NAG Library Function Document nag_lone_fit (e02gac)

1 Purpose

nag_lone_fit (e02gac) calculates an l_{1} solution to an over-determined system of linear equations.

2 Specification

```
#include <nag.h>
#include <nage02.h>
void nag_lone_fit (Nag_OrderType order, Integer m, double a[], double b[],
    Integer nplus2, double toler, double x[], double *resid, Integer *rank,
    Integer *iter, NagError *fail)
```


3 Description

Given a matrix A with m rows and n columns $(m \geq n)$ and a vector b with m elements, the function calculates an l_{1} solution to the over-determined system of equations

$$
A x=b .
$$

That is to say, it calculates a vector x, with n elements, which minimizes the l_{1} norm (the sum of the absolute values) of the residuals

$$
r(x)=\sum_{i=1}^{m}\left|r_{i}\right|
$$

where the residuals r_{i} are given by

$$
r_{i}=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}, \quad i=1,2, \ldots, m
$$

Here $a_{i j}$ is the element in row i and column j of A, b_{i} is the i th element of b and x_{j} the j th element of x. The matrix A need not be of full rank.

Typically in applications to data fitting, data consisting of m points with coordinates $\left(t_{i}, y_{i}\right)$ are to be approximated in the l_{1} norm by a linear combination of known functions $\phi_{j}(t)$,

$$
\alpha_{1} \phi_{1}(t)+\alpha_{2} \phi_{2}(t)+\cdots+\alpha_{n} \phi_{n}(t) .
$$

This is equivalent to fitting an l_{1} solution to the over-determined system of equations

$$
\sum_{j=1}^{n} \phi_{j}\left(t_{i}\right) \alpha_{j}=y_{i}, \quad i=1,2, \ldots, m
$$

Thus if, for each value of i and j, the element $a_{i j}$ of the matrix A in the previous paragraph is set equal to the value of $\phi_{j}\left(t_{i}\right)$ and b_{i} is set equal to y_{i}, the solution vector x will contain the required values of the α_{j}. Note that the independent variable t above can, instead, be a vector of several independent variables (this includes the case where each ϕ_{i} is a function of a different variable, or set of variables).
The algorithm is a modification of the simplex method of linear programming applied to the primal formulation of the l_{1} problem (see Barrodale and Roberts (1973) and Barrodale and Roberts (1974)). The modification allows several neighbouring simplex vertices to be passed through in a single iteration, providing a substantial improvement in efficiency.

4 References

Barrodale I and Roberts F D K (1973) An improved algorithm for discrete l_{1} linear approximation SIAM J. Numer. Anal. 10 839-848

Barrodale I and Roberts F D K (1974) Solution of an overdetermined system of equations in the l_{1}-norm Comm. ACM 17(6) 319-320

5 Arguments

1: order - Nag_OrderType
Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., rowmajor ordering or column-major ordering. C language defined storage is specified by order $=$ Nag_RowMajor. See Section 2.3.1.3 in How to Use the NAG Library and its Documentation for a more detailed explanation of the use of this argument.
Constraint: order $=$ Nag_RowMajor or Nag_ColMajor.
2: $\quad \mathbf{m}$ - Integer
Input
On entry: the number of equations, m (the number of rows of the matrix A).
Constraint: $\mathbf{m} \geq n \geq 1$.
3: $\quad \mathbf{a}[(\mathbf{m}+\mathbf{2}) \times$ nplus2 $]-$ double
Input/Output
Note: where $\mathbf{A}(i, j)$ appears in this document, it refers to the array element
$\mathbf{a}[(j-1) \times((\mathbf{m}+2))+i-1]$ when order $=$ Nag_ColMajor;
$\mathbf{a}[(i-1) \times$ nplus $2+j-1]$ when order $=$ Nag_RowMajor.
On entry: $\mathbf{A}(i, j)$ must contain $a_{i j}$, the element in the i th row and j th column of the matrix A, for $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$. The remaining elements need not be set.
On exit: contains the last simplex tableau generated by the simplex method.
4: $\quad \mathbf{b}[\mathbf{m}]$ - double
Input/Output
On entry: $\mathbf{b}[i-1]$ must contain b_{i}, the i th element of the vector b, for $i=1,2, \ldots, m$.
On exit: the i th residual r_{i} corresponding to the solution vector x, for $i=1,2, \ldots, m$.
5: nplus2 - Integer
Input
On entry: $n+2$, where n is the number of unknowns (the number of columns of the matrix A).
Constraint: $3 \leq$ nplus2 $\leq \mathbf{m}+2$.
6: toler - double
Input
On entry: a non-negative value. In general toler specifies a threshold below which numbers are regarded as zero. The recommended threshold value is $\epsilon^{2 / 3}$ where ϵ is the machine precision. The recommended value can be computed within the function by setting toler to zero. If premature termination occurs a larger value for toler may result in a valid solution.

Suggested value: 0.0.
7: $\quad \mathbf{x}[$ nplus2 $]$ - double
Output
On exit: $\mathbf{x}[j-1]$ contains the j th element of the solution vector x, for $j=1,2, \ldots, n$. The elements $\mathbf{x}[n]$ and $\mathbf{x}[n+1]$ are unused.

8: \quad resid - double *
Output
On exit: the sum of the absolute values of the residuals for the solution vector x.

9: \quad rank - Integer *
Output
On exit: the computed rank of the matrix A.
10: iter - Integer *
Output
On exit: the number of iterations taken by the simplex method.
11: fail - NagError *
Input/Output
The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in How to Use the NAG Library and its Documentation for further information.

NE_BAD_PARAM

On entry, argument $\langle v a l u e\rangle$ had an illegal value.

NE_INT

On entry, nplus2 $=\langle$ value \rangle.
Constraint: nplus2 ≥ 3.

NE_INT_2

On entry, nplus2 $=\langle$ value \rangle and $\mathbf{m}=\langle$ value \rangle.
Constraint: $3 \leq$ nplus2 $\leq \mathbf{m}+2$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in How to Use the NAG Library and its Documentation for further information.

NE_NON_UNIQUE

An optimal solution has been obtained, but may not be unique.

NE_TERMINATION_FAILURE

Premature termination due to rounding errors. Try using larger value of toler: toler $=\langle$ value \rangle.

NE_TOO_MANY_ITER

More than $1000 * n$ iterations were performed. nag_lone_fit (e02gac) has terminated without calculating a solution. The output data from the function is as computed on the last good iteration. Consider increasing the value of toler. Alternatively, A may be ill conditioned-try scaling its columns.

$7 \quad$ Accuracy

Experience suggests that the computational accuracy of the solution x is comparable with the accuracy that could be obtained by applying Gaussian elimination with partial pivoting to the n equations satisfied by this algorithm (i.e., those equations with zero residuals). The accuracy therefore varies with the conditioning of the problem, but has been found generally very satisfactory in practice.

8 Parallelism and Performance

nag_lone_fit (e02gac) is not threaded in any implementation.

9 Further Comments

The effects of m and n on the time and on the number of iterations in the Simplex Method vary from problem to problem, but typically the number of iterations is a small multiple of n and the total time taken is approximately proportional to $m n^{2}$.

It is recommended that, before the function is entered, the columns of the matrix A are scaled so that the largest element in each column is of the order of unity. This should improve the conditioning of the matrix, and also enable the argument toler to perform its correct function. The solution x obtained will then, of course, relate to the scaled form of the matrix. Thus if the scaling is such that, for each $j=1,2, \ldots, n$, the elements of the j th column are multiplied by the constant k_{j}, the element x_{j} of the solution vector x must be multiplied by k_{j} if it is desired to recover the solution corresponding to the original matrix A.

10 Example

Suppose we wish to approximate a set of data by a curve of the form

$$
y=K e^{t}+L e^{-t}+M
$$

where K, L and M are unknown. Given values y_{i} at 5 points t_{i} we may form the over-determined set of equations for K, L and M

$$
e^{x_{i}} K+e^{-x_{i}} L+M=y_{i}, \quad i=1,2, \ldots, 5
$$

nag_lone_fit (e02gac) is used to solve these in the l_{1} sense.

10.1 Program Text

```
/* nag_lone_fit (e02gac) Example Program.
    *
    * NAGPRODCODE Version.
    *
    * Copyright 2016 Numerical Algorithms Group.
    *
    * Mark 26, 2016.
    */
#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nageO2.h>
int main(void)
{
    /* Scalars */
    double resid, t, tol;
    Integer exit_status, i, iter, m, rank, n, nplus2, pda;
    NagError fail;
    Nag_OrderType order;
    /* Arrays */
```

```
    double *a = 0, *b = 0, *x = 0;
#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J-1)*pda + I - 1]
    order = Nag_ColMajor;
#else
#define A(I, J) a[(I-1)*pda + J - 1]
    order = Nag_RowMajor;
#endif
    INIT_FAIL(fail);
    exit_status = 0;
    printf("nag_lone_fit (eO2gac) Example Program Results\n");
    /* Skip heading in data file */
#ifdef _WIN32
    scanf_s("%*[^\n] ");
#else
    scanf("%*[^\n] ");
#endif
    n = 3;
    nplus2 = n + 2;
#ifdef _WIN32
    scanf_s("%" NAG_IFMT "%*[^\n] ", &m);
#else
    scanf("%" NAG_IFMT "%*[^\n] ", &m);
#endif
    if (m > 0) {
        /* Allocate memory */
        if (!(a = NAG_ALLOC((m + 2) * nplus2, double)) ||
            !(b = NAG_ALLOC(m, double)) || !(x = NAG_ALLOC(nplus2, double)))
        {
            printf("Allocation failure\n");
            exit_status = -1;
            goto END;
        }
        if (order == Nag_ColMajor)
            pda = m + 2;
        else
            pda = nplus2;
        for (i = 1; i <= m; ++i) {
#ifdef _WIN32
            scanf_s("%lf%lf%*[^\n] ", &t, &b[i - 1]);
#else
            scanf("%lf%lf%*[^\n] ", &t, &b[i - 1]);
#endif
        A(i, 1) = exp(t);
        A(i, 2) = exp(-t);
        A(i, 3) = 1.0;
    }
    tol = 0.0;
    /* nag_lone_fit (e02gac).
        * L_1-approximation by general linear function
        */
        nag_lone_fit(order, m, a, b, nplus2, tol, x, &resid, &rank, &iter, &fail);
        if (fail.code == NE_INT || fail.code == NE_INT_2 ||
            fail.code == NE_TOO_MANY_ITER ||
            fail.code == NE_NO_LICENCE) {
        printf("Error from näg_lone_fit (e02gac).\n%s\n", fail.message);
        exit_status = 1;
        goto END;
    }
    else {
        printf("\n");
        printf("resid = %11.2e Rank = %5" NAG_IFMT " Iterations ="
                " %5" NAG_IFMT "\n", resid, rank, iter);
```

```
            printf("\n");
            printf("Solution\n");
            for (i = 1; i <= n; ++i)
            printf("%10.4f", x[i - 1]);
            printf("\n");
        }
    }
END:
    NAG_FREE(a);
    NAG_FREE(b);
    NAG_FREE(x);
    return exit_status;
}
```


10.2 Program Data

```
nag_lone_fit (e02gac) Example Program Data
    5
        0.04.501
    0.2 4.360
    0.4 4.333
    0.64.418
    0.84.625
```


10.3 Program Results

```
nag_lone_fit (e02gac) Example Program Results
resid = 2.78e-03 Rank = 3 Iterations = 5
Solution
    1.0014 2.0035 1.4960
```

