
NAG Library Function Document

nag_opt_handle_solve_ipopt (e04stc)

Note: this function uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm and to Section 12 for a detailed
description of the specification of the optional parameters.

1 Purpose

nag_opt_handle_solve_ipopt (e04stc), an interior point method optimization solver, based on the IPOPT
software package, is a solver for the NAG optimization modelling suite and is suitable for large scale
nonlinear programming (NLP) problems.

2 Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_handle_solve_ipopt (void *handle,

void (*objfun)(Integer nvar, const double x[], double *fx,
Integer *inform, Nag_Comm *comm),

void (*objgrd)(Integer nvar, const double x[], Integer nnzfd,
double fdx[], Integer *inform, Nag_Comm *comm),

void (*confun)(Integer nvar, const double x[], Integer ncnln,
double gx[], Integer *inform, Nag_Comm *comm),

void (*congrd)(Integer nvar, const double x[], Integer nnzgd,
double gdx[], Integer *inform, Nag_Comm *comm),

void (*hess)(Integer nvar, const double x[], Integer ncnln, Integer idf,
double sigma, const double lambda[], Integer nnzh, double hx[],
Integer *inform, Nag_Comm *comm),

void (*mon)(Integer nvar, const double x[], Integer nnzu,
const double u[], Integer *inform, const double rinfo[],
const double stats[], Nag_Comm *comm),

Integer nvar, double x[], Integer nnzu, double u[], double rinfo[],
double stats[], Nag_Comm *comm, NagError *fail)

3 Description

nag_opt_handle_solve_ipopt (e04stc) will typically be used for nonlinear programming problems (NLP)

minimize
x2Rn

f xð Þ ðaÞ
subject to lg � g xð Þ � ug ðbÞ

lB � Bx � uB ðcÞ
lx � x � ux ðdÞ

ð1Þ

where

n is the number of the decision variables,

mg is the number of the nonlinear constraints and g xð Þ, lg and ug are mg-dimensional vectors,

mB is the number of the linear constraints and B is a mB by n matrix, lB and uB are
mB-dimensional vectors,

there are n box constraints and lx and ux are n-dimensional vectors.
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The objective f xð Þ can be specified in a number of ways: nag_opt_handle_set_linobj (e04rec) for a
dense linear function, nag_opt_handle_set_quadobj (e04rfc) for a sparse linear or quadratic function and
nag_opt_handle_set_nlnobj (e04rgc) for a general nonlinear function. In the last case, objfun and
objgrd will be used to compute values and gradients of the objective function. Variable box bounds
lx; ux can be specified with nag_opt_handle_set_simplebounds (e04rhc). The special case of linear
constraints lB; B; uB is handled by nag_opt_handle_set_linconstr (e04rjc) while general nonlinear
constraints lg; g xð Þ; ug are specified by nag_opt_handle_set_nlnconstr (e04rkc) (both can be specified).
Again, in the last case, confun and congrd will be used to compute values and gradients of the
nonlinear constraint functions.

Finally, if the user is willing to calculate second derivatives, the sparsity structure of the second partial
derivatives of a nonlinear objective and/or of any nonlinear constraints is specified by
nag_opt_handle_set_nlnhess (e04rlc) while the values of these derivatives themselves will be computed
by user-supplied hess. While there is an option (see Hessian Mode) that forces internal approximation
of second derivatives, no such option exists for first derivatives which must be computed accurately. If
nag_opt_handle_set_nlnhess (e04rlc) has been called and hess is used to calculate values for second
derivatives, both the objective and all the constraints must be included; it is not possible to provide a
subset of these. If nag_opt_handle_set_nlnhess (e04rlc) is not called, then internal approximation of
second derivatives will take place.

3.1 Structure of the Lagrange Multipliers

For a problem consisting of n variable bounds, mB linear constraints and mg nonlinear constraints (as
specified in nvar, nclin and ncnln of nag_opt_handle_set_simplebounds (e04rhc), nag_opt_handle_
set_linconstr (e04rjc) and nag_opt_handle_set_nlnconstr (e04rkc), respectively), the number of
Lagrange mul t ip l i e r s , and consequen t ly the cor rec t va lue fo r nnzu , w i l l be
q ¼ 2 � nþ 2 �mB þ 2 �mg. The order these will be found in the u array is

z1L ; z1U ; z2L ; z2U . . . znL
; znU

; �1L ; �1U ; �2L ; �2U . . .�mBL
; �mBU

; � mBþ1ð ÞL ; � mBþ1ð ÞU ; � mBþ2ð ÞL ; � mBþ2ð ÞU . . .
� mBþmgð Þ

L

; � mBþmgð Þ
U

where the L and U subscripts refer to lower and upper bounds, respectively, and the variable bound
constraint multipliers come first (if present, i.e., if nag_opt_handle_set_simplebounds (e04rhc) was
called), followed by the linear constraint multipliers (if present, i.e., if nag_opt_handle_set_linconstr
(e04rjc) was called) and the nonlinear constraint multipliers (if present, i.e., if nag_opt_handle_
set_nlnconstr (e04rkc) was called).

Significantly nonzero values for any of these, after the solver has terminated, indicates that the
corresponding constraint is active. Significance is judged in the first instance by the relative scale of any
value compared to the smallest among them.
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5 Arguments

1: handle – void * Input

On entry: the handle to the problem. It needs to be initialized by nag_opt_handle_init (e04rac)
and the problem formulated by some of the functions nag_opt_handle_set_linobj (e04rec),
nag_opt_handle_set_quadobj (e04rfc), nag_opt_handle_set_nlnobj (e04rgc), nag_opt_handle_set_
simplebounds (e04rhc), nag_opt_handle_set_linconstr (e04rjc), nag_opt_handle_set_nlnconstr
(e04rkc) and nag_opt_handle_set_nlnhess (e04rlc). It must not be changed between calls to
the NAG optimization modelling suite.

2: objfun – function, supplied by the user External Function

objfun must calculate the value of the nonlinear objective function f xð Þ at a specified value of
the n-element vector of x variables. If there is no nonlinear objective (e.g., nag_opt_handle_
set_linobj (e04rec) or nag_opt_handle_set_quadobj (e04rfc) was called to define a linear or
quadratic objective function), objfun will never be called by nag_opt_handle_solve_ipopt
(e04stc) and may be NULLFN.

The specification of objfun is:

void objfun (Integer nvar, const double x[], double *fx,
Integer *inform, Nag_Comm *comm)

1: nvar – Integer Input

On entry: n, the number of variables in the problem. It must be unchanged from the
value set during the initialization of the handle by nag_opt_handle_init (e04rac).

2: x½nvar� – const double Input

On entry: the vector x of variable values at which the objective function is to be
evaluated.

3: fx – double * Output

On exit: the value of the objective function at x.

4: inform – Integer * Input/Output

On entry: a non-negative value.

On exit: must be set to a value describing the action to be taken by the solver on return
from objfun. Specifically, if the value is negative then the value of fx will be discarded
and the solver will either attempt to find a different trial point or terminate immediately
with fail:code ¼ NE_USER_NAN (the same will happen if fx is Infinity or NaN);
otherwise, the solver will proceed normally.

5: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to objfun.
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user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_opt_handle_solve_ipopt
(e04stc) you may allocate memory and initialize these pointers with various
quantities for use by objfun when called from nag_opt_handle_solve_ipopt
(e04stc) (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

3: objgrd – function, supplied by the user External Function

objgrd must calculate the values of the nonlinear objective function gradients
@f

@x
at a specified

value of the n-element vector of x variables. If there is no nonlinear objective (e.g.,
nag_opt_handle_set_linobj (e04rec) or nag_opt_handle_set_quadobj (e04rfc) was called to define
a linear or quadratic objective function), objgrd will never be called by nag_opt_handle_
solve_ipopt (e04stc) and may be NULLFN.

The specification of objgrd is:

void objgrd (Integer nvar, const double x[], Integer nnzfd,
double fdx[], Integer *inform, Nag_Comm *comm)

1: nvar – Integer Input

On entry: n, the number of variables in the problem. It must be unchanged from the
value set during the initialization of the handle by nag_opt_handle_init (e04rac).

2: x½nvar� – const double Input

On entry: the vector x of variable values at which the objective function gradient is to
be evaluated.

3: nnzfd – Integer Input

On entry: the number of nonzero elements in the sparse gradient vector of the objective
function, as was set in a previous call to nag_opt_handle_set_nlnobj (e04rgc).

4: fdx½nnzfd� – double Output

On exit: the values of the nonzero elements in the sparse gradient vector of the
objective function, in the order specified by idxfd in a previous call to

nag_opt_handle_set_nlnobj (e04rgc). fdx½i � 1� will be the gradient
@f

@xidxfd½i�1�
.

5: inform – Integer * Input/Output

On entry: a non-negative value.

On exit: must be set to a value describing the action to be taken by the solver on return
from objgrd. Specifically, if the value is negative the solution of the current problem
will terminate immediately with fail:code ¼ NE_USER_NAN (the same will happen if
fdx contains Infinity or NaN); otherwise, computations will continue.

6: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to objgrd.
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user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_opt_handle_solve_ipopt
(e04stc) you may allocate memory and initialize these pointers with various
quantities for use by objgrd when called from nag_opt_handle_solve_ipopt
(e04stc) (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

4: confun – function, supplied by the user External Function

confun must calculate the values of the mg-element vector gi xð Þ of nonlinear constraint functions
at a specified value of the n-element vector of x variables. If no nonlinear constraints were
registered in this handle, confun will never be called by nag_opt_handle_solve_ipopt (e04stc)
and may be specified as NULLFN.

The specification of confun is:

void confun (Integer nvar, const double x[], Integer ncnln,
double gx[], Integer *inform, Nag_Comm *comm)

1: nvar – Integer Input

On entry: n, the number of variables in the problem. It must be unchanged from the
value set during the initialization of the handle by nag_opt_handle_init (e04rac).

2: x½nvar� – const double Input

On entry: the vector x of variable values at which the constraint functions are to be
evaluated.

3: ncnln – Integer Input

On entry: mg, the number of nonlinear constraints, as specified in an earlier call to
nag_opt_handle_set_nlnconstr (e04rkc).

4: gx½ncnln� – double Output

On exit: the mg values of the nonlinear constraint functions at x.

5: inform – Integer * Input/Output

On entry: a non-negative value.

On exit: must be set to a value describing the action to be taken by the solver on return
from confun. Specifically, if the value is negative then the value of gx will be discarded
and the solver will either attempt to find a different trial point or terminate immediately
with fail:code ¼ NE_USER_NAN (the same will happen if gx contains Infinity or
NaN); otherwise, the solver will proceed normally.

6: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to confun.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_opt_handle_solve_ipopt
(e04stc) you may allocate memory and initialize these pointers with various
quantities for use by confun when called from nag_opt_handle_solve_ipopt
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(e04stc) (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

5: congrd – function, supplied by the user External Function

congrd must calculate the nonzero values of the sparse Jacobian of the nonlinear constraint

functions
@gi
@x

at a specified value of the n-element vector of x variables. If there are no nonlinear

constraints (e.g., nag_opt_handle_set_nlnconstr (e04rkc) was never called with the same handle
or it was called with ncnln ¼ 0), congrd will never be called by nag_opt_handle_solve_ipopt
(e04stc) and may be specified as NULLFN.

The specification of congrd is:

void congrd (Integer nvar, const double x[], Integer nnzgd,
double gdx[], Integer *inform, Nag_Comm *comm)

1: nvar – Integer Input

On entry: n, the number of variables in the problem. It must be unchanged from the
value set during the initialization of the handle by nag_opt_handle_init (e04rac).

2: x½nvar� – const double Input

On entry: the vector x of variable values at which the Jacobian of the constraint
functions is to be evaluated.

3: nnzgd – Integer Input

On entry: is the number of nonzero elements in the sparse Jacobian of the constraint
functions, as was set in a previous call to nag_opt_handle_set_nlnconstr (e04rkc).

4: gdx½nnzgd� – double Output

On exit: the nonzero values of the Jacobian of the nonlinear constraints, in the order
specified by irowgd and icolgd in an earlier call to nag_opt_handle_set_nlnconstr

(e04rkc). gdx½i � 1� will be the gradient
@girowgd½i�1�
@xicolgd½i�1�

.

5: inform – Integer * Input/Output

On entry: a non-negative value.

On exit: must be set to a value describing the action to be taken by the solver on return
from congrd. Specifically, if the value is negative the solution of the current problem
will terminate immediately with fail:code ¼ NE_USER_NAN (the same will happen if
gdx contains Infinity or NaN); otherwise, computations will continue.

6: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to congrd.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_opt_handle_solve_ipopt
(e04stc) you may allocate memory and initialize these pointers with various
quantities for use by congrd when called from nag_opt_handle_solve_ipopt
(e04stc) (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).
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6: hess – function, supplied by the user External Function

hess must calculate the nonzero values of one of a set of second derivative quantities:

the Hessian of the Lagrangian function �r2f þ
Xmg

i¼1

�ir2gi

the Hessian of the objective function r2f

the Hessian of the constraint functions r2gi

The value of argument idf determines which one of these is to be computed and this, in turn, is
determined by earlier calls to nag_opt_handle_set_nlnhess (e04rlc), when the nonzero sparsity
structure of these Hessians was registered. Please note that it is not possible to only supply a
subset of the Hessians (see fail:code ¼ NE_DERIV_ERRORS or NE_NULL_ARGUMENT). If
there were no calls to nag_opt_handle_set_nlnhess (e04rlc), hess will never be called by
nag_opt_handle_solve_ipopt (e04stc) and may be specified as NULLFN. In this case, the
Hessian of the Lagrangian will be approximated by a limited-memory quasi-Newton method (L-
BFGS).

The specification of hess is:

void hess (Integer nvar, const double x[], Integer ncnln, Integer idf,
double sigma, const double lambda[], Integer nnzh, double hx[],
Integer *inform, Nag_Comm *comm)

1: nvar – Integer Input

On entry: n, the number of variables in the problem. It must be unchanged from the
value set during the initialization of the handle by nag_opt_handle_init (e04rac).

2: x½nvar� – const double Input

On entry: the vector x of variable values at which the Hessian functions are to be
evaluated.

3: ncnln – Integer Input

On entry: mg, the number of nonlinear constraints, as specified in an earlier call to
nag_opt_handle_set_nlnconstr (e04rkc).

4: idf – Integer Input

On entry: specifies the quantities to be computed in hx.

idf ¼ �1
The values of the Hessian of the Lagrangian will be computed in hx. This will be
the case if nag_opt_handle_set_nlnhess (e04rlc) has been called with idf of the
same value.

idf ¼ 0
The values of the Hessian of the objective function will be computed in hx. This
will be the case if nag_opt_handle_set_nlnhess (e04rlc) has been called with idf
of the same value.

idf > 0
The values of the Hessian of the idfth constraint function will be computed in hx.
This will be the case if nag_opt_handle_set_nlnhess (e04rlc) has been called with
idf of the same value.

5: sigma – double Input

On entry: if idf ¼ �1, the value of the � quantity in the definition of the Hessian of the
Lagrangian. Otherwise, sigma should not be referenced.
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6: lambda½ncnln� – const double Input

On entry: if idf ¼ �1, the values of the �i quantities in the definition of the Hessian of
the Lagrangian. Otherwise, lambda should not be referenced.

7: nnzh – Integer Input

On entry: the number of nonzero elements in the Hessian to be computed.

8: hx½nnzh� – double Output

On exit: the nonzero values of the requested Hessian evaluated at x. For each value of
idf, the ordering of nonzeros must follow the sparsity structure registered in the handle
by earlier calls to nag_opt_handle_set_nlnhess (e04rlc) through the arguments irowh
and icolh.

9: inform – Integer * Input/Output

On entry: a non-negative value.

On exit: must be set to a value describing the action to be taken by the solver on return
from hess. Specifically, if the value is negative the solution of the current problem will
terminate immediately with fail:code ¼ NE_USER_NAN (the same will happen if hx
contains Infinity or NaN); otherwise, computations will continue.

10: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to hess.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_opt_handle_solve_ipopt
(e04stc) you may allocate memory and initialize these pointers with various
quantities for use by hess when called from nag_opt_handle_solve_ipopt (e04stc)
(see Section 2.3.1.1 in How to Use the NAG Library and its Documentation).

7: mon – function, supplied by the user External Function

mon is provided to enable you to monitor the progress of the optimization. A facility is provided
to halt the optimization process if necessary, using parameter inform.

mon may be specified as NULLFN.

The specification of mon is:

void mon (Integer nvar, const double x[], Integer nnzu,
const double u[], Integer *inform, const double rinfo[],
const double stats[], Nag_Comm *comm)

1: nvar – Integer Input

On entry: n, the number of variables in the problem.

2: x½nvar� – const double Input

On entry: xi, the values of the decision variables x at the current iteration.

3: nnzu – Integer Input

On entry: the dimension of array u.

e04stc NAG Library Manual

e04stc.8 Mark 26



4: u½nnzu� – const double Input

On entry: if nnzu > 0, u holds the values at the current iteration of Lagrange
multipliers (dual variables) for the constraints. See Section 3.1 for layout information.

5: inform – Integer * Input/Output

On entry: a non-negative value.

On exit: must be set to a value describing the action to be taken by the solver on return
from mon. Specifically, if the value is negative the solution of the current problem will
terminate immediately with fail:code ¼ NE_USER_STOP; otherwise, computations will
continue.

6: rinfo½32� – const double Input

On entry: error measures and various indicators at the end of the current iteration as
described in Section 9.1.

7: stats½32� – const double Input

On entry: solver statistics at the end of the current iteration as described in Section 9.1.

8: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to mon.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_opt_handle_solve_ipopt
(e04stc) you may allocate memory and initialize these pointers with various
quantities for use by mon when called from nag_opt_handle_solve_ipopt (e04stc)
(see Section 2.3.1.1 in How to Use the NAG Library and its Documentation).

8: nvar – Integer Input

On entry: n, the number of variables in the problem. It must be unchanged from the value set
during the initialization of the handle by nag_opt_handle_init (e04rac).

9: x½nvar� – double Input/Output

On entry: x0, the initial estimates of the variables x.

On exit: the final values of the variables x.

10: nnzu – Integer Input

On entry: the number of Lagrange multipliers that are to be returned in array u.

If nnzu ¼ 0, u will not be referenced; otherwise it needs to match the dimension q as explained
in Section 3.1.

Constraints:

nnzu � 0;
if nnzu > 0, nnzu ¼ q.

11: u½nnzu� – double Output

Note: if nnzu > 0, u holds Lagrange multipliers (dual variables) for the constraints. See
Section 3.1 for layout information. If nnzu ¼ 0, u will not be referenced and may be NULL.

On exit: the final value of Lagrange multipliers z; �.
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12: rinfo½32� – double Output

On exit: error measures and various indicators at the end of the final iteration as given in the
table below:

0 objective function value f xð Þ
1 constraint violation (primal infeasibility) (8)

2 dual infeasibility (7)

3 complementarity

4 Karush–Kuhn–Tucker error

13: stats½32� – double Output

On exit: solver statistics at the end of the final iteration as given in the table below:

0 number of the iterations

2 number of backtracking trial steps

3 number of Hessian evaluations

4 number of objective gradient evaluations

7 total wall clock time elapsed

18 number of objective function evaluations

19 number of constraint function evaluations

20 number of constraint Jacobian evaluations

14: comm – Nag_Comm *

The NAG communication argument (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

15: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_ALREADY_DEFINED

A different solver from the suite has already been used. Initialize a new handle using
nag_opt_handle_init (e04rac).

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_DERIV_ERRORS

Either all of the constraint and objective Hessian structures must be defined or none (in which
case, the Hessians will be approximated by a limited-memory quasi-Newton L-BFGS method).

On entry, a nonlinear objective function has been defined but no objective Hessian sparsity
structure has been defined through nag_opt_handle_set_nlnhess (e04rlc).
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On entry, a nonlinear constraint function has been defined but no constraint Hessian sparsity
structure has been defined through nag_opt_handle_set_nlnhess (e04rlc), for constraint number
valueh i.

NE_HANDLE

The supplied handle does not define a valid handle to the data structure for the NAG
optimization modelling suite. It has not been initialized by nag_opt_handle_init (e04rac) or it has
been corrupted.

NE_INT

On entry, nnzu ¼ valueh i.
Constraint: nnzu ¼ valueh i or 0.

On entry, nnzu ¼ valueh i.
Constraint: no constraints present, so nnzu must be 0.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in How to Use the NAG Library and its Documentation for further information.

NE_MAYBE_INFEASIBLE

The solver detected an infeasible problem. The restoration phase converged to a point that is a
minimizer for the constraint violation (in the ‘1-norm), but is not feasible for the original
problem. This indicates that the problem may be infeasible (or at least that the algorithm is stuck
at a locally infeasible point). The returned point (the minimizer of the constraint violation) might
help you to find which constraint is causing the problem. If you believe that the NLP is feasible,
it might help to start the optimization from a different point.

NE_MAYBE_UNBOUNDED

The solver terminated due to diverging iterates. The max-norm of the iterates has become larger
than a preset value. This can happen if the problem is unbounded below and the iterates are
diverging.

NE_NO_IMPROVEMENT

The solver terminated after the search direction became too small. This indicates that the solver
is calculating very small step sizes and is making very little progress. This could happen if the
problem has been solved to the best numerical accuracy possible given the current NLP scaling.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in How to Use the NAG Library and its Documentation for further information.

NE_NOT_IMPLEMENTED

This routine is not available in this implementation.

NE_NULL_ARGUMENT

The problem requires the confun values. Please provide a proper confun function.

The problem requires the congrd derivatives. Please provide a proper congrd function.

The problem requires the hess derivatives. Either change the option Hessian Mode or provide a
proper hess function.

The problem requires the objfun values. Please provide a proper objfun function.
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The problem requires the objgrd derivatives. Please provide a proper objgrd function.

NE_PHASE

The problem is already being solved.

NE_REF_MATCH

The information supplied does not match with that previously stored.
On entry, nvar ¼ valueh i must match that given during initialization of the handle, i.e., valueh i.

NE_SETUP_ERROR

This solver does not support matrix inequality constraints.

NE_SUBPROBLEM

The solver terminated after an error in the step computation. This message is printed if the solver
is unable to compute a search direction, despite several attempts to modify the iteration matrix.
Usually, the value of the regularization parameter then becomes too large. One situation where
this can happen is when values in the Hessian are invalid (NaN or Infinity). You can check
whether this is true by using the Verify Derivatives option.

The solver terminated after failure in the restoration phase. This indicates that the restoration
phase failed to find a feasible point that was acceptable to the filter line search for the original
problem. This could happen if the problem is highly degenerate, does not satisfy the constraint
qualification, or if your NLP code provides incorrect derivative information.

The solver terminated after the maximum time allowed was exceeded. Maximum number of
seconds exceeded. Use option Time Limit to reset the limit.

The solver terminated due to an invalid option. Please contact NAG with details of the call to
nag_opt_handle_solve_ipopt (e04stc).

The solver terminated due to an invalid problem definition. Please contact NAG with details of
the call to nag_opt_handle_solve_ipopt (e04stc).

The solver terminated with not enough degrees of freedom. This indicates that your problem, as
specified, has too few degrees of freedom. This can happen if you have too many equality
constraints, or if you fix too many variables.

NE_TOO_MANY_ITER

Maximum number of iterations exceeded.

NE_USER_NAN

Invalid number detected in user function. Either inform was set to a negative value within the
user-supplied functions objfun, objgrd, confun, congrd or hess, or an Infinity or NaN was
detected in values returned from them.

NE_USER_STOP

User requested termination during a monitoring step. inform was set to a negative value in mon.

NW_NOT_CONVERGED

The solver reports NLP solved to acceptable level. This indicates that the algorithm did not
converge to the desired tolerances, but that it was able to obtain a point satisfying the acceptable
tolerance level. This may happen if the desired tolerances are too small for the current problem.

7 Accuracy

The accuracy of the solution is driven by optional parameter Stop Tolerance 1.
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If fail:code ¼ NE_NOERROR on the final exit, the returned point satisfies Karush–Kuhn–Tucker
(KKT) conditions to the requested accuracy (under the default settings close to

ffiffi
�

p
where � is the

machine precision) and thus it is a good estimate of a local solution. If fail:code ¼
NW_NOT_CONVERGED, some of the convergence conditions were not fully satisfied but the point
still seems to be a reasonable estimate and should be usable. Please refer to Section 11.1 and the
description of the particular options.

8 Parallelism and Performance

nag_opt_handle_solve_ipopt (e04stc) is not threaded in any implementation.

9 Further Comments

9.1 Description of the Printed Output

The solver can print information to give an overview of the problem and of the progress of the
computation. The output may be sent to two independent streams (files) which are set by optional
parameters Print File and Monitoring File. Optional parameters Print Level and Monitoring Level
determine the exposed level of detail. This allows, for example, the generation of a detailed log in a file
while the condensed information is displayed on the screen. This section also describes what kind of
information is made available to the monitoring function mon via rinfo and stats.

There are four sections printed to the primary output with the default settings (level 2): a derivative
check, a header, an iteration log and a summary. At higher levels more information will be printed,
including any internal IPOPT options that have been changed from their default values.

Derivative Check

If Verify Derivatives is set, then information will appear about any errors detected in the user-supplied
derivative functions objgrd, congrd or hess. It may look like this:

Starting derivative checker for first derivatives.

* grad_f[ 1] = -2.000000e+00 ~ 2.455000e+01 [ 1.081e+00]
* jac_g [ 1, 4] = 4.700969e+01 v ~ 5.200968e+01 [ 9.614e-02]
Starting derivative checker for second derivatives.

* obj_hess[ 1, 1] = 1.881000e+03 v ~ 1.882000e+03 [
5.314e-04]
* 1-th constr_hess[ 1, 3] = 2.988964e+00 v ~ -1.103543e-02 [

3.000e+00]

Derivative checker detected 3 error(s).

The first line indicates that the value for the partial derivative of the objective with respect to the first
variable as returned by objgrd (the first one printed) differs sufficiently from a finite difference
estimation derived from objfun (the second one printed). The number in square brackets is the relative
difference between these two numbers.

The second line reports on a discrepancy for the partial derivative of the first constraint with respect to
the fourth variable. If the indicator v is absent, the discrepancy refers to a component that had not been
included in the sparsity structure, in which case the nonzero structure of the derivatives should be
corrected. Mistakes in the first derivatives should be corrected before attempting to correct mistakes in
the second derivatives.

The third line reports on a discrepancy in a second derivative of the objective function, differentiated
with respect to the first variable, twice.

The fourth line reports on a discrepancy in a second derivative of the first constraint, differentiated with
respect to the first and third variables.

Header
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If Print Level � 1, the header will contain statistics about the size of the problem how the solver sees
it, i.e., it reflects any changes imposed by preprocessing and problem transformations. The header may
look like:

Number of nonzeros in equality constraint Jacobian...: 4Number of
nonzeros in inequality constraint Jacobian.: 8Number of nonzeros in
Lagrangian Hessian.............: 10Total number of vari-
ables............................: 4 variables with
only lower bounds: 4 variables with lower and upper
bounds: 0 variables with only upper bounds:
0Total number of equality constraints.................: 1Total number
of inequality constraints...............: 2 inequality
constraints with only lower bounds: 2 inequality constraints with
lower and upper bounds: 0 inequality constraints with only upper
bounds: 0

It summarises what is known about the variables and the constraints. Simple bounds are set by
nag_opt_handle_set_simplebounds (e04rhc) and standard equalities and inequalities by nag_opt_han
dle_set_linconstr (e04rjc).

Iteration log

If Print Level ¼ 2, the status of each iteration is condensed to one line. The line shows:

iter The current iteration count. This includes regular iterations and iterations during
the restoration phase. If the algorithm is in the restoration phase, the letter r will
be appended to the iteration number. The iteration number 0 represents the
starting point. This quantity is also available as stats½0� of mon.

objective The unscaled objective value at the current point (given the current NLP scaling).
During the restoration phase, this value remains the unscaled objective value for
the original problem. This quantity is also available as rinfo½0� of mon.

inf_pr The unscaled constraint violation at the current point (given the current NLP
scaling). This quantity is the infinity-norm (max) of the (unscaled) constraints gi.
During the restoration phase, this value remains the constraint violation of the
original problem at the current point. This quantity is also available as rinfo½1� of
mon.

inf_du The scaled dual infeasibility at the current point (given the current NLP scaling).
This quantity measure the infinity-norm (max) of the internal dual infeasibility, �i

of Eq. (4a) in the implementation paper WÌchter and Biegler (2006), including
inequality constraints reformulated using slack variables and NLP scaling. During
the restoration phase, this is the value of the dual infeasibility for the restoration
phase problem. This quantity is also available as rinfo½2� of mon.

lg(mu) log10 of the value of the barrier parameter �. � itself is also available as rinfo½3�
of mon.

||d|| The infinity norm (max) of the primal step (for the original variables x and the
internal slack variables s). During the restoration phase, this value includes the
values of additional variables, p

�
and n

�
(see Eq. (30) in WÌchter and Biegler

(2006)). This quantity is also available as rinfo½4� of mon.

lg(rg) log10 of the value of the regularization term for the Hessian of the Lagrangian in
the augmented system (�w of Eq. (26) and Section 3.1 in WÌchter and Biegler
(2006)). A dash (–) indicates that no regularization was done. The regularization
term itself is also available as rinfo½5� of mon.

alpha_du The stepsize for the dual variables (�z
k of Eq. (14c) in WÌchter and Biegler

(2006)). This quantity is also available as rinfo½6� of mon.

alpha_pr The stepsize for the primal variables (�k of Eq. (14a) in WÌchter and Biegler
(2006)). This quantity is also available as rinfo½7� of mon. The number is usually
followed by a character for additional diagnostic information regarding the step
acceptance criterion.
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ff-type iteration in the filter method without second order correction

Ff-type iteration in the filter method with second order correction

hh-type iteration in the filter method without second order correction

Hh-type iteration in the filter method with second order correction

kpenalty value unchanged in merit function method without second order
correction

Kpenalty value unchanged in merit function method with second order
correction

npenalty value updated in merit function method without second order
correction

Npenalty value updated in merit function method with second order
correction

RRestoration phase just started

win watchdog procedure

sstep accepted in soft restoration phase

t/Ttiny step accepted without line search

rsome previous iterate restored

ls The number of backtracking line search steps (does not include second order
correction steps). This quantity is also available as stats½1� of mon.

Note that the step acceptance mechanisms in IPOPT consider the barrier objective function (5) which is
usually different from the value reported in the objective column. Similarly, for the purposes of the
step acceptance, the constraint violation is measured for the internal problem formulation, which
includes slack variables for inequality constraints and potentially NLP scaling of the constraint
functions. This value, too, is usually different from the value reported in inf_pr. As a consequence, a
new iterate might have worse values both for the objective function and the constraint violation as
reported in the iteration output, seemingly contradicting globalization procedure.

Note that all these values are also available in rinfo½0�; . . . ; rinfo½7� and stats½0�; . . . ; stats½1�of the
monitoring function mon.

The output might look as follows:

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr
ls

0 2.6603500e+05 1.55e+02 3.21e+01 -1.0 0.00e+00 - 0.00e+00 0.00e+00
0

1 1.5053889e+05 7.95e+01 1.43e+01 -1.0 1.16e+00 - 4.55e-01 1.00e+00f
1

2 8.9745785e+04 3.91e+01 6.45e+00 -1.0 3.07e+01 - 5.78e-03 1.00e+00f
1

3 3.9878595e+04 1.63e+01 3.47e+00 -1.0 5.19e+00 0.0 2.43e-01 1.00e
+00f 1

4 2.7780042e+04 1.08e+01 1.64e+00 -1.0 3.66e+01 - 7.24e-01 8.39e-01f
1

5 2.6194274e+04 1.01e+01 1.49e+00 -1.0 1.07e+01 - 1.00e+00 1.05e-01f
1

6 1.5422960e+04 4.75e+00 6.82e-01 -1.0 1.74e+01 - 1.00e+00 1.00e+00f
1

7 1.1975453e+04 3.14e+00 7.26e-01 -1.0 2.83e+01 - 1.00e+00 5.06e-01f
1

8 8.3508421e+03 1.34e+00 2.04e-01 -1.0 3.96e+01 - 9.27e-01 1.00e+00f
1

9 7.0657495e+03 4.85e-01 9.22e-02 -1.0 5.32e+01 - 1.00e+00 1.00e+00f
1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr

ls
10 6.8359393e+03 1.17e-01 1.28e-01 -1.7 4.69e+01 - 8.21e-01 1.00e+00h
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1
11 6.6508917e+03 1.52e-02 1.52e-02 -2.5 1.87e+01 - 1.00e+00 1.00e+00h

1
12 6.4123213e+03 8.77e-03 1.49e-01 -3.8 1.85e+01 - 7.49e-01 1.00e+00f

1
13 6.3157361e+03 4.33e-03 1.90e-03 -3.8 2.07e+01 - 1.00e+00 1.00e+00f

1
14 6.2989280e+03 1.12e-03 4.06e-04 -3.8 1.54e+01 - 1.00e+00 1.00e+00h

1
15 6.2996264e+03 9.90e-05 2.05e-04 -5.7 5.35e+00 - 9.63e-01 1.00e+00h

1
16 6.2998436e+03 0.00e+00 1.86e-07 -5.7 4.55e-01 - 1.00e+00 1.00e+00h

1
17 6.2998424e+03 0.00e+00 6.18e-12 -8.2 2.62e-03 - 1.00e+00 1.00e+00h

1

If Print Level > 2, each iteration produces significantly more detailed output comprising detailed error
measures and output from internal operations. The output is reasonably self-explanatory so it is not
featured here in detail.

Summary

Once the solver finishes, a detailed summary is produced if Print Level � 1. An example is shown
below:

Number of Iterations....: 6

(scaled) (unscaled)
Objective...............: 7.8692659500479623e-01 6.2324586324379867e

+00
Dual infeasibility......: 7.9744615766675617e-10 6.3157735687207093e-09
Constraint violation....: 8.3555384833289281e-12 8.3555384833289281e-12
Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e

+00
Overall NLP error.......: 7.9744615766675617e-10 6.3157735687207093e-09

Number of objective function evaluations = 7
Number of objective gradient evaluations = 7
Number of equality constraint evaluations = 7
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 7
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 6
Total CPU secs in IPOPT (w/o function evaluations) = 0.724
Total CPU secs in NLP function evaluations = 0.343

EXIT: Optimal Solution Found.

It starts with the total number of iterations the algorithm went through. Then, five quantities are printed,
all evaluated at the termination point: the value of the objective function, the dual infeasibility, the
constraint violation, the complementarity and the NLP error.

This is followed by some statistics on the number of calls to user-supplied functions and CPU time
taken in user-supplied functions and the main algorithm. Lastly, status at exit is indicated by a short
message. Detailed timings of the algorithm are displayed only if Stats Time is set.

9.2 Additional Licensor

Parts of the code for e04stc are distributed according to terms imposed by another licensor. Please refer
to the list of Library licensors available on the NAG Website for further details.
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10 Example

This example is based on Problem 73 in Hock and Schittkowski (1981) and involves the minimization
of the linear function

f xð Þ ¼ 24:55x1 þ 26:75x2 þ 39:00x3 þ 40:50x4

subject to the bounds

0 � x1;
0 � x2;
0 � x3;
0 � x4;

to the nonlinear constraint

12x1 þ 11:9x2 þ 41:8x3 þ 52:1x4 � 21� 1:645
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:28x21 þ 0:19x2

2 þ 20:5x2
3 þ 0:62x24

q
� 0

and the linear constraints

2:3x1 þ 5:6x2 þ 11:1x3 þ 1:3x4 � 5;
x1 þ x2 þ x3 þ x4 � 1 ¼ 0:

The initial point, which is infeasible, is

x0 ¼ 1; 1; 1; 1
� �T

and f x0ð Þ ¼ 130:8. The optimal solution (to five significant figures) is

x� ¼ 0:63552; 0:0; 0:31270; 0:051777ð ÞT;

10.1 Program Text

/* nag_opt_handle_solve_ipopt (e04stc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

/*
* NLP example: Linear objective + Linear constraint + Non-Linear constraint
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage04.h>
#include <nagf16.h>
#include <nagx04.h>
#include <math.h>

#ifdef __cplusplus
extern "C"
{
#endif

static void NAG_CALL objfun(Integer nvar, const double x[],
double *fx,
Integer *flag, Nag_Comm *comm);

static void NAG_CALL objgrd(Integer nvar, const double x[],
Integer nnzfd, double fdx[],
Integer *flag, Nag_Comm *comm);

static void NAG_CALL confun(Integer nvar, const double x[],
Integer ncnln, double gx[],
Integer *flag, Nag_Comm *comm);

static void NAG_CALL congrd(Integer nvar, const double x[],
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Integer nnzgd, double gdx[],
Integer *flag, Nag_Comm *comm);

static void NAG_CALL hess(Integer nvar, const double x[],
Integer ncnln, Integer idf, double sigma,
const double lambda[], Integer nnzh, double hx[],
Integer *flag, Nag_Comm *comm);

static void NAG_CALL mon(Integer nvar, const double x[],
Integer nnzu, const double u[],
Integer *flag, const double rinfo[],
const double stats[], Nag_Comm *comm);

#ifdef __cplusplus
}
#endif

int main(void)
{

#define BIGBND 1.0E40
/* Scalars */
double solve_timeout = 5.0;
Integer exit_status = 0, islinear;
Integer i, idlc, idx, j, nnzu, nvar, nclin, ncnln, nnzgd;

/* Arrays */
Integer iuser[2];
Integer idxfd[4] = {1,2,3,4};
double ruser[4] = {24.55, 26.75, 39.00, 40.50};
double rinfo[32], stats[32], *x = 0, *u = 0;
double bl[4] = {0,0,0,0};
double bu[4] = {BIGBND,BIGBND,BIGBND,BIGBND};
double linbl[2] = {5.0,1.0};
double linbu[2] = {BIGBND,1.0};
double nlnbl[1] = {21.0};
double nlnbu[1] = {BIGBND};
Integer irowb[8] = {1,1,1,1,2,2,2,2};
Integer icolb[8] = {1,2,3,4,1,2,3,4};
Integer irowgd[4] = {1,1,1,1};
Integer icolgd[4] = {1,2,3,4};
Integer irowh[10], icolh[10];
double b[8]= {2.3, 5.6, 11.1, 1.3, 1.0, 1.0, 1.0, 1.0};
char opt[80];
void *handle = 0;

/* Nag Types */
NagError fail;
Nag_Comm comm;
Nag_FileID nout, file_out, mon_out, umon_out;

/* nag_open_file (x04acc).
* Open unit number for reading, writing or appending, and
* associate unit with named file
*/

nag_open_file("", 1, &nout, NAGERR_DEFAULT);

/* nag_write_line (x04bac).
* Write formatted record to external file
*/

nag_write_line(nout, "nag_opt_handle_solve_ipopt (e04stc) "
"Example Program Results");

nag_open_file("e04stc.out", 1, &file_out, NAGERR_DEFAULT);
nag_open_file("e04stc.mon", 1, &mon_out, NAGERR_DEFAULT);
nag_open_file("e04stc.umon", 1, &umon_out, NAGERR_DEFAULT);

for (islinear=0;islinear<=1;islinear++){
nnzu = 0;
nvar = 4;
/* nag_opt_handle_init (e04rac).
* Initialize an empty problem handle with NVAR variables.
*/

nag_opt_handle_init(&handle, nvar, NAGERR_DEFAULT);

e04stc NAG Library Manual

e04stc.18 Mark 26



sprintf(opt,"Infinite Bound Size = %e",BIGBND);
/* nag_opt_handle_opt_set (e04zmc).
* Set optional arguments of the solver
*/

nag_opt_handle_opt_set(handle, opt, NAGERR_DEFAULT);

nnzu += 2*nvar;
/* nag_opt_handle_set_simplebounds (e04rhc).
* Define bounds on the variables
*/

nag_opt_handle_set_simplebounds(handle, nvar, bl, bu, NAGERR_DEFAULT);

iuser[0] = islinear;
comm.iuser = iuser;
comm.user = ruser;
if (islinear==1) {

/* nag_opt_handle_set_linobj (e04rec).
* Define linear objective
*/

nag_opt_handle_set_linobj(handle, nvar, ruser, NAGERR_DEFAULT);
} else {

/* nag_opt_handle_set_nlnobj (e04rgc).
* Define non-linear objective
*/

nag_opt_handle_set_nlnobj(handle, nvar, idxfd, NAGERR_DEFAULT);
}
nclin = 2;
nnzu += 2*nclin;
idlc = 0;
/* nag_opt_handle_set_linconstr (e04rjc).
* Define a block of linear constraints
*/

nag_opt_handle_set_linconstr(handle, nclin, linbl, linbu, nclin*nvar,
irowb, icolb, b, &idlc, NAGERR_DEFAULT);

ncnln = 1;
/* dense gradients */
nnzgd = ncnln * nvar;
nnzu += 2*ncnln;
/* nag_opt_handle_set_nlnconstr (e04rkc).
* Define a block of nonlinear constraints
*/

nag_opt_handle_set_nlnconstr(handle, ncnln, nlnbl, nlnbu, nnzgd,
irowgd, icolgd, NAGERR_DEFAULT);

/* Define structure of the Hessian, dense upper triangle */
for(idx=0,i=1;i<=nvar;i++)

for(j=i;j<=nvar;j++,idx++){
icolh[idx] = j;
irowh[idx] = i;

}
/* nag_opt_handle_set_nlnhess (e04rlc).
* Define structure of Hessian of objective, constraints or the Lagrangian
*/

nag_opt_handle_set_nlnhess(handle, 1, idx, irowh, icolh, NAGERR_DEFAULT);
if (islinear!=1)

nag_opt_handle_set_nlnhess(handle, 0, idx, irowh, icolh, NAGERR_DEFAULT);
/* nag_opt_handle_print (e04ryc).

Print information about a problem
*/

nag_opt_handle_print(handle, nout, "Overview", NAGERR_DEFAULT);

if (!(x = NAG_ALLOC(nvar, double)) ||
!(u = NAG_ALLOC(nnzu, double))) {

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

for (i=0;i<nvar;i++) x[i]=1.0;
iuser[1] = umon_out;
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sprintf(opt, "Monitoring File = %" NAG_IFMT, mon_out);
nag_opt_handle_opt_set(handle, opt, NAGERR_DEFAULT);
nag_opt_handle_opt_set(handle, "Monitoring Level = 3", NAGERR_DEFAULT);
nag_opt_handle_opt_set(handle, "Outer Iteration Limit = 26",

NAGERR_DEFAULT);

sprintf(opt, "Print File = %" NAG_IFMT, file_out);
nag_opt_handle_opt_set(handle, opt, NAGERR_DEFAULT);
nag_opt_handle_opt_set(handle, "Print Level = 2", NAGERR_DEFAULT);
nag_opt_handle_opt_set(handle, "Stop Tolerance 1 = 2.5e-8", NAGERR_DEFAULT);
nag_opt_handle_opt_set(handle, "Time Limit = 60", NAGERR_DEFAULT);

INIT_FAIL(fail);
/* nag_opt_handle_solve_ipopt (e04stc).
* Run Ipopt solver on a sparse nonlinear programming problem
*/

nag_opt_handle_solve_ipopt(handle, objfun, objgrd, confun, congrd, hess,
mon, nvar, x, nnzu, u, rinfo, stats, &comm,
&fail);

if (fail.code == NE_NOERROR) {
char msg[80];
nag_opt_handle_print(handle, nout, "Options", &fail);
nag_write_line(nout, "Variables");
for (i=0; i<nvar; i++) {

sprintf(msg, " x(%10" NAG_IFMT ")%17s=%20.6e", i+1, "", x[i]);
nag_write_line(nout, msg);

}
nag_write_line(nout, "Variable bound Lagrange multipliers");
for (i=0; i<nvar; i++) {

sprintf(msg, " zL(%10" NAG_IFMT ")%16s=%20.6e", i+1, "", u[2*i]);
nag_write_line(nout, msg);
sprintf(msg, " zU(%10" NAG_IFMT ")%16s=%20.6e", i+1, "", u[2*i+1]);
nag_write_line(nout, msg);

}
nag_write_line(nout, "Linear constraints Lagrange multipliers");
for (i=0;i<nclin;i++) {

sprintf(msg, " l+(%10" NAG_IFMT ")%16s=%20.6e", i+1, "",
u[2*nvar+2*i]);

nag_write_line(nout,msg);
sprintf(msg, " l-(%10" NAG_IFMT ")%16s=%20.6e", i+1, "",

u[2*nvar+2*i+1]);
nag_write_line(nout, msg);

}
nag_write_line(nout, "Nonlinear constraints Lagrange multipliers");
for (i=0;i<ncnln;i++) {

sprintf(msg, " l+(%10" NAG_IFMT ")%16s=%20.6e", i+1, "",
u[2*(nvar+nclin)+2*i]);

nag_write_line(nout, msg);
sprintf(msg, " l-(%10" NAG_IFMT ")%16s=%20.6e", i+1, "",

u[2*(nvar+nclin)+2*i+1]);
nag_write_line(nout, msg);

}
sprintf(msg, "\nAt solution, Objective minimum =%20.7e", rinfo[0]);
nag_write_line(nout, msg);
sprintf(msg, " Constraint violation =%20.2e", rinfo[1]);
nag_write_line(nout, msg);
sprintf(msg, " Dual infeasibility =%20.2e", rinfo[2]);
nag_write_line(nout, msg);
sprintf(msg, " Complementarity =%20.2e", rinfo[3]);
nag_write_line(nout, msg);
sprintf(msg, " KKT error =%20.2e", rinfo[4]);
nag_write_line(nout, msg);
if (stats[7] < solve_timeout)

sprintf(msg, "Solved in allotted time limit");
else

sprintf(msg, "Solution took %6.2f sec, which is longer than expected",
stats[7]);

nag_write_line(nout, msg);
sprintf(msg, " after iterations :%11.0f",

stats[0]);
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nag_write_line(nout, msg);
sprintf(msg, " after objective evaluations :%11.0f",

stats[18]);
nag_write_line(nout, msg);
sprintf(msg, " after objective gradient evaluations :%11.0f",

stats[4]);
nag_write_line(nout, msg);
sprintf(msg, " after constraint evaluations :%11.0f",

stats[19]);
nag_write_line(nout, msg);
sprintf(msg, " after constraint gradient evaluations :%11.0f",

stats[20]);
nag_write_line(nout, msg);
sprintf(msg, " after hessian evaluations :%11.0f",

stats[3]);
nag_write_line(nout, msg);
nag_opt_handle_print(handle, nout, "Overview", NAGERR_DEFAULT);
nag_write_line(nout,

"-----------------------------------------------------");
} else {

printf("Error from nag_opt_handle_solve_ipopt (e04stc).\n%s\n",
fail.message);

exit_status = 1;
}
if (handle)

/* nag_opt_handle_free (e04rzc).
* Destroy the problem handle and deallocate all the memory used
*/

nag_opt_handle_free(&handle, NAGERR_DEFAULT);

NAG_FREE(x);
NAG_FREE(u);

}

END:
return exit_status;

}

/* Subroutine */
#include <assert.h>

static void NAG_CALL objfun(Integer nvar, const double x[],
double *fx,
Integer *flag, Nag_Comm *comm)

{
*flag = 0;
/* nag_ddot (f16eac).
* Dot product of two vectors, allows scaling and accumulation
*/

nag_ddot(Nag_NoConj,4,1.0,x,1,0.0,comm->user,1,fx,NAGERR_DEFAULT);
assert (comm->iuser[0]!=1) ;

}
static void NAG_CALL objgrd(Integer nvar, const double x[],

Integer nnzfd, double fdx[],
Integer *flag, Nag_Comm *comm)

{
*flag = 0;
/* nag_dge_copy (f16qfc).
* Matrix copy, real rectangular matrix
*/

nag_dge_copy(Nag_ColMajor, Nag_NoTrans, nnzfd, 1, comm->user, nnzfd, fdx,
nnzfd, NAGERR_DEFAULT);

assert(comm->iuser[0]!=1);
}
static void NAG_CALL confun(Integer nvar, const double x[],

Integer ncnln, double gx[],
Integer *flag, Nag_Comm *comm)

{
*flag = 0;
gx[0]= 12.0*x[0] + 11.9*x[1] + 41.8*x[2] + 52.1*x[3] -

1.645*sqrt(.28*x[0]*x[0]+.19*x[1]*x[1]+20.5*x[2]*x[2]+.62*x[3]*x[3]);
}
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static void NAG_CALL congrd(Integer nvar, const double x[],
Integer nnzgd, double gdx[],
Integer *flag, Nag_Comm *comm)

{
double tmp;
*flag = 0;
tmp = sqrt(0.62*x[3]*x[3]+20.5*x[2]*x[2]+0.19*x[1]*x[1]+0.28*x[0]*x[0]);
gdx[0] = (12.0*tmp-0.4606*x[0])/tmp;
gdx[1] = (11.9*tmp-0.31255*x[1])/tmp;
gdx[2] = (41.8*tmp-33.7225*x[2])/tmp;
gdx[3] = (52.1*tmp-1.0199*x[3])/tmp;

}
static void NAG_CALL hess(Integer nvar, const double x[], Integer ncnln,

Integer idf, double sigma, const double lambda[],
Integer nnzh, double hx[],
Integer *flag, Nag_Comm *comm)

{
double tmp;
*flag = 0;
/* nag_dload (f16fbc).
* Broadcast scalar into real vector
*/

nag_dload(nnzh, 0.0, hx, 1, NAGERR_DEFAULT);

if (idf==0) return; /* objective is linear */
tmp = sqrt(0.62*x[3]*x[3] + 20.5*x[2]*x[2] + 0.19*x[1]*x[1]

+ 0.28*x[0]*x[0]);
tmp = tmp*(x[3]*x[3] + 33.064516129032258064 *x[2]*x[2]

+ 0.30645161290322580645*x[1]*x[1]
+ 0.45161290322580645161*x[0]*x[0]);

/* Col 1 */
hx[0] = (-0.4606*x[3]*x[3] - 15.229516129032258064 *x[2]*x[2]

- 0.14115161290322580645*x[1]*x[1])/tmp;
hx[1] = (0.14115161290322580645*x[0]*x[1])/tmp;
hx[2] = (15.229516129032258064 *x[0]*x[2])/tmp;
hx[3] = (0.4606*x[0]*x[3])/tmp;
/* Col 2 */
hx[4] = (-0.31255*x[3]*x[3] - 10.334314516129032258 *x[2]*x[2]

- 0.14115161290322580645*x[0]*x[0])/tmp;
hx[5] = (10.334314516129032258*x[1]*x[2])/tmp;
hx[6] = (0.31255*x[1]*x[3])/tmp;
/* Col 3 */
hx[7] = (-33.7225*x[3]*x[3] - 10.334314516129032258*x[1]*x[1]

- 15.229516129032258065*x[0]*x[0])/tmp;
hx[8] = (33.7225*x[2]*x[3])/tmp;
/* Col 4 */
hx[9] = (-33.7225*x[2]*x[2] - 0.31255*x[1]*x[1] - 0.4606*x[0]*x[0])/tmp;
/* nag_daxpby (f16ecc).
* Real weighted vector addition
*/

if (idf==-1)
nag_daxpby(nnzh, 0.0, hx, 1, lambda[0], hx, 1, NAGERR_DEFAULT);

else
assert(idf == 1);

}
static void NAG_CALL mon(Integer nvar, const double x[],

Integer nnzu, const double u[],
Integer *flag, const double rinfo[],
const double stats[], Nag_Comm *comm)

{
Integer i;
char msg[80];
char fmt[80] = "%2" NAG_IFMT "%14.6e %2" NAG_IFMT "%14.6e ";

*flag = 0;
nag_write_line(comm->iuser[1], "Monitoring...");
nag_write_line(comm->iuser[1], " x[]");
for (i=0; i<nvar; i+=2) {

sprintf(msg, fmt, i, x[i], i+1, x[i+1]);
nag_write_line(comm->iuser[1], msg);

}
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nag_write_line(comm->iuser[1], " u[]");
for (i=0; i<nnzu; i+=2) {

sprintf(msg, fmt, i, u[i], i+1, u[i+1]);
nag_write_line(comm->iuser[1], msg);

}
nag_write_line(comm->iuser[1], " rinfo[31]");
for (i=0; i<32; i+=2) {

sprintf(msg, fmt, i, rinfo[i], i+1, rinfo[i+1]);
nag_write_line(comm->iuser[1], msg);

}
nag_write_line(comm->iuser[1], " stats[31]");
for (i=0; i<32; i+=2) {

sprintf(msg, fmt, i, stats[i], i+1, stats[i+1]);
nag_write_line(comm->iuser[1], msg);

}
}

10.2 Program Results

nag_opt_handle_solve_ipopt (e04stc) Example Program Results
Overview

Status: Problem and option settings are editable.
No of variables: 4
Objective function: nonlinear
Simple bounds: defined
Linear constraints: 2
Nonlinear constraints: 1
Matrix constraints: not defined yet

Option settings
Begin of Options

Outer Iteration Limit = 26 * U
Infinite Bound Size = 1.00000E+40 * U
Print File = 10 * U
Print Level = 2 * U
Monitoring File = 11 * U
Monitoring Level = 3 * U
Stats Time = No * d
Stop Tolerance 1 = 2.50000E-08 * U
Hessian Mode = Exact * S
Verify Derivatives = Yes * S
Time Limit = 6.00000E+01 * U

End of Options
Variables

x( 1) = 6.355216e-01
x( 2) = 2.066279e-10
x( 3) = 3.127019e-01
x( 4) = 5.177655e-02

Variable bound Lagrange multipliers
zL( 1) = 3.916168e-09
zU( 1) = 0.000000e+00
zL( 2) = 2.433326e-01
zU( 2) = 0.000000e+00
zL( 3) = 7.974843e-09
zU( 3) = 0.000000e+00
zL( 4) = 4.944607e-08
zU( 4) = 0.000000e+00

Linear constraints Lagrange multipliers
l+( 1) = 0.000000e+00
l-( 1) = 4.105411e-01
l+( 2) = 0.000000e+00
l-( 2) = 5.803551e-01

Nonlinear constraints Lagrange multipliers
l+( 1) = 0.000000e+00
l-( 1) = 1.837124e+01

At solution, Objective minimum = 2.9894378e+01
Constraint violation = 1.11e-16
Dual infeasibility = 6.72e-12
Complementarity = 2.56e-09
KKT error = 2.56e-09
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Solved in allotted time limit
after iterations : 8
after objective evaluations : 9
after objective gradient evaluations : 9
after constraint evaluations : 9
after constraint gradient evaluations : 9
after hessian evaluations : 8

Overview
Status: Solver finished, only options can be changed.
No of variables: 4
Objective function: nonlinear
Simple bounds: defined
Linear constraints: 2
Nonlinear constraints: 1
Matrix constraints: not defined

-----------------------------------------------------
Overview

Status: Problem and option settings are editable.
No of variables: 4
Objective function: linear
Simple bounds: defined
Linear constraints: 2
Nonlinear constraints: 1
Matrix constraints: not defined yet

Option settings
Begin of Options

Outer Iteration Limit = 26 * U
Infinite Bound Size = 1.00000E+40 * U
Print File = 10 * U
Print Level = 2 * U
Monitoring File = 11 * U
Monitoring Level = 3 * U
Stats Time = No * d
Stop Tolerance 1 = 2.50000E-08 * U
Hessian Mode = Exact * S
Verify Derivatives = Yes * S
Time Limit = 6.00000E+01 * U

End of Options
Variables

x( 1) = 6.355216e-01
x( 2) = 2.066279e-10
x( 3) = 3.127019e-01
x( 4) = 5.177655e-02

Variable bound Lagrange multipliers
zL( 1) = 3.916168e-09
zU( 1) = 0.000000e+00
zL( 2) = 2.433326e-01
zU( 2) = 0.000000e+00
zL( 3) = 7.974843e-09
zU( 3) = 0.000000e+00
zL( 4) = 4.944607e-08
zU( 4) = 0.000000e+00

Linear constraints Lagrange multipliers
l+( 1) = 0.000000e+00
l-( 1) = 4.105411e-01
l+( 2) = 0.000000e+00
l-( 2) = 5.803551e-01

Nonlinear constraints Lagrange multipliers
l+( 1) = 0.000000e+00
l-( 1) = 1.837124e+01

At solution, Objective minimum = 2.9894378e+01
Constraint violation = 1.11e-16
Dual infeasibility = 6.72e-12
Complementarity = 2.56e-09
KKT error = 2.56e-09

Solved in allotted time limit
after iterations : 8
after objective evaluations : 9
after objective gradient evaluations : 9
after constraint evaluations : 9
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after constraint gradient evaluations : 9
after hessian evaluations : 8

Overview
Status: Solver finished, only options can be changed.
No of variables: 4
Objective function: linear
Simple bounds: defined
Linear constraints: 2
Nonlinear constraints: 1
Matrix constraints: not defined

-----------------------------------------------------

11 Algorithmic Details

nag_opt_handle_solve_ipopt (e04stc) is an implementation of IPOPT (see WÌchter and Biegler (2006))
that is fully supported and maintained by NAG. It uses Harwell packages MA97 for the underlying
sparse linear algebra factorization and MC68 approximate minimum degree algorithm for the ordering.
Any issues relating to nag_opt_handle_solve_ipopt (e04stc) should be directed to NAG who assume all
responsibility for the nag_opt_handle_solve_ipopt (e04stc) function and its implementation.

In the remainder of this section, we repeat part of Section 2.1 of WÌchter and Biegler (2006).

To simplify notation, we describe the method for the problem formulation

minimize
x2Rn

f xð Þ ð2Þ
subject to g xð Þ ¼ 0 ð3Þ

x � 0: ð4Þ
Range constraints of the form l � c xð Þ � u can be expressed in this formulation by introducing slack
variables xs � 0, xt � 0 (increasing n by 2) and defining new equality constraints
g x; xsð Þ � c xð Þ � l� xs ¼ 0 and g x; xtð Þ � u� c xð Þ � xt ¼ 0.

nag_opt_handle_solve_ipopt (e04stc), like the methods discussed in Williams and Lang (2013), Byrd et
al. (2000), Conn et al. (2000) and Fiacco and McCormick (1990), computes (approximate) solutions for
a sequence of barrier problems

minimize
x2Rn

’� xð Þf xð Þ � �
Xn
i¼1

ln x ið Þ� � ð5Þ

subject to g xð Þ ¼ 0 ð6Þ
for a decreasing sequence of barrier parameters � converging to zero.

The algorithm may be interpreted as a homotopy method to the primal-dual equations,

rf xð Þ þ rg xð Þ�� z ¼ 0 ð7Þ
g xð Þ ¼ 0 ð8Þ

XZe� �e ¼ 0 ð9Þ
with the homotopy parameter �, which is driven to zero (see e.g., Byrd et al. (1997) and Gould et al.
(2001)). Here, Xdiag xð Þ for a vector x (similarly zdiag zð Þ, etc.), and e stands for the vector of all ones
for appropriate dimension, while � 2 R

m and z 2 R
n correspond to the Lagrange multipliers for the

equality constraints (3) and the bound constraints (4), respectively.

Note, that the equations (7), (8) and (9) for � ¼ 0 together with ‘x, z � 0’ are the Karush–Kuhn–
Tucker (KKT) conditions for the original problem (2), (3) and (4). Those are the first order optimality
conditions for (2), (3) and (4) if constraint qualifications are satisfied (Conn et al. (2000)).

Starting from an initial point supplied in x, nag_opt_handle_solve_ipopt (e04stc) computes an
approximate solution to the barrier problem (5) and (6) for a fixed value of � (by default, 0:1), then
decreases the barrier parameter, and continues the solution of the next barrier problem from the
approximate solution of the previous one.

e04 – Minimizing or Maximizing a Function e04stc

Mark 26 e04stc.25



A sophisticated overall termination criterion for the algorithm is used to overcome potential difficulties
when the Lagrange multipliers become large. This can happen, for example, when the gradients of the
active constraints are nearly linear dependent. The termination criterion is described in detail by
WÌchter and Biegler (2006) (also see below Section 11.1).

11.1 Stopping Criteria

Using the individual parts of the primal-dual equations (7), (8) and (9), we define the optimality error
for the barrier problem as

E� x; �; zð Þmax
rf xð Þ þ rg xð Þ�� zk k1

sd
; g xð Þk k1;

XZe� �ek k1
sc

� �
ð10Þ

with scaling parameters sd, sc � 1 defined below (not to be confused with NLP scaling factors
described in Section 11.2). By E0 x; �; zð Þ we denote (10) with � ¼ 0; this measures the optimality error
for the original problem (2), (3) and (4). The overall algorithm terminates if an approximate solution
~x�; ~��; ~z�

� �
(including multiplier estimates) satisfying

E0 ~x�; ~��; ~z�
� � � �tol ð11Þ

is found, where �tol > 0 is the user provided error tolerance in optional parameter Stop Tolerance 1.

Even if the original problem is well scaled, the multipliers � and z might become very large, for
example, when the gradients of the active constraints are (nearly) linearly dependent at a solution of (2),
(3) and (4). In this case, the algorithm might encounter numerical difficulties satisfying the unscaled
primal-dual equations (7), (8) and (9) to a tight tolerance. In order to adapt the termination criteria to
handle such circumstances, we choose the scaling factors

sd max smax ;
�k k1 þ zk k1
mþ nð Þ

� �
=smax sc max smax ;

zk k1
n

� �
=smax

in (10). In this way, a component of the optimality error is scaled, whenever the average value of the
multipliers becomes larger than a fixed number smax � 1 (smax ¼ 100 in our implementation). Also
note, in the case that the multipliers diverge, E0 x; �; zð Þ can only become small, if a Fritz John point for
(2), (3) and (4) is approached, or if the primal variables diverge as well.

11.2 Scaling the NLP

Ideally, the formulated problem should be scaled so that, near the solution, all function gradients
(objective and constraints), when nonzero, are of a similar order of a magnitude. nag_opt_handle_
solve_ipopt (e04stc) will compute automatic NLP scaling factors for the objective and constraint
functions (but not the decision variables) and apply them if large imbalances of scale are detected. This
rescaling is only computed at the starting point. References to scaled or unscaled objective or
constraints in Section 9.1 and Section 11 should be understood in this context.

12 Optional Parameters

Several optional parameters in nag_opt_handle_solve_ipopt (e04stc) define choices in the problem
specification or the algorithm logic. In order to reduce the number of formal arguments of
nag_opt_handle_solve_ipopt (e04stc) these optional parameters have associated default values that are
appropriate for most problems. Therefore, you need only specify those optional parameters whose
values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The optional parameters can be changed by calling nag_opt_handle_opt_set (e04zmc) anytime between
the initialization of the handle by nag_opt_handle_init (e04rac) and the call to the solver. Modification
of the arguments during intermediate monitoring stops is not allowed. Once the solver finishes, the
optional parameters can be altered again for the next solve.
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If any options are set by the solver (typically those with the choice of AUTO), their value can be
retrieved by nag_opt_handle_opt_get (e04znc). If the solver is called again, any such arguments are
reset to their default values and the decision is made again.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 12.1.

Defaults

Hessian Mode

Infinite Bound Size

Monitoring File

Monitoring Level

Outer Iteration Limit

Print File

Print Level

Stats Time

Stop Tolerance 1

Time Limit

Verify Derivatives

12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively.

the default value, where the symbol � is a generic notation for machine precision (see
nag_machine_precision (X02AJC)).

All options accept the value DEFAULT to return single options to their default states.

Keywords and character values are case and white space insensitive.

Defaults

This special keyword may be used to reset all optional parameters to their default values. Any argument
value given with this keyword will be ignored.

Hessian Mode a Default ¼ AUTO

This argument specifies whether the Hessian will be supplied by the user (in hx) or approximated by
nag_opt_handle_solve_ipopt (e04stc) using a limited-memory quasi-Newton L-BFGS method. In the
AUTO setting, if no Hessian structure has been registered in the problem with a call to
nag_opt_handle_set_nlnhess (e04rlc), and there are explicitly nonlinear user-supplied functions, then
the Hessian will be approximated. Otherwise hess will be called if and only if any of
nag_opt_handle_set_nlnobj (e04rgc) or nag_opt_handle_set_nlnconstr (e04rkc) have been used to
define the problem. Approximating the Hessian is likely to require more iterations to achieve
convergence but will reduce the time spent in user-supplied functions.

Constraint: Hessian Mode ¼ AUTO, EXACT or APPROXIMATE.

Infinite Bound Size r Default ¼ 1020

This defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper bound
greater than or equal to bigbnd will be regarded as þ1 (and similarly any lower bound less than or
equal to �bigbnd will be regarded as �1). Note that a modification of this optional parameter does not
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influence constraints which have already been defined; only the constraints formulated after the change
will be affected.

It also serves as a limit for the objective function to be considered unbounded (fail:code ¼
NE_MAYBE_UNBOUNDED).

Constraint: Infinite Bound Size � 1000.

Monitoring File i Default ¼ �1

(See Section 2.3.1.1 in How to Use the NAG Library and its Documentation for further information on
NAG data types.)

If i � 0, the Nag_FileID number (as returned from nag_open_file (x04acc)) for the secondary
(monitoring) output. If set to �1, no secondary output is provided. The information output to this unit is
controlled by Monitoring Level.

Constraint: Monitoring File � �1.

Monitoring Level i Default ¼ 4

This argument sets the amount of information detail that will be printed by the solver to the secondary
output. The meaning of the levels is the same as with Print Level.

Constraint: 0 � Monitoring Level � 5.

Outer Iteration Limit i Default ¼ 100

The maximum number of iterations to be performed by nag_opt_handle_solve_ipopt (e04stc). Setting
the option too low might lead to fail:code ¼ NE_TOO_MANY_ITER.

Constraint: Outer Iteration Limit � 0.

Print File i Default ¼ 6

(See Section 2.3.1.1 in How to Use the NAG Library and its Documentation for further information on
NAG data types.)

If i � 0, the Nag_FileID number (as returned from nag_open_file (x04acc), stdout as the default) for
the primary output of the solver. If Print File ¼ �1, the primary output is completely turned off
independently of other settings. The information output to this unit is controlled by Print Level

Constraint: Print File � �1.

Print Level i Default ¼ 2

This argument defines how detailed information should be printed by the solver to the primary output.

i Output

0 No output from the solver (except a one-time banner)

1 Additionally, derivative check information, the Header and Summary.

2 Additionally, the Iteration log.

3, 4 Additionally, details of each iteration with scalar quantities printed.

5 Additionally, individual components of arrays are printed resulting in large output.

Constraint: 0 � Print Level � 5.

Stats Time a Default ¼ NO

This argument allows you to turn on timings of various parts of the algorithm to give a better overview
of where most of the time is spent. This might be helpful for a choice of different solving approaches.

Constraint: Stats Time ¼ YES or NO.
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Stop Tolerance 1 r Default ¼ max 10�6;
ffiffi
�

p� �
This option sets the value �tol which is used for optimality and complementarity tests from KKT
conditions See Section 11.1.

Constraint: Stop Tolerance 1 > �.

Time Limit r Default ¼ 106

A limit on seconds that the solver can use to solve one problem. If during the convergence check this
limit is exceeded, the solver will terminate with a corresponding error message.

Constraint: Time Limit > 0.

Verify Derivatives a Default ¼ AUTO

This argument specifies whether the function should perform numerical checks on the consistency of
the user-supplied functions. It is recommended that such checks are enabled when first developing the
formulation of the problem. Option AUTO will perform the checks unless it is determined that there are
no explicitly nonlinear user-supplied functions.

Constraint: Verify Derivatives ¼ AUTO, YES or NO.
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