
NAG Library Function Document

nag_ode_ivp_adams_roots (d02qfc)

1 Purpose

nag_ode_ivp_adams_roots (d02qfc) is a function for integrating a non-stiff system of first order
ordinary differential equations using a variable-order variable-step Adams' method. A root-finding
facility is provided.

2 Specification

#include <nag.h>
#include <nagd02.h>

void nag_ode_ivp_adams_roots (Integer neqf,

void (*fcn)(Integer neqf, double x, const double y[], double f[],
Nag_User *comm),

double *t, double y[], double tout,

double (*g)(Integer neqf, double x, const double y[], const double yp[],
Integer k, Nag_User *comm),

Nag_User *comm, Nag_ODE_Adams *opt, NagError *fail)

3 Description

Given the initial values x; y1; y2; . . . ; yneqf the function integrates a non-stiff system of first order
ordinary differential equations of the type, y0i ¼ fi x; y1; y2; . . . ; yneqf

� �
, for i ¼ 1; 2; . . . ; neqf, from

x ¼ t to x ¼ tout using a variable-order variable-step Adams' method. The system is defined by fcn,
which evaluates fi in terms of x and y1; y2; . . . ; yneqf , and y1; y2; . . . ; yneqf are supplied at x ¼ t. The
function is capable of finding roots (values of x) of prescribed event functions of the form

gj x; y; y0ð Þ ¼ 0; j ¼ 1; 2; . . . ;neqg:

(See nag_ode_ivp_adams_setup (d02qwc) for the specification of neqg).

Each gj is considered to be independent of the others so that roots are sought of each gj individually.
The root reported by the function will be the first root encountered by any gj. Two techniques for
determining the presence of a root in an integration step are available: the sophisticated method
described in Watts (1985) and a simplified method whereby sign changes in each gj are looked for at
the ends of each integration step. The event functions are defined by g, which evaluates gj in terms of
x; y1; . . . ; yneqf and y01; . . . ; y

0
neqf . In one-step mode the function returns an approximation to the solution

at each integration point. In interval mode this value is returned at the end of the integration range. If a
root is detected this approximation is given at the root. You need to select the mode of operation, the
error control, the root-finding technique and various integration inputs with a prior call of the setup
function nag_ode_ivp_adams_setup (d02qwc).

For a description of the practical implementation of an Adams' formula see Shampine and Gordon
(1975) and Shampine and Watts (1979).

d02 – Ordinary Differential d02qfc

Mark 26 d02qfc.1

4 References

Shampine L F and Gordon M K (1975) Computer Solution of Ordinary Differential Equations – The
Initial Value Problem W H Freeman & Co., San Francisco

Shampine L F and Watts H A (1979) DEPAC – design of a user oriented package of ODE solvers
Report SAND79-2374 Sandia National Laboratory

Watts H A (1985) RDEAM – An Adams ODE code with root solving capability Report SAND85-1595
Sandia National Laboratory

5 Arguments

1: neqf – Integer Input

On entry: the number of differential equations.

Constraint: neqf � 1.

2: fcn – function, supplied by the user External Function

fcn must evaluate the functions fi (that is the first derivatives y0i) for given values of its
arguments x; y1; y2; . . . ; yneqf .

The specification of fcn is:

void fcn (Integer neqf, double x, const double y[], double f[],
Nag_User *comm)

1: neqf – Integer Input

On entry: the number of differential equations.

2: x – double Input

On entry: the current value of the argument x.

3: y½neqf� – const double Input

On entry: y½i � 1� contains the current value of the argument yi, for i ¼ 1; 2; . . . ;neqf.

4: f½neqf� – double Output

On exit: f½i � 1� must contain the value of fi, for i ¼ 1; 2; . . . ; neqf.

5: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p should be cast to the required type, e.g.,
struct user *s = (struct user *)comm ! p, to obtain the original
object's address with appropriate type.

3: t – double * Input/Output

On entry: after a call to nag_ode_ivp_adams_setup (d02qwc) with state ¼ Nag NewStart (i.e., an
initial entry), t must be set to the initial value of the independent variable x.

On exit: the value of x at which y has been computed. This may be an intermediate output point,
a root, tout, or a point at which an error has occurred. If the integration is to be continued,
possibly with a new value for tout, t must not be changed.

d02qfc NAG Library Manual

d02qfc.2 Mark 26

4: y½neqf� – double Input/Output

On entry: the initial values of the solution y1; y2; . . . ; yneqf .

On exit: the computed values of the solution at the exit value of t. If the integration is to be
continued, possibly with a new value for tout, these values must not be changed.

5: tout – double Input

On entry: the next value of x at which a computed solution is required. For the initial t, the input
value of tout is used to determine the direction of integration. Integration is permitted in either
direction. If tout ¼ t on exit, tout must be reset beyond t in the direction of integration, before
any continuation call.

6: g – function, supplied by the user External Function

g must evaluate a given component of g x; y; y0ð Þ at a specified point.

If root-finding is not required the actual argument for g must be the NAG defined null double
function pointer NULLDFN.

The specification of g is:

double g (Integer neqf, double x, const double y[], const double yp[],
Integer k, Nag_User *comm)

1: neqf – Integer Input

On entry: the number of differential equations.

2: x – double Input

On entry: the current value of the independent variable.

3: y½neqf� – const double Input

On entry: the current values of the dependent variables.

4: yp½neqf� – const double Input

On entry: the current values of the derivatives of the dependent variables.

5: k – Integer Input

On entry: the component of g which must be evaluated.

6: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p should be cast to the required type, e.g.,
struct user *s = (struct user *)comm ! p, to obtain the original
object's address with appropriate type.

7: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p, of type Pointer, allows you to communicate
information to and from fcn and g. An object of the required type should be declared, e.g.,

d02 – Ordinary Differential d02qfc

Mark 26 d02qfc.3

a structure, and its address assigned to the pointer comm!p by means of a cast to Pointer
in the calling program. E.g. comm.p = (Pointer)&s.

8: opt – Nag_ODE_Adams *

Pointer to a structure of type Nag_ODE_Adams as initialized by the setup function
nag_ode_ivp_adams_setup (d02qwc) with the following members:

root – Nag_Boolean Output

On exit: if root-finding was required (neqg > 0 in a call to the setup function
nag_ode_ivp_adams_setup (d02qwc)), then root specifies whether or not the output
value of the argument t is a root of one of the event functions. If root ¼ Nag FALSE, then
no root was detected, whereas root ¼ Nag TRUE indicates a root.

If root-finding was not required (neqg ¼ 0) then on exit root ¼ Nag FALSE.

If root ¼ Nag FALSE, then opt!index, opt!type, opt!events and opt!resids are
indeterminate.

index – Integer Output

On exit: the index k of the event equation gk x; y; y0ð Þ ¼ 0 for which the root has been
detected.

type – Integer Output

On exit: information about the root detected for the event equation defined by opt!index.
The possible values of type with their interpretations are as follows:

If type ¼ 1, a simple root, or lack of distinguishing information available.

If type ¼ 2, a root of even multiplicity is believed to have been detected, that is no
change in sign of the event function was found.

If type ¼ 3, a high order root of odd multiplicity.

If type ¼ 4, a possible root, but due to high multiplicity or a clustering of roots
accurate evaluation of the event function was prohibited by round-off error and/or
cancellation.

In general, the accuracy of the root is less reliable for values of type > 1.

events – Integer * Output

On exit: array pointer containing information about the kth event function on a very small
interval containing the root, t. All roots lying in this interval are considered
indistinguishable numerically and therefore should be regarded as defining a root at t.
The possible values of events½j� 1�, j ¼ 1; 2; . . . ;neqg, with their interpretations are as
follows:

events½j� 1� ¼ 0, the jth event function did not have a root;

events½j� 1� ¼ �1, the jth event function changed sign from positive to negative
about a root, in the direction of integration;

events½j� 1� ¼ 1, the jth event function changed sign from negative to positive
about a root, in the direction of integration;

events½j� 1� ¼ 2, a root was identified, but no change in sign was observed.

resids – double Output

On exit: array pointer, opt!resids½j� 1�, j ¼ 1; 2; . . . ;neqg, contains value of the jth
event function computed at the root, t.

yp – double Output

On exit: array pointer to the approximate derivative of the solution component yi at the
output value of t. These values are obtained by the evaluation of y0 ¼ f x; yð Þ except when

d02qfc NAG Library Manual

d02qfc.4 Mark 26

the output value of the argument t is tout and opt!tcurr 6¼ tout, in which case they are
obtained by interpolation.

tcurr – double Output

On exit: the value of the independent variable which the integrator has actually reached.
tcurr will always be at least as far as the output value of the argument t in the direction of
integration, but may be further.

hlast – double Output

On exit: the last successful step size used in the integration.

hnext – double Output

On exit: the next step size which the integration would attempt.

ord_last – Integer Output

On exit: the order of the method last used (successfully) in the integration.

ord_next – Integer Output

On exit: the order of the method which the integration would attempt on the next step.

nsuccess – Integer Output

On exit: the number of integration steps attempted that have been successful since the start
of the current problem.

nfail – Integer Output

On exit: the number of integration steps attempted that have failed since the start of the
current problem.

tolfac – double Output

On exit: a tolerance scale factor, tolfac � 1:0, returned when nag_ode_ivp_adams_roots
(d02qfc) exits with fail:code ¼ NE ODE TOL. If rtol and atol are uniformly scaled up by
a factor of tolfac and nag_ode_ivp_adams_setup (d02qwc) is called, the next call to
nag_ode_ivp_adams_roots (d02qfc) is deemed likely to succeed.

9: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_DIRECTION_CHANGE

The value of tout, valueh i, indicates a change in the integration direction. This is not permitted
on a continuation call.

NE_MAX_STEP

The maximum number of steps have been attempted.

If integration is to be continued then the function may be called again and a further max_step
steps will be attempted (see nag_ode_ivp_adams_setup (d02qwc) for details of max_step).

NE_NEQF

The value of neqf supplied is not the same as that given to the setup function
nag_ode_ivp_adams_setup (d02qwc). neqf ¼ valueh i but the value given to
nag_ode_ivp_adams_setup (d02qwc) was valueh i.

d02 – Ordinary Differential d02qfc

Mark 26 d02qfc.5

NE_NO_G_FUN

Root finding has been requested by setting neqg > 0, neqg ¼ valueh i, but argument g is a null
function.

NE_NO_SETUP

The setup function nag_ode_ivp_adams_setup (d02qwc) has not been called.

NE_ODE_TOL

The error tolerances are too stringent. rtol and atol should be scaled up by the factor opt!tolfac
and the integration function re-entered. opt!tolfac ¼ valueh i (see Section 9).

NE_SETUP_ERROR

The call to setup function nag_ode_ivp_adams_setup (d02qwc) produced an error.

NE_SINGULAR_POINT

A change in sign of an event function has been detected but the root-finding process appears to
have converged to a singular point of t rather than a root.

Integration may be continued by calling the function again.

NE_STIFF_PROBLEM

The problem appears to be stiff.

(See the d02 Chapter Introduction for a discussion of the term ‘stiff’). Although it is inefficient to
use this integrator to solve stiff problems, integration may be continued by resetting fail and
calling the function again.

NE_T_CHANGED

The value of t has been changed from valueh i to valueh i. This is not permitted on a continuation
call.

NE_T_SAME_TOUT

On entry, tout ¼ t, t is valueh i.

NE_TOUT_TCRIT

tout ¼ valueh i but crit was set Nag_TRUE in setup call and integration cannot be attempted
beyond tcrit ¼ valueh i.

NE_WEIGHT_ZERO

An error weight has become zero during the integration, see d02qwc document; atol½ valueh i� was
set to 0.0 but y½ valueh i� is now 0.0. Integration successful as far as t ¼ valueh i.
The value of the array index is returned in fail:errnum.

7 Accuracy

The accuracy of integration is determined by the arguments vectol, rtol and atol in a prior call to
nag_ode_ivp_adams_setup (d02qwc). Note that only the local error at each step is controlled by these
arguments. The error estimates obtained are not strict bounds but are usually reliable over one step.
Over a number of steps the overall error may accumulate in various ways, depending on the properties
of the differential equation system. The code is designed so that a reduction in the tolerances should
lead to an approximately proportional reduction in the error. You are strongly recommended to call
nag_ode_ivp_adams_roots (d02qfc) with more than one set of tolerances and to compare the results
obtained to estimate their accuracy.

d02qfc NAG Library Manual

d02qfc.6 Mark 26

The accuracy obtained depends on the type of error test used. If the solution oscillates around zero a
relative error test should be avoided, whereas if the solution is exponentially increasing an absolute
error test should not be used. If different accuracies are required for different components of the
solution then a component-wise error test should be used. For a description of the error test see the
specifications of the arguments vectol, atol and rtol in the function document for nag_ode_ivp_a
dams_setup (d02qwc).

The accuracy of any roots located will depend on the accuracy of integration and may also be restricted
by the numerical properties of g x; y; y0ð Þ. When evaluating g you should try to write the code so that
unnecessary cancellation errors will be avoided.

8 Parallelism and Performance

nag_ode_ivp_adams_roots (d02qfc) is not threaded in any implementation.

9 Further Comments

If the function fails with fail:code ¼ NE ODE TOL, then the combination of atol and rtol may be so
small that a solution cannot be obtained, in which case the function should be called again using larger
values for rtol and/or atol when calling the setup function nag_ode_ivp_adams_setup (d02qwc). If the
accuracy requested is really needed then you should consider whether there is a more fundamental
difficulty. For example:

(a) in the region of a singularity the solution components will usually be of a large magnitude. The
function could be used in one-step mode to monitor the size of the solution with the aim of
trapping the solution before the singularity. In any case numerical integration cannot be continued
through a singularity, and analytical treatment may be necessary;

(b) for ‘stiff’ equations, where the solution contains rapidly decaying components, the function will
require a very small step size to preserve stability. This will usually be exhibited by excessive
computing time and sometimes an error exit with fail:code ¼ NE ODE TOL, but usually an error
exit with fail:code ¼ NE MAX STEP or NE_STIFF_PROBLEM. The Adams' methods are not
efficient in such cases. A high proportion of failed steps (see argument opt!nfail) may indicate
stiffness but there may be other reasons for this phenomenon.

nag_ode_ivp_adams_roots (d02qfc) can be used for producing results at short intervals (for example,
for graph plotting); you should set crit ¼ Nag TRUE and tcrit to the last output point required in a
prior call to nag_ode_ivp_adams_setup (d02qwc) and then set tout appropriately for each output point
in turn in the call to nag_ode_ivp_adams_roots (d02qfc).

The structure opt will contain pointers which have been allocated memory by calls to
nag_ode_ivp_adams_setup (d02qwc). This allocated memory is then accessed by nag_ode_ivp_adams_
roots (d02qfc) and, if required, nag_ode_ivp_adams_interp (d02qzc). When all calls to these functions
have been completed the function nag_ode_ivp_adams_free (d02qyc) may be called to free memory
allocated to the structure.

10 Example

We solve the equation

y00 ¼ �y; y 0ð Þ ¼ 0; y0 0ð Þ ¼ 1

reposed as

y01 ¼ y2
y02 ¼ �y1

over the range 0; 10:0½ � with initial conditions y1 ¼ 0:0 and y2 ¼ 1:0 using vector error control
(vectol ¼ Nag TRUE) and computation of the solution at tout ¼ 10:0 with tcrit ¼ 10:0
(crit ¼ Nag TRUE). Also, we use nag_ode_ivp_adams_roots (d02qfc) to locate the positions where
y1 ¼ 0:0 or where the first component has a turning point, that is y01 ¼ 0:0.

d02 – Ordinary Differential d02qfc

Mark 26 d02qfc.7

10.1 Program Text

/* nag_ode_ivp_adams_roots (d02qfc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagd02.h>

#ifdef __cplusplus
extern "C"
{
#endif

static void NAG_CALL ftry02(Integer neqf, double x, const double y[],
double yp[], Nag_User *comm);

static double NAG_CALL gtry02(Integer neqf, double x, const double y[],
const double yp[], Integer k, Nag_User *comm);

#ifdef __cplusplus
}
#endif

#define NEQF 2
#define NEQG 2
int main(void)
{

static Integer use_comm[2] = { 1, 1 };
Nag_Boolean alter_g, crit, one_step, sophist, vectol;
Integer exit_status = 0, i, max_step, neqf, neqg;
NagError fail;
Nag_ODE_Adams opt;
Nag_Start state;
Nag_User comm;
double *atol = 0, *rtol = 0, t, tcrit, tout, *y = 0;

INIT_FAIL(fail);

printf("nag_ode_ivp_adams_roots (d02qfc) Example Program Results\n");

/* For communication with user-supplied functions: */
comm.p = (Pointer) &use_comm;

neqf = NEQF;
neqg = NEQG;
if (neqf < 1) {

exit_status = 1;
return exit_status;

}
else {

if (!(y = NAG_ALLOC(neqf, double)) ||
!(atol = NAG_ALLOC(neqf, double)) ||
!(rtol = NAG_ALLOC(neqf, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
}
tcrit = 10.0;
state = Nag_NewStart;
vectol = Nag_TRUE;
one_step = Nag_FALSE;
crit = Nag_TRUE;
max_step = 0;

d02qfc NAG Library Manual

d02qfc.8 Mark 26

sophist = Nag_TRUE;
for (i = 0; i <= 1; ++i) {

rtol[i] = 0.0001;
atol[i] = 1e-06;

}

/* nag_ode_ivp_adams_setup (d02qwc).
* Setup function for nag_ode_ivp_adams_roots (d02qfc)
*/

nag_ode_ivp_adams_setup(&state, neqf, vectol, atol, rtol, one_step, crit,
tcrit, 0.0, max_step, neqg, &alter_g, sophist, &opt,
&fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_ode_ivp_adams_setup (d02qwc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

t = 0.0;
tout = tcrit;
y[0] = 0.0;
y[1] = 1.0;

do {
/* nag_ode_ivp_adams_roots (d02qfc).
* Ordinary differential equation solver using Adams method
* (sophisticated use)
*/

nag_ode_ivp_adams_roots(neqf, ftry02, &t, y, tout, gtry02,
&comm, &opt, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_ode_ivp_adams_roots (d02qfc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

if (opt.root) {
printf("\nRoot at %14.5e\n", t);
printf("for event equation %1" NAG_IFMT "", opt.index);
printf(" with type %1" NAG_IFMT "", opt.type);
printf(" and residual %14.5e\n", opt.resids[opt.index - 1]);

printf(" Y(1) = %14.5e Y’(1) = %14.5e\n", y[0], opt.yp[0]);

for (i = 1; i <= neqg; ++i) {
if (i != opt.index && opt.events[i - 1] != 0) {

printf("and also for event equation %1" NAG_IFMT "", i);
printf(" with type %1" NAG_IFMT "", opt.events[i - 1]);
printf(" and residual %14.5e\n", opt.resids[i - 1]);

}
}

}
} while (opt.tcurr < tout && opt.root);

/* Free the memory which was allocated by
* nag_ode_ivp_adams_setup (d02qwc) to the pointers inside opt.
*/

/* nag_ode_ivp_adams_free (d02qyc).
* Freeing function for use with nag_ode_ivp_adams_roots (d02qfc)
*/

nag_ode_ivp_adams_free(&opt);
END:

NAG_FREE(y);
NAG_FREE(atol);
NAG_FREE(rtol);
return exit_status;

}

static void NAG_CALL ftry02(Integer neqf, double x, const double y[], double

d02 – Ordinary Differential d02qfc

Mark 26 d02qfc.9

yp[], Nag_User *comm)
{

Integer *use_comm = (Integer *) comm->p;

if (use_comm[0]) {
printf("(User-supplied callback ftry02, first invocation.)\n");
use_comm[0] = 0;

}

yp[0] = y[1];
yp[1] = -y[0];

} /* ftry02 */

static double NAG_CALL gtry02(Integer neqf, double x, const double y[], double
const yp[], Integer k, Nag_User *comm)

{
Integer *use_comm = (Integer *) comm->p;

if (use_comm[1]) {
printf("(User-supplied callback gtry02, first invocation.)\n");
use_comm[1] = 0;

}

if (k == 1)
return yp[0];

else
return y[0];

} /* gtry02 */

10.2 Program Data

None.

10.3 Program Results

nag_ode_ivp_adams_roots (d02qfc) Example Program Results
(User-supplied callback ftry02, first invocation.)
(User-supplied callback gtry02, first invocation.)

Root at 0.00000e+00
for event equation 2 with type 1 and residual 0.00000e+00
Y(1) = 0.00000e+00 Y’(1) = 1.00000e+00

Root at 1.57076e+00
for event equation 1 with type 1 and residual -5.90726e-16
Y(1) = 1.00003e+00 Y’(1) = -5.90726e-16

Root at 3.14151e+00
for event equation 2 with type 1 and residual -1.28281e-16
Y(1) = -1.28281e-16 Y’(1) = -1.00012e+00

Root at 4.71228e+00
for event equation 1 with type 1 and residual 3.59623e-16
Y(1) = -1.00010e+00 Y’(1) = 3.59623e-16

Root at 6.28306e+00
for event equation 2 with type 1 and residual 2.47333e-15
Y(1) = 2.47333e-15 Y’(1) = 9.99979e-01

Root at 7.85379e+00
for event equation 1 with type 1 and residual -3.20716e-15
Y(1) = 9.99970e-01 Y’(1) = -3.20716e-15

Root at 9.42469e+00
for event equation 2 with type 1 and residual -2.90637e-15
Y(1) = -2.90637e-15 Y’(1) = -9.99854e-01

d02qfc NAG Library Manual

d02qfc.10 (last) Mark 26

	d02qfc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Shampine and Gordon (1975)
	Shampine and Watts (1979)
	Watts (1985)

	5 Arguments
	neqf
	fcn
	neqf
	x
	y
	f
	comm
	p

	t
	y
	tout
	g
	neqf
	x
	y
	yp
	k
	comm
	p

	comm
	p

	opt
	root
	index
	type
	events
	resids
	yp
	tcurr
	hlast
	hnext
	ord_last
	ord_next
	nsuccess
	nfail
	tolfac

	fail

	6 Error Indicators and Warnings
	NE_DIRECTION_CHANGE
	NE_MAX_STEP
	NE_NEQF
	NE_NO_G_FUN
	NE_NO_SETUP
	NE_ODE_TOL
	NE_SETUP_ERROR
	NE_SINGULAR_POINT
	NE_STIFF_PROBLEM
	NE_T_CHANGED
	NE_T_SAME_TOUT
	NE_TOUT_TCRIT
	NE_WEIGHT_ZERO

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

