, Nag CheckObjCon,
Nag XCheckObj or Nag XCheckObjCon.

e04ucc NAG Library Manual

e04ucc.28 Mark 26

On entry: they may be used to control the verification of gradient elements computed by the function
objfun. For example, if the first 30 elements appeared to be correct in an earlier run, so that only
element 31 remains questionable, it is reasonable to specify options:obj check start ¼ 31. If the first
30 variables appear linearly in the objective, so that the corresponding gradient elements are constant,
the above choice would also be appropriate.

Constraint: 1 � options:obj check start � options:obj check stop � n.

con check start – Integer Default ¼ 1
con check stop – Integer Default ¼ n

These options take effect only when options:verify grad ¼ Nag CheckCon, Nag CheckObjCon,
Nag XCheckCon or Nag XCheckObjCon.

On entry: these arguments may be used to control the verification of the Jacobian elements computed by
the function confun. For example, if the first 30 columns of the constraint Jacobian appeared to be
correct in an earlier run, so that only column 31 remains questionable, it is reasonable to specify
options:con check start ¼ 31.

Constraint: 1 � options:con check start � options:con check stop � n.

f diff int – double Default ¼ computed automatically

On entry: defines an interval used to estimate derivatives by finite differences in the following
circumstances:

(a) For verifying the objective and/or constraint gradients (see the description of the optional
parameter options:verify grad).

(b) For estimating unspecified elements of the objective and/or constraint Jacobian matrix.

In general, using the notation r ¼ options:f diff int, a derivative with respect to the jth variable is
approximated using the interval 	j, where 	j ¼ r 1þ x̂j

�� ��� �
, with x̂ the first point feasible with respect to

the bounds and linear constraints. If the functions are well scaled, the resulting derivative
approximation should be accurate to O rð Þ. See Gill et al. (1981) for a discussion of the accuracy in
finite difference approximations.

If you do not specify a difference interval, a finite difference interval will be computed automatically
for each variable by a procedure that requires up to six calls of confun and objfun for each element.
This option is recommended if the function is badly scaled or you wish to have nag_opt_nlp (e04ucc)
determine constant elements in the objective and constraint gradients (see the descriptions of confun
and objfun in Section 5).

Constraint: � � options:f diff int < 1:0.

c diff int – double Default ¼ computed automatically

On entry: if the algorithm switches to central differences because the forward-difference approximation
is not sufficiently accurate the value of options:c diff int is used as the difference interval for every
element of x. The switch to central differences is indicated by C at the end of each line of intermediate
printout produced by the major iterations (see Section 5.1). The use of finite differences is discussed
under the option options:f diff int.

Constraint: � � options:c diff int < 1:0.

max iter – Integer Default ¼ max 50; 3 nþ nclinð Þ þ 10ncnlinð Þ
On entry: the maximum number of major iterations allowed before termination.

Constraint: options:max iter � 0.

e04 – Minimizing or Maximizing a Function e04ucc

Mark 26 e04ucc.29

minor max iter – Integer Default ¼ max 50; 3 nþ nclinþ ncnlinð Þð Þ
On entry: the maximum number of iterations for finding a feasible point with respect to the bounds and
linear constraints (if any). The value also specifies the maximum number of minor iterations for the
optimality phase of each QP subproblem.

Constraint: options:minor max iter � 0.

f prec – double Default ¼ �0:9

On entry: this argument defines �r, which is intended to be a measure of the accuracy with which the
problem functions F xð Þ and c xð Þ can be computed.

The value of �r should reflect the relative precision of 1þ F xð Þj j; i.e., �r acts as a relative precision
when Fj j is large, and as an absolute precision when Fj j is small. For example, if F xð Þ is typically of
order 1000 and the first six significant digits are known to be correct, an appropriate value for �r would
be 10�6. In contrast, if F xð Þ is typically of order 10�4 and the first six significant digits are known to be
correct, an appropriate value for �r would be 10�10. The choice of �r can be quite complicated for badly
scaled problems; see Chapter 8 of Gill et al. (1981), for a discussion of scaling techniques. The default
value is appropriate for most simple functions that are computed with full accuracy. However, when the
accuracy of the computed function values is known to be significantly worse than full precision, the
value of �r should be large enough so that nag_opt_nlp (e04ucc) will not attempt to distinguish between
function values that differ by less than the error inherent in the calculation.

Constraint: � � options:f prec < 1:0.

optim tol – double Default ¼ options:f prec0:8

On entry: specifies the accuracy to which you wish the final iterate to approximate a solution of the
problem. Broadly speaking, options:optim tol indicates the number of correct figures desired in the
objective function at the solution. For example, if options:optim tol is 10�6 and nag_opt_nlp (e04ucc)
terminates successfully, the final value of F should have approximately six correct figures.

nag_opt_nlp (e04ucc) will terminate successfully if the iterative sequence of x-values is judged to have
converged and the final point satisfies the first-order Kuhn–Tucker conditions (see Section 11.1). The
sequence of iterates is considered to have converged at x if

� pk k � ffiffiffi
r

p
1þ xk kð Þ; ð16Þ

where p is the search direction and � the step length from (3), and r is the value of options:optim tol.
An iterate is considered to satisfy the first-order conditions for a minimum if

ZTgFR
�� �� � ffiffiffi

r
p

1þmax 1þ F xð Þj j; gFRk kð Þð Þ ð17Þ
and

resj
�� �� � ftol for all j; ð18Þ

where ZT
FRgFR is the projected gradient (see Section 11.1), gFR is the gradient of F xð Þ with respect to

the free variables, resj is the violation of the jth active nonlinear constraint, and ftol the value of the
optional parameter options:nonlin feas tol.

Constraint: options:f prec � options:optim tol < 1:0.

lin feas tol – double Default ¼ ffiffi
�

p

On entry: defines the maximum acceptable absolute violations in the linear constraints at a ‘feasible’
point; i.e., a linear constraint is considered satisfied if its violation does not exceed options:lin feas tol.

On entry to nag_opt_nlp (e04ucc), an iterative procedure is executed in order to find a point that
satisfies the linear constraints and bounds on the variables to within the tolerance specified by
options:lin feas tol. All subsequent iterates will satisfy the constraints to within the same tolerance
(unless options:lin feas tol is comparable to the finite difference interval).

e04ucc NAG Library Manual

e04ucc.30 Mark 26

This tolerance should reflect the precision of the linear constraints. For example, if the variables and the
coefficients in the linear constraints are of order unity, and the latter are correct to about 6 decimal
digits, it would be appropriate to specify options:lin feas tol as 10�6.

Constraint: � � options:lin feas tol < 1:0.

nonlin feas tol – double Default ¼ �0:33 or
ffiffi
�

p

The default is �0:33 if options:con deriv ¼ Nag FALSE, and
ffiffi
�

p
otherwise.

On entry: defines the maximum acceptable violations in the nonlinear constraints at a ‘feasible’ point; i.
e., a nonlinear constraint is considered satisfied if its violation does not exceed options:nonlin feas tol.

The tolerance defines the largest constraint violation that is acceptable at an optimal point. Since
nonlinear constraints are generally not satisfied until the final iterate, the value of
options:nonlin feas tol acts as a partial termination criteria for the iterative sequence generated by
nag_opt_nlp (e04ucc) (see the discussion of options:optim tol).

This tolerance should reflect the precision of the nonlinear constraint functions calculated by confun.

Constraint: � � options:nonlin feas tol < 1:0.

linesearch tol – double Default ¼ 0:9

On entry: controls the accuracy with which the step � taken during each iteration approximates a
minimum of the merit function along the search direction (the smaller the value of
options:linesearch tol, the more accurate the line search). The default value requests an inaccurate
search, and is appropriate for most problems, particularly those with any nonlinear constraints.

If there are no nonlinear constraints, a more accurate search may be appropriate when it is desirable to
reduce the number of major iterations – for example, if the objective function is cheap to evaluate, or if
a substantial number of derivatives are unspecified.

Constraint: 0:0 � options:linesearch tol < 1:0.

step limit – double Default ¼ 2:0

On entry: specifies the maximum change in the variables at the first step of the line search. In some
cases, such as F xð Þ ¼ aebx or F xð Þ ¼ axb, even a moderate change in the elements of x can lead to
floating-point overflow. The argument options:step limit is therefore used to encourage evaluation of
the problem functions at meaningful points. Given any major iterate x, the first point ~x at which F and
c are evaluated during the line search is restricted so that

~x� xk k2 � r 1þ xk k2
� �

;

where r is the value of options:step limit.

The line search may go on and evaluate F and c at points further from x if this will result in a lower
value of the merit function. In this case, the character L is printed at the end of each line of output
produced by the major iterations (see Section 5.1). If L is printed for most of the iterations,
options:step limit should be set to a larger value.

Wherever possible, upper and lower bounds on x should be used to prevent evaluation of nonlinear
functions at wild values. The default value of options:step limit ¼ 2:0 should not affect progress on
well-behaved functions, but values such as 0.1 or 0.01 may be helpful when rapidly varying functions
are present. If a small value of options:step limit is selected, a good starting point may be required. An
important application is to the class of nonlinear least squares problems.

Constraint: options:step limit > 0:0.

crash tol – double Default ¼ 0:01

On entry: options:crash tol is used during a ‘cold start’ when nag_opt_nlp (e04ucc) selects an initial
working set (options:start ¼ Nag Cold). The initial working set will include (if possible) bounds or
general inequality constraints that lie within options:crash tol of their bounds. In particular, a

e04 – Minimizing or Maximizing a Function e04ucc

Mark 26 e04ucc.31

cons t ra in t of the form aTj x � l wil l be inc luded in the in i t ia l working se t i f

aTj x� l
��� ��� � options:crash tol� 1þ lj jð Þ.
Constraint: 0:0 � options:crash tol � 1:0.

inf bound – double Default ¼ 1020

On entry: options:inf bound defines the ‘infinite’ bound in the definition of the problem constraints.
Any upper bound greater than or equal to options:inf bound will be regarded as þ1 (and similarly
any lower bound less than or equal to �options:inf bound will be regarded as �1).

Constraint: options:inf bound > 0:0.

inf step – double Default ¼ max options:inf bound; 1020
� �

On entry: options:inf step specifies the magnitude of the change in variables that will be considered a
step to an unbounded solution. If the change in x during an iteration would exceed the value of
options:inf step, the objective function is considered to be unbounded below in the feasible region.

Constraint: options:inf step > 0:0.

conf – double Default ¼ ncnlin

On entry: ncnlin values of memory will be automatically allocated by nag_opt_nlp (e04ucc) and this is
the recommended method of use of conf. However you may supply memory from the calling program.

On exit: if ncnlin > 0, conf½i� 1� contains the value of the ith nonlinear constraint function ci at the
final iterate.

If ncnlin ¼ 0 then conf will not be referenced.

conjac – double Default ¼ ncnlin� n

On entry: ncnlin� n values of memory will be automatically allocated by nag_opt_nlp (e04ucc) and
this is the recommended method of use of options:conjac. However you may supply memory from the
calling program.

On exit: if ncnlin > 0, conjac contains the Jacobian matrix of the nonlinear constraint functions at the
final iterate, i.e., conjac½ i � 1ð Þ � nþ j � 1� contains the partial derivative of the ith constraint function
with respect to the jth variable, for i ¼ 1; 2; . . . ; ncnlin and j ¼ 1; 2; . . . ; n. (See the discussion of the
argument conjac under confun.)

If ncnlin ¼ 0 then conjac will not be referenced.

state – Integer Default ¼ nþ nclinþ ncnlin

On entry: options:state need not be set if the default option of options:start ¼ Nag Cold is used as
nþ nclinþ ncnlin values of memory will be automatically allocated by nag_opt_nlp (e04ucc).

If the option options:start ¼ Nag Warm has been chosen, options:state must point to a minimum of
nþ nclinþ ncnlin elements of memory. This memory will already be available if the options structure
has been used in a previous call to nag_opt_nlp (e04ucc) from the calling program, with
options:start ¼ Nag Cold and the same values of n, nclin and ncnlin. If a previous call has not
been made, you must allocate sufficient memory.

When a ‘warm start’ is chosen options:state should specify the status of the bounds and linear
constraints at the start of the feasibility phase. More precisely, the first n elements of options:state refer
to the upper and lower bounds on the variables, the next nclin elements refer to the general linear
constraints and the following ncnlin elements refer to the nonlinear constraints. Possible values for
options:state½j� are as follows:

options:state½j� Meaning
0 The corresponding constraint is not in the initial QP working set.
1 This inequality constraint should be in the initial working set at its lower bound.

e04ucc NAG Library Manual

e04ucc.32 Mark 26

2 This inequality constraint should be in the initial working set at its upper bound.
3 This equality constraint should be in the initial working set. This value must only

be specified if bl½j� ¼ bu½j�.

The values �2, �1 and 4 are also acceptable but will be reset to zero by the function, as will any
elements which are set to 3 when the corresponding elements of bl and bu are not equal. If nag_opt_nlp
(e04ucc) has been called previously with the same values of n, nclin and ncnlin, then options:state
already contains satisfactory information. (See also the description of the optional parameter
options:start.) The function also adjusts (if necessary) the values supplied in x to be consistent with
the values supplied in options:state.

Constraint: �2 � options:state½j � 1� � 4, for j ¼ 1; 2; . . . ; nþ nclinþ ncnlin.

On exit: the status of the constraints in the QP working set at the point returned in x. The significance
of each possible value of options:state½j� is as follows:

options:state½j� Meaning
�2 The constraint violates its lower bound by more than the appropriate feasibility

tolerance (see the options options:lin feas tol and options:nonlin feas tol). This
value can occur only when no feasible point can be found for a QP subproblem.

�1 The constraint violates its upper bound by more than the appropriate feasibility
tolerance (see the options options:lin feas tol and options:nonlin feas tol). This
value can occur only when no feasible point can be found for a QP subproblem.

0 The constraint is satisfied to within the feasibility tolerance, but is not in the QP
working set.

1 This inequality constraint is included in the QP working set at its lower bound.
2 This inequality constraint is included in the QP working set at its upper bound.
3 This constraint is included in the working set as an equality. This value of

options:state can occur only when bl½j� ¼ bu½j�.

lambda – double Default ¼ nþ nclinþ ncnlin

On entry: options:lambda need not be set if the default option of options:start ¼ Nag Cold is used as
nþ nclinþ ncnlin values of memory will be automatically allocated by nag_opt_nlp (e04ucc).

If the option options:start ¼ Nag Warm has been chosen, options:lambda must point to a minimum of
nþ nclinþ ncnlin elements of memory. This memory will already be available if the options structure
has been used in a previous call to nag_opt_nlp (e04ucc) from the calling program, with
options:start ¼ Nag Cold and the same values of n, nclin and ncnlin. If a previous call has not
been made, you must allocate sufficient memory.

When a ‘warm start’ is chosen options:lambda½j� 1� must contain a multiplier estimate for each
nonlinear constraint with a sign that matches the status of the constraint specified by options:state, for
j ¼ nþ nclinþ 1, nþ nclinþ 2,. . ., nþ nclinþ ncnlin. The remaining elements need not be set.

Note that if the jth constraint is defined as ‘inactive’ by the initial value of the options:state array (i.e.,
options:state½j� 1� ¼ 0), options:lambda½j� 1� should be zero; if the jth constraint is an inequality
active at its lower bound (i.e., options:state½j� 1� ¼ 1), options:lambda½j� 1� should be non-negative;
if the jth constraint is an inequality active at its upper bound (i.e., options:state½j� 1� ¼ 2),
options:lambda½j� 1� should be non-positive. If necessary, the function will modify options:lambda to
match these rules.

On exit: the values of the Lagrange multipliers from the last QP subproblem. options:lambda½j� 1�
should be non-negative if options:state½j� 1� ¼ 1 and non-positive if options:state½j� 1� ¼ 2.

h – double Default ¼ n� n

On entry: options:h need not be set if the default option of options:start ¼ Nag Cold is used, as n� n
values of memory will be automatically allocated by nag_opt_nlp (e04ucc).

If the option options:start ¼ Nag Warm has been chosen, options:h must point to a minimum of n� n
elements of memory. This memory will already be available if the calling program has used the options

e04 – Minimizing or Maximizing a Function e04ucc

Mark 26 e04ucc.33

structure in a previous call to nag_opt_nlp (e04ucc) with options:start ¼ Nag Cold and the same value
of n. If a previous call has not been made you must allocate sufficient memory.

When options:start ¼ Nag Warm is chosen, the memory pointed to by options:h must contain the
upper triangular Cholesky factor R of the initial approximation of the Hessian of the Lagrangian
function, with the variables in the natural order. Elements not in the upper triangular part of R are
assumed to be zero and need not be assigned. If a previous call has been made, with
options:hessian ¼ Nag TRUE, then options:h will already have been set correctly.

On exit: if options:hessian ¼ Nag FALSE, options:h contains the upper triangular Cholesky factor R
of QT ~HQ, an estimate of the transformed and re-ordered Hessian of the Lagrangian at x (see (6)).

If options:hessian ¼ Nag TRUE, options:h contains the upper triangular Cholesky factor R of H, the
approximate (untransformed) Hessian of the Lagrangian, with the variables in the natural order.

hessian – Nag_Boolean Default ¼ Nag FALSE

On entry: controls the contents of the optional parameter options:h on return from nag_opt_nlp
(e04ucc). nag_opt_nlp (e04ucc) works exclusively with the transformed and re-ordered Hessian HQ,
and hence extra computation is required to form the Hessian itself. If options:hessian ¼ Nag FALSE,
options:h contains the Cholesky factor of the transformed and re-ordered Hessian. If
options:hessian ¼ Nag TRUE, the Cholesky factor of the approximate Hessian itself is formed and
stored in options:h. This information is required by nag_opt_nlp (e04ucc) if the next call to
nag_opt_nlp (e04ucc) will be made with optional parameter options:start ¼ Nag Warm.

iter – Integer

On exit: the number of major iterations which have been performed in nag_opt_nlp (e04ucc).

nf – Integer

On exit: the number of times the objective function has been evaluated (i.e., number of calls of objfun).
The total excludes any calls made to objfun for purposes of derivative checking.

12.3 Description of Printed Output

The level of printed output can be controlled with the structure members options:list,
options:print deriv, options:print level and options:minor print level (see Section 12.2). If
options:list ¼ Nag TRUE then the argument values to nag_opt_nlp (e04ucc) are listed, followed by
the result of any derivative check if options:print deriv ¼ Nag D Sum or Nag D Full. The printout of
results is governed by the values of options:print level and options:minor print level. The default of
options:print level ¼ Nag Soln Iter and options:minor print level ¼ Nag NoPrint provides a single
line of output at each iteration and the final result. This section describes all of the possible levels of
results printout available from nag_opt_nlp (e04ucc).

If a simple derivative check, options:verify grad ¼ Nag SimpleCheck, is requested then a statement
indicating success or failure is given. The largest error found in the constraint Jacobian is output
together with the directional derivative, gTp, of the objective gradient and its finite difference
approximation, where p is a random vector of unit length.

When a component derivative check (see options:verify grad in Section 12.2) is selected the element
with the largest relative error is identified for the objective gradient and the constraint Jacobian.

If the value of options:print deriv ¼ Nag D Full then the following results are printed for each
component:

x[i] the element of x.

dx[i] the optimal finite difference interval.

g[i] or Jacobian value the gradient/Jacobian element.

Difference approxn. the finite difference approximation.

Itns the number of trials performed to find a suitable difference interval.

e04ucc NAG Library Manual

e04ucc.34 Mark 26

The indicator, OK or BAD?, states whether the gradient/Jacobian element and finite difference
approximation are in agreement. If the derivatives are believed to be in error nag_opt_nlp (e04ucc) will
exit with fail:code ¼ NE DERIV ERRORS.

When options:print level ¼ Nag Iter or Nag Soln Iter the following line of output is produced at every
iteration. In all cases, the values of the quantities printed are those in effect on completion of the given
iteration.

Maj is the major iteration count.

Mnr is the number of minor iterations required by the feasibility and optimality phases of
the QP subproblem. Generally, Mnr will be 1 in the later iterations, since theoretical
analysis predicts that the correct active set will be identified near the solution (see
Section 11).

Note that Mnr may be greater than the optional parameter options:minor max iter
(default value ¼ max 50; 3 nþ nL þ nNð Þð Þ; see Section 12.2) if some iterations are
required for the feasibility phase.

Step is the step taken along the computed search direction. On reasonably well-behaved
problems, the unit step will be taken as the solution is approached.

Merit function is the value of the augmented Lagrangian merit function (12) at the current iterate.
This function will decrease at each iteration unless it was necessary to increase the
penalty parameters (see Section 11.3). As the solution is approached, Merit
function will converge to the value of the objective function at the solution.

If the QP subproblem does not have a feasible point (signified by I at the end of the
current output line), the merit function is a large multiple of the constraint
violations, weighted by the penalty parameters. During a sequence of major
iterations with infeasible subproblems, the sequence of Merit Function values will
decrease monotonically until either a feasible subproblem is obtained or
nag_opt_nlp (e04ucc) terminates with fail:code ¼ NW NONLIN NOT FEASIBLE
(no feasible point could be found for the nonlinear constraints).

If no nonlinear constraints are present (i.e., ncnlin ¼ 0), this entry contains
Objective, the value of the objective function F xð Þ. The objective function will
decrease monotonically to its optimal value when there are no nonlinear constraints.

Violtn is the Euclidean norm of the residuals of constraints that are violated or in the
predicted active set (not printed if ncnlin is zero). Violtn will be approximately
zero in the neighbourhood of a solution.

Norm Gz is ZTgFRk k, the Euclidean norm of the projected gradient (see Section 11.1). Norm
Gz will be approximately zero in the neighbourhood of a solution.

Cond Hz is a lower bound on the condition number of the projected Hessian approximation
HZ HZ ¼ ZTHFRZ ¼ RT

ZRZ

� �
; see (6) and (11). The larger this number, the more

difficult the problem.

The line of output may be terminated by one of the following characters:

M is printed if the quasi-Newton update was modified to ensure that the Hessian
approximation is positive definite (see Section 11.4).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences were used to compute the unspecified objective and
constraint gradients. If the value of Step is zero, the switch to central differences
was made because no lower point could be found in the line search. (In this case,
the QP subproblem is re-solved with the central difference gradient and Jacobian.) If
the value of Step is nonzero, central differences were computed because Norm Gz
and Violtn imply that x is close to a Kuhn–Tucker point (see Section 11.1).

L is printed if the line search has produced a relative change in x greater than the
value defined by the optional parameter options:step limit (default value ¼ 2:0; see

e04 – Minimizing or Maximizing a Function e04ucc

Mark 26 e04ucc.35

Section 12.2). If this output occurs frequently during later iterations of the run,
options:step limit should be set to a larger value.

R is printed if the approximate Hessian has been refactorized. If the diagonal condition
estimator of R indicates that the approximate Hessian is badly conditioned, the
approximate Hessian is refactorized using column interchanges. If necessary, R is
modified so that its diagonal condition estimator is bounded.

If options:print level ¼ Nag Iter Long, Nag Soln Iter Long, Nag Soln Iter Const or Nag Soln Iter Full
the line of printout at every iteration is extended to give the following additional information. (Note this
longer line extends over more than 80 characters.)

Nfun is the cumulative number of evaluations of the objective function needed for the line
search. Evaluations needed for the estimation of the gradients by finite differences
are not included. Nfun is printed as a guide to the amount of work required for the
linesearch.

Nz is the number of columns of Z (see Section 11.1). The value of Nz is the number of
variables minus the number of constraints in the predicted active set; i.e.,
Nz ¼ n� Bndþ Linþ Nlnð Þ.

Bnd is the number of simple bound constraints in the predicted active set.

Lin is the number of general linear constraints in the predicted active set.

Nln is the number of nonlinear constraints in the predicted active set (not printed if
ncnlin is zero).

Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented
Lagrangian merit function (not printed if ncnlin is zero).

Norm Gf is the Euclidean norm of gFR, the gradient of the objective function with respect to
the free variables.

Cond H is a lower bound on the condition number of the Hessian approximation H.

Cond T is a lower bound on the condition number of the matrix of predicted active
constraints.

Conv is a three-letter indication of the status of the three convergence tests (16) � (18)
defined in the description of the optional parameter options:optim tol in
Section 12.2. Each letter is T if the test is satisfied, and F otherwise. The three
tests indicate whether:

(i) the sequence of iterates has converged;

(ii) the projected gradient (Norm Gz) is sufficiently small; and

(iii) the norm of the residuals of constraints in the predicted active set (Violtn) is
small enough.

If any of these indicators is F when nag_opt_nlp (e04ucc) terminates with the error
indicator fail:code ¼ NE NOERROR, you should check the solution carefully.

When options:print level ¼ Nag Soln Iter Const or Nag Soln Iter Full more detailed results are given
at each iteration. If options:print level ¼ Nag Soln Iter Const these additional values are: the value of
x currently held in x; the current value of the objective function; the Euclidean norm of nonlinear
constraint violations; the values of the nonlinear constraints (the vector c); and the values of the linear
constraints, (the vector ALx).

If options:print level ¼ Nag Soln Iter Full then the diagonal elements of the matrix T associated with
the TQ factorization (5) of the QP working set and the diagonal elements of R, the triangular factor of
the transformed and re-ordered Hessian (6) (see Section 11.1) are also output at each iteration.

When options:print level ¼ Nag Soln, Nag Soln Iter, Nag Soln Iter Long, Nag Soln Iter Const or
Nag Soln Iter Full the final printout from nag_opt_nlp (e04ucc) includes a listing of the status of
every variable and constraint. The following describes the printout for each variable.

e04ucc NAG Library Manual

e04ucc.36 Mark 26

Varbl gives the name (V) and index j, for j ¼ 1; 2; . . . ; n of the variable.

State gives the state of the variable (FR if neither bound is in the active set, EQ if a fixed
variable, LL if on its lower bound, UL if on its upper bound). If Value lies outside
the upper or lower bounds by more than the feasibility tolerances specified by the
opt ional parameters options:lin feas tol and options:nonlin feas tol (see
Section 12.2), State will be ++ or -- respectively.

A key is sometimes printed before State to give some additional information about
the state of a variable.

A Alternative optimum possible. The variable is active at one of its bounds, but
its Lagrange Multiplier is essentially zero. This means that if the variable
were allowed to start moving away from its bound, there would be no change
to the objective function. The values of the other free variables might change,
giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one of
them could encounter a bound immediately. In either case, the values of the
Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of its
bounds.

I Infeasible. The variable is currently violating one of its bounds by more than
options:lin feas tol.

Value is the value of the variable at the final iteration.

Lower bound is the lower bound specified for the variable j. (None indicates that
bl½j� 1� � options:inf bound, where options:inf bound is the optional parameter.)

Upper bound is the upper bound specified for the variable j. (None indicates that
bu½j� 1� � options:inf bound, where options:inf bound is the optional para-
meter.)

Lagr Mult is the value of the Lagrange multiplier for the associated bound constraint. This will
b e z e r o i f State i s FR un l e s s bl½j� 1� � �options:inf bound and
bu½j� 1� � options:inf bound, in which case the entry will be blank. If x is
optimal, the multiplier should be non-negative if State is LL, and non-positive if
State is UL.

Residual is the difference between the variable Value and the nearer of its (finite) bounds
bl½j� 1� and bu½j� 1�. A blank entry indicates that the associated variable is not
bounded (i.e., bl½j� 1� � �options:inf bound and bu½j� 1� � options:inf bound).

The meaning of the printout for linear and nonlinear constraints is the same as that given above for
variables, with ‘variable’ replaced by ‘constraint’, bl½j� 1� and bu½j� 1� are replaced by bl½nþ j� 1�
and bu½nþ j� 1� respectively, and with the following changes in the heading:

L Con gives the name (L) and index j, for j ¼ 1; 2; . . . ; nL of the linear constraint.

N Con gives the name (N) and index j� nLð Þ, for j ¼ nL þ 1; nL þ 2; . . . ; nL þ nN of the
nonlinear constraint.

The I key in the State column is printed for general linear constraints which currently violate one of
their bounds by more than options:lin feas tol and for nonlinear constraints which violate one of their
bounds by more than options:nonlin feas tol.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Residual column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

For the output governed by options:minor print level, you are referred to the documentation for
nag_opt_lin_lsq (e04ncc). This option is equivalent to options:print level.

e04 – Minimizing or Maximizing a Function e04ucc

Mark 26 e04ucc.37

If options:print level ¼ Nag NoPrint then printout will be suppressed; you can print the final solution
when nag_opt_nlp (e04ucc) returns to the calling program.

12.3.1Output of results via a user-defined printing function

You may also specify your own print function for output of iteration results and the final solution by
use of the options:print fun function pointer, which has prototype

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

This section may be skipped if you wish to use the default printing facilities.

When a user-defined function is assigned to options:print fun this will be called in preference to the
internal print function of nag_opt_nlp (e04ucc). Calls to the user-defined function are again controlled
by means of the options:print level, options:minor print level and options:print deriv members.
Information is provided through st and comm, the two structure arguments to options:print fun.

If comm!it maj prt ¼ Nag TRUE then results from the last major iteration of nag_opt_nlp (e04ucc)
a r e p r o v i d e d t h r o u g h s t . N o t e t h a t options:print fun w i l l b e c a l l e d w i t h
comm!it maj prt ¼ Nag TRUE o n l y i f options:print level ¼ Nag Iter, Nag Soln Iter,
Nag Soln Iter Long, Nag Soln Iter Const or Nag Soln Iter Full. The following members of st are set:

n – Integer

The number of variables.

nclin – Integer

The number of linear constraints.

ncnlin – Integer

The number of nonlinear constraints.

nactiv – Integer

The total number of active elements in the current set.

iter – Integer

The major iteration count.

minor_iter – Integer

The minor iteration count for the feasibility and the optimality phases of the QP subproblem.

step – double

The step taken along the computed search direction.

nfun – Integer

The cumulative number of objective function evaluations needed for the line search.

merit – double

The value of the augmented Lagrangian merit function at the current iterate.

objf – double

The current value of the objective function.

norm_nlnviol – double

The Euclidean norm of nonlinear constraint violations (only available if st!ncnlin > 0).

violtn – double

The Euclidean norm of the residuals of constraints that are violated or in the predicted active set
(only available if st!ncnlin > 0).

e04ucc NAG Library Manual

e04ucc.38 Mark 26

norm_gz – double

ZTgFRk k, the Euclidean norm of the projected gradient.

nz – Integer

The number of columns of Z (see Section 11.1).

bnd – Integer

The number of simple bound constraints in the predicted active set.

lin – Integer

The number of general linear constraints in the predicted active set.

nln – Integer

The number of nonlinear constraints in the predicted active set (only available if st!ncnlin > 0).

penalty – double

The Euclidean norm of the vector of penalty parameters used in the augmented Lagrangian merit
function (only available if st!ncnlin > 0).

norm_gf – double

The Euclidean norm of gFR, the gradient of the objective function with respect to the free
variables.

cond_h – double

A lower bound on the condition number of the Hessian approximation H.

cond_hz – double

A lower bound on the condition number of the projected Hessian approximation HZ .

cond_t – double

A lower bound on the condition number of the matrix of predicted active constraints.

iter_conv – Nag_Boolean

Nag_TRUE if the sequence of iterates has converged, i.e., convergence condition (16) (see the
description of options:optim tol) is satisfied.

norm_gz_small – Nag_Boolean

Nag_TRUE if the projected gradient is sufficiently small, i.e., convergence condition (17) (see
the description of options:optim tol) is satisfied.

violtn_small – Nag_Boolean

Nag_TRUE if the violations of the nonlinear constraints are sufficiently small, i.e., convergence
condition (18) (see the description of options:optim tol) is satisfied.

update_modified – Nag_Boolean

Nag_TRUE if the quasi-Newton update was modified to ensure that the Hessian is positive
definite.

qp_not_feasible – Nag_Boolean

Nag_TRUE if the QP subproblem has no feasible point.

c_diff – Nag_Boolean

Nag_TRUE if central differences were used to compute the unspecified objective and constraint
gradients.

step_limit_exceeded – Nag_Boolean

Nag_TRUE if the line search produced a relative change in x greater than the value defined by
the optional parameter options:step limit.

e04 – Minimizing or Maximizing a Function e04ucc

Mark 26 e04ucc.39

refactor – Nag_Boolean

Nag_TRUE if the approximate Hessian has been refactorized.

x – double *

Contains the components x½j � 1� of the current point x, for j ¼ 1; 2; . . . ; st!n.

state – Integer *

Contains the status of the st!n variables, st!nclin linear, and st!ncnlin nonlinear constraints
(if any). See Section 12.2 for a description of the possible status values.

ax – double *

If st!nclin > 0, st!ax½j � 1� contains the current value of the jth linear constraint, for
j ¼ 1; 2; . . . ; st!nclin.

cx – double *

If st!ncnlin > 0, st!cx½j� 1� contains the current value of nonlinear constraint cj , for
j ¼ 1; 2; . . . ; st!ncnlin.

diagt – double *

If st!nactiv > 0, the st!nactiv elements of the diagonal of the matrix T .

diagr – double *

Contains the st!n elements of the diagonal of the upper triangular matrix R.

If comm!sol sqp prt ¼ Nag TRUE then the final result from nag_opt_nlp (e04ucc) is provided
through st. Note that options:print fun will be called with comm!sol sqp prt ¼ Nag TRUE only if
options:print level ¼ Nag Soln, Nag Soln Iter, Nag Soln Iter Long, Nag Soln Iter Const o r
Nag Soln Iter Full. The following members of st are set:

iter – Integer

The number of iterations performed.

n – Integer

The number of variables.

nclin – Integer

The number of linear constraints.

ncnlin – Integer

The number of nonlinear constraints.

x – double *

Contains the components x½j � 1� of the final point x, for j ¼ 1; 2; . . . ; st!n.

state – Integer *

Contains the status of the st!n variables, st!nclin linear, and st!ncnlin nonlinear constraints
(if any). See Section 12.2 for a description of the possible status values.

ax – double *

If st!nclin > 0, st!ax½j � 1� contains the final value of the jth linear constraint, for
j ¼ 1; 2; . . . ; st!nclin.

cx – double *

If st!ncnlin > 0, st!cx½j� 1� contains the final value of nonlinear constraint cj , for
j ¼ 1; 2; . . . ; st!ncnlin.

bl – double *

Contains the st!nþ st!nclinþ st!ncnlin lower bounds on the variables.

e04ucc NAG Library Manual

e04ucc.40 Mark 26

bu – double *

Contains the st!nþ st!nclinþ st!ncnlin upper bounds on the variables.

lambda – double *

Contains the st!nþ st!nclinþ st!ncnlin final values of the Lagrange multipliers.

If comm!g prt ¼ Nag TRUE then the results from derivative checking are provided through st. Note
that options:print fun will be called with comm!g prt only if options:print deriv ¼ Nag D Sum or
Nag D Full. The following members of st are set:

n – Integer

The number of variables.

ncnlin – Integer

The number of nonlinear constraints.

x – double *

Contains the components x½j � 1� of the initial point x0, for j ¼ 1; 2; . . . ; st!n.

g – double *

Contains the components g½j � 1� of the gradient vector g xð Þ ¼ @F

@x1
;
@F

@x2
; . . . ;

@F

@xn

� �T

at the

initial point x0, for j ¼ 1; 2; . . . ; st!n.

conjac – double *

Contains the elements of the Jacobian matrix of nonlinear constraints at the initial point x0 (
@fi
@xj

i s he ld a t l oca t i on conjac½ i � 1ð Þ � st!nþ j � 1�, f o r i ¼ 1; 2; . . . ; st!ncnlin and
j ¼ 1; 2; . . . ; st!n).

In this case details of the derivative check performed by nag_opt_nlp (e04ucc) are held in the following
substructure of st:

gprint – Nag_GPrintSt *

Which in turn contains three substructures st!g chk, st!f sim, st!c sim and two pointers to
arrays of substructures, st!f comp and st!c comp.

g_chk – Nag_Grad_Chk_St *

The substructure st!g chk contains the members:

type – Nag_GradChk

The type of derivative check performed by nag_opt_nlp (e04ucc). This will be the
same value as in options:verify grad.

g_error – Integer

This member will be equal to one of the error codes NE_NOERROR or
NE_DERIV_ERRORS according to whether the derivatives were found to be
correct or not.

obj_start – Integer

Specifies the gradient element at which any component check started. This value
will be equal to options:obj check start.

obj_stop – Integer

Specifies the gradient element at which any component check ended. This value
specifies the element at which any component check of the constraint gradient
ended. This value will be equal to options:obj check stop.

e04 – Minimizing or Maximizing a Function e04ucc

Mark 26 e04ucc.41

con_start – Integer

Specifies the element at which any component check of the constraint gradient
started. This value will be equal to options:con check start.

con_stop – Integer

Specifies the element at which any component check of the constraint gradient
ended. This value will be equal to options:con check stop.

f_sim – Nag_SimSt *

The resu l t o f a s imple der iva t ive check of the ob jec t ive grad ien t ,
st!gprint!g chk:type ¼ Nag SimpleCheck, will be held in this substructure in
members:

correct – Nag_Boolean

If Nag_TRUE then the objective gradient is consistent with the finite difference
approximation according to a simple check.

dir_deriv – double

The directional derivative gTp where p is a random vector of unit length with
elements of approximately equal magnitude.

fd_approx – double

The finite difference approximation, F xþ hpð Þ � F xð Þð Þ=h, to the directional
derivative.

c_sim – Nag_SimSt *

The resul t of a s imple der iva t ive check of the cons tra int Jacobian ,
st!gprint!g chk:type ¼ Nag SimpleCheck, will be held in this substructure in
members:

n_elements – Integer

The number of columns of the constraint Jacobian for which a simple check has
been carried out, i.e., those columns which do not contain unknown elements.

correct – Nag_Boolean

If Nag_TRUE then the Jacobian is consistent with the finite difference
approximation according to a simple check.

max_error – double

The maximum error found between the norm of a constraint gradient and its finite
difference approximation.

max_constraint – Integer

The constraint gradient which has the maximum error between its norm and its finite
difference approximation.

f_comp – Nag_CompSt *

The results of a requested component derivative check of the objective gradient,
st!gprint!g chk:type ¼ Nag CheckObj or Nag CheckObjCon, will be held in the array
of st!n substructures of type Nag_CompSt pointed to by st!gprint!f comp. The
procedure for the derivative check is based on finding an interval that produces an
acceptable estimate of the second derivative, and then using that estimate to compute an
interval that should produce a reasonable forward-difference approximation. The gradient
element is then compared with the difference approximation. (The method of finite
difference interval estimation is based on Gill et al. (1983).)

e04ucc NAG Library Manual

e04ucc.42 Mark 26

correct – Nag_Boolean

If Nag_TRUE then this gradient element is consistent with its finite difference
approximation.

hopt – double

The optimal finite difference interval.

gdiff – double

The finite difference approximation for this gradient component.

iter – Integer

The number of trials performed to find a suitable difference interval.

comment – char

A character string which describes the possible nature of the reason for which an
estimation of the finite difference interval failed to produce a satisfactory relative
condition error of the second-order difference. Possible strings are: "Constant?",
"Linear or odd?", "Too nonlinear?" and "Small derivative?".

c_comp – Nag_CompSt *

The results of a requested component derivative check of the Jacobian of nonlinear
constraint functions, st!gprint!g chk:type ¼ Nag CheckCon or Nag CheckObjCon, will
be held in the array of st!ncnlin� st!n substructures of type Nag_CompSt pointed to
by st!gprint!c comp. The element st!gprint!f comp½ i � 1ð Þ � st!nþ j � 1� will
hold the details of the component derivative check for Jacobian element i; j, for
i ¼ 1; 2; . . . ; st!ncnlin and j ¼ 1; 2; . . . ; st!n. The procedure for the derivative check is
based on finding an interval that produces an acceptable estimate of the second derivative,
and then using that estimate to compute an interval that should produce a reasonable
forward-difference approximation. The Jacobian element is then compared with the
difference approximation. (The method of finite difference interval estimation is based on
Gill et al. (1983).)

The members of st!gprint!c comp are as for st!gprint!f comp where
st!gprint!f comp:gdiff gives the difference approximation for the Jacobian element.

The relevant members of the structure comm are:

g_prt – Nag_Boolean

Will be Nag_TRUE only when the print function is called with the result of the derivative check
of objfun and confun.

it_maj_prt – Nag_Boolean

Will be Nag_TRUE when the print function is called with information about the current major
iteration.

sol_sqp_prt – Nag_Boolean

Will be Nag_TRUE when the print function is called with the details of the final solution.

it_prt – Nag_Boolean

Will be Nag_TRUE when the print function is called with information about the current minor
iteration (i.e., an iteration of the current QP subproblem). See the documentation for
nag_opt_lin_lsq (e04ncc) for details of which members of st are set.

new_lm – Nag_Boolean

Will be Nag_TRUE when the Lagrange multipliers have been updated in a QP subproblem. See
the documentation for nag_opt_lin_lsq (e04ncc) for details of which members of st are set.

e04 – Minimizing or Maximizing a Function e04ucc

Mark 26 e04ucc.43

sol_prt – Nag_Boolean

Will be Nag_TRUE when the print function is called with the details of the solution of a QP
subproblem, i.e., the solution at the end of a major iteration. See the documentation for
nag_opt_lin_lsq (e04ncc) for details of which members of st are set.

user – double
iuser – Integer
p – Pointer

Pointers for communication of user information. If used they must be allocated memory either
before entry to nag_opt_nlp (e04ucc) or during a call to objfun, confun or options:print fun.
The type Pointer will be void * with a C compiler that defines void * and char * otherwise.

e04ucc NAG Library Manual

e04ucc.44 (last) Mark 26

	e04ucc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Dennis and More (1977)
	Dennis and Schnabel (1981)
	Dennis and Schnabel (1983)
	Fletcher (1987)
	Gill et al. (1986)
	Gill et al. (1983)
	Gill et al. (1984a)
	Gill et al. (1984b)
	Gill et al. (1986a)
	Gill et al. (1986b)
	Gill et al. (1981)
	Hock and Schittkowski (1981)
	Murtagh and Saunders (1983)
	Powell (1974)
	Powell (1983)

	5 Arguments
	n
	nclin
	ncnlin
	a
	tda
	bl
	bu
	objfun
	n
	x
	objf
	g
	comm
	flag
	first
	nf
	user
	iuser
	p

	confun
	n
	ncnlin
	needc
	x
	conf
	conjac
	comm
	flag
	first
	user
	iuser
	p

	x
	objf
	g
	options
	comm
	fail
	5.1 Description of the Printed Output

	6 Error Indicators and Warnings
	NE_2_INT_ARG_LT
	NE_2_INT_OPT_ARG_CONS
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_BOUND
	NE_BOUND_EQ
	NE_BOUND_EQ_LCON
	NE_BOUND_EQ_NLCON
	NE_BOUND_LCON
	NE_BOUND_NLCON
	NE_DERIV_ERRORS
	NE_INT_ARG_LT
	NE_INT_OPT_ARG_GT
	NE_INT_OPT_ARG_LT
	NE_INVALID_INT_RANGE_1
	NE_INVALID_REAL_RANGE_EF
	NE_INVALID_REAL_RANGE_F
	NE_INVALID_REAL_RANGE_FF
	NE_NOT_APPEND_FILE
	NE_NOT_CLOSE_FILE
	NE_OPT_NOT_INIT
	NE_STATE_VAL
	NE_USER_STOP
	NE_WRITE_ERROR
	NW_KT_CONDITIONS
	NW_LIN_NOT_FEASIBLE
	NW_NONLIN_NOT_FEASIBLE
	NW_NOT_CONVERGED
	NW_OVERFLOW_WARN
	NW_TOO_MANY_ITER

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	9.1 Termination Criteria

	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	11 Further Description
	11.1 Overview
	11.2 Solution of the Quadratic Programming Subproblem
	11.3 The Merit Function
	11.4 The Quasi-Newton Update

	12 Optional Parameters
	12.1 Optional Parameter Checklist and Default Values
	12.2 Description of the Optional Parameters
	start
	list
	print_level
	minor_print_level
	outfile
	print_fun
	obj_deriv
	con_deriv
	verify_grad
	print_deriv
	obj_check_start
	obj_check_stop
	con_check_start
	con_check_stop
	f_diff_int
	c_diff_int
	max_iter
	minor_max_iter
	f_prec
	optim_tol
	lin_feas_tol
	nonlin_feas_tol
	linesearch_tol
	step_limit
	crash_tol
	inf_bound
	inf_step
	conf
	conjac
	state
	lambda
	h
	hessian
	iter
	nf

	12.3 Description of Printed Output
	12.3.1 Output of results via a user-defined printing function
	n
	nclin
	ncnlin
	nactiv
	iter
	minor_iter
	step
	nfun
	merit
	objf
	norm_nlnviol
	violtn
	norm_gz
	nz
	bnd
	lin
	nln
	penalty
	norm_gf
	cond_h
	cond_hz
	cond_t
	iter_conv
	norm_gz_small
	violtn_small
	update_modified
	qp_not_feasible
	c_diff
	step_limit_exceeded
	refactor
	x
	state
	ax
	cx
	diagt
	diagr
	iter
	n
	nclin
	ncnlin
	x
	state
	ax
	cx
	bl
	bu
	lambda
	n
	ncnlin
	x
	g
	conjac
	gprint
	g_chk
	type
	g_error
	obj_start
	obj_stop
	con_start
	con_stop
	f_sim
	correct
	dir_deriv
	fd_approx
	c_sim
	n_elements
	correct
	max_error
	max_constraint
	f_comp
	correct
	hopt
	gdiff
	iter
	comment
	c_comp
	g_prt
	it_maj_prt
	sol_sqp_prt
	it_prt
	new_lm
	sol_prt
	user
	iuser
	p

	NAG C Library Manual, Mark 26
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

