
NAG Library Function Document

nag_ode_ivp_rk_step_revcomm (d02pgc)

1 Purpose

nag_ode_ivp_rk_step_revcomm (d02pgc) is a reverse communication one-step function for solving an
initial value problem for a first-order system of ordinary differential equations using Runge–Kutta
methods. The direct communication version of this function is nag_ode_ivp_rkts_onestep (d02pfc). See
Section 2.3.2 in How to Use the NAG Library and its Documentation for the difference between
forward and reverse communication.

2 Specification

#include <nag.h>
#include <nagd02.h>

void nag_ode_ivp_rk_step_revcomm (Integer *irevcm, Integer n, double *t,
double y[], const double yp[], Integer iwsav[], double rwsav[],
NagError *fail)

3 Description

nag_ode_ivp_rk_step_revcomm (d02pgc) and its associated functions (nag_ode_ivp_rk_interp_setup
(d02phc), nag_ode_ivp_rk_interp_eval (d02pjc), nag_ode_ivp_rkts_setup (d02pqc), nag_ode_ivp_rkts_
reset_tend (d02prc), nag_ode_ivp_rkts_diag (d02ptc) and nag_ode_ivp_rkts_errass (d02puc)) solve an
initial value problem for a first-order system of ordinary differential equations. The functions, based on
Runge–Kutta methods and derived from RKSUITE (see Brankin et al. (1991)), integrate

y0 ¼ f t; yð Þ given y t0ð Þ ¼ y0

where y is the vector of n solution components and t is the independent variable.

nag_ode_ivp_rk_step_revcomm (d02pgc) is designed to be used in complicated tasks when solving
systems of ordinary differential equations. You must first call nag_ode_ivp_rkts_setup (d02pqc) to
specify the problem and how it is to be solved. Thereafter you (repeatedly) call nag_ode_ivp_rk_
step_revcomm (d02pgc) in reverse communication loops to take one integration step at a time from
tstart in the direction of tend (as specified in nag_ode_ivp_rkts_setup (d02pqc)). In this manner
nag_ode_ivp_rk_step_revcomm (d02pgc) returns an approximation to the solution y and its derivative
yp at successive points t. If nag_ode_ivp_rk_step_revcomm (d02pgc) encounters some difficulty in
taking a step, the integration is not advanced and the function returns with the same values of t, y and
yp as returned on the previous successful step. nag_ode_ivp_rk_step_revcomm (d02pgc) tries to
advance the integration as far as possible subject to passing the test on the local error and not going
past tend.

In the call to nag_ode_ivp_rkts_setup (d02pqc) you can specify either the first step size for
nag_ode_ivp_rk_step_revcomm (d02pgc) to attempt or it computes automatically an appropriate value.
Thereafter nag_ode_ivp_rk_step_revcomm (d02pgc) estimates an appropriate step size for its next step.
This value and other details of the integration can be obtained after a completed step by
nag_ode_ivp_rk_step_revcomm (d02pgc) by a call to nag_ode_ivp_rkts_diag (d02ptc). The local error
is controlled at every step as specified in nag_ode_ivp_rkts_setup (d02pqc). If you wish to assess the
true error, you must set errass ¼ Nag ErrorAssess on in the call to nag_ode_ivp_rkts_setup (d02pqc).
This assessment can be obtained after any call to nag_ode_ivp_rk_step_revcomm (d02pgc) by a call to
nag_ode_ivp_rkts_errass (d02puc).

If you want answers at specific points there are two ways to proceed:

(i) The more efficient way is to step past the point where a solution is desired, and then call
nag_ode_ivp_rk_interp_setup (d02phc) and nag_ode_ivp_rk_interp_eval (d02pjc) to get an answer
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there. Within the span of the current step, you can get all the answers you want at very little cost
by repeated calls to nag_ode_ivp_rk_interp_eval (d02pjc). This is very valuable when you want to
find where something happens, e.g., where a particular solution component vanishes.

(ii) Alternatively, set tend to the desired value and integrate to tend. nag_ode_ivp_rk_step_revcomm
(d02pgc) will not step past tend, so when a step would carry it past, it will reduce the step size so
as to produce an answer at tend exactly. After getting an answer there (t ¼ tend), you can reset
tend to the next point where you want an answer, and repeat. tend could be reset by a call to
nag_ode_ivp_rkts_setup (d02pqc), but you should not do this. You should use nag_ode_ivp_rkts_
reset_tend (d02prc) instead because it is both easier to use and much more efficient. This way of
getting answers at specific points can be used with any of the available methods, but it can be
inefficient. Should this be the case, the code will bring the matter to your attention.

4 References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: A suite of Runge–Kutta codes for the
initial value problems for ODEs SoftReport 91-S1 Southern Methodist University

5 Arguments

Note: this function uses reverse communication. Its use involves an initial entry, intermediate exits
and re-entries, and a final exit, as indicated by the argument irevcm. Between intermediate exits and re-
entries, all arguments other than those specified by the value of irevcm must remain unchanged.

1: irevcm – Integer * Input/Output

On initial entry: irevcm must be set to zero to indicate that a new step is being taken.

On intermediate re-entry: irevcm should remain unchanged.

On intermediate exit: irevcm returns a value > 0 to indicate that a function evaluation is
required prior to re-entry; the value of the derivatives y0 ¼ f t; yð Þ must be returned in yp where
the value of t is supplied in t and the values y tð Þ are supplied in the array y. The value of irevcm
indicates the reason for the function evaluation as follows:

irevcm ¼ 1
For initial entry values of t and y.

irevcm ¼ 2
To determine stiffness of system.

irevcm ¼ 3
For the stages of the primary step.

irevcm ¼ 4
A final stage of the primary step.

irevcm ¼ 5
For the stages of a secondary step (if global error assessment is required).

On final exit:

irevcm ¼ �1
Successful exit; t, y and yp contain the solution at the end of a successful integration step.

irevcm ¼ �2
Error exit; fail should be interrogated to determine the nature of the error.

2: n – Integer Input

On entry: n, the number of ordinary differential equations in the system to be solved.

Constraint: n � 1. This must be the same value as supplied in a previous call to
nag_ode_ivp_rkts_setup (d02pqc).
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3: t – double * Output

On intermediate exit: t contains the value of the independent variable t at which the derivatives
y0 are to be evaluated.

On final exit: the value of t at which a solution has been computed following a successful step.

4: y½n� – double Output

On intermediate exit: y contains the value of the solution y at which the derivatives y0 are to be
evaluated.

On final exit: the approximation to the solution computed following a successful step.

5: yp½n� – const double Input

On initial entry: yp need not be set.

On intermediate re-entry: yp must contain the value of the derivatives y0 ¼ f t; yð Þ where t is
supplied in t and y is supplied in the array y.

6: iwsav½130� – Integer Communication Array
7: rwsav½32� nþ 350� – double Communication Array

On entry: these must be the same arrays supplied in a previous call to nag_ode_ivp_rkts_setup
(d02pqc). They must remain unchanged between calls.

On exit: information about the integration for use on subsequent calls to nag_ode_ivp_rk_
step_revcomm (d02pgc) or other associated functions.

8: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

irevcm < 0 on entry.

On entry, argument valueh i had an illegal value.

NE_INT_CHANGED

On entry, n ¼ valueh i, but the value passed to the setup function was n ¼ valueh i.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in How to Use the NAG Library and its Documentation for further information.

NE_MISSING_CALL

On entry, a previous call to the setup function has not been made or the communication arrays
have become corrupted.
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NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in How to Use the NAG Library and its Documentation for further information.

NE_PREV_CALL

On entry, the communication arrays have become corrupted, or a catastrophic error has already
been detected elsewhere. You cannot continue integrating the problem.

NE_PREV_CALL_INI

A call to this function cannot be made after it has returned an error.
The setup function must be called to start another problem.

NE_RK_GLOBAL_ERROR_S

The global error assessment algorithm failed at start of integration.
The integration is being terminated.

NE_RK_GLOBAL_ERROR_T

The global error assessment may not be reliable for times beyond valueh i.
The integration is being terminated.

NE_RK_POINTS

More than 100 output points have been obtained by integrating to tend (as specified in the setup
function). They have been so clustered that it would probably be (much) more efficient to use the
interpolation function. However, you can continue integrating the problem.

NE_RK_STEP_TOO_SMALL

In order to satisfy your error requirements the solver has to use a step size of valueh i at the
current time, valueh i. This step size is too small for the machine precision, and is smaller than
valueh i.

NE_RK_TGOT_EQ_TEND

tend, as specified in the setup function, has already been reached. To start a new problem, you
will need to call the setup function. To continue integration beyond tend then
nag_ode_ivp_rkts_reset_tend (d02prc) must first be called to reset tend to a new end value.

NE_STIFF_PROBLEM

Approximately valueh i function evaluations have been used to compute the solution since the
integration started or since this message was last printed. Your problem has been diagnosed as
stiff. If the situation persists, it will cost roughly valueh i times as much to reach tend (setup) as it
has cost to reach the current time. You should probably call functions intended for stiff problems.
However, you can continue integrating the problem.

NW_RK_TOO_MANY

Approximately valueh i function evaluations have been used to compute the solution since the
integration started or since this message was last printed. However, you can continue integrating
the problem.

7 Accuracy

The accuracy of integration is determined by the arguments tol and thresh in a prior call to
nag_ode_ivp_rkts_setup (d02pqc) (see the function document for nag_ode_ivp_rkts_setup (d02pqc) for
further details and advice). Note that only the local error at each step is controlled by these arguments.
The error estimates obtained are not strict bounds but are usually reliable over one step. Over a number
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of steps the overall error may accumulate in various ways, depending on the properties of the
differential system.

8 Parallelism and Performance

nag_ode_ivp_rk_step_revcomm (d02pgc) makes calls to BLAS and/or LAPACK routines, which may
be threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Notefor your
implementation for any additional implementation-specific information.

9 Further Comments

If nag_ode_ivp_rk_step_revcomm (d02pgc) returns with fail:code ¼ NE_RK_GLOBAL_ERROR_S,
NE_RK_GLOBAL_ERROR_T, NE_RK_POINTS, NE_RK_STEP_TOO_SMALL,
NE_STIFF_PROBLEM or NW_RK_TOO_MANY then the values returned in t and y are for the last
successful step, or the initial conditions supplied if no successful step has been taken.

If nag_ode_ivp_rk_step_revcomm (d02pgc) returns with fail:code ¼ NE_RK_STEP_TOO_SMALL and
the accuracy specified by tol and thresh is really required then you should consider whether there is a
more fundamental difficulty. For example, the solution may contain a singularity. In such a region the
solution components will usually be large in magnitude. Successive output values of y should be
monitored with the aim of trapping the solution before the singularity. In any case, numerical
integration cannot be continued through a singularity and analytical treatment may be necessary.

Performance statistics are available after any return from nag_ode_ivp_rk_step_revcomm (d02pgc)
(except when fail:code ¼ NE_BAD_PARAM, NE_INT_CHANGED, NE_MISSING_CALL,
NE_PREV_CALL, NE_PREV_CALL_INI or NE_RK_TGOT_EQ_TEND) by a call to nag_o
de_ivp_rkts_diag (d02ptc). If errass ¼ Nag ErrorAssess on in the call to nag_ode_ivp_rkts_setup
(d02pqc), global error assessment is available after any return from nag_ode_ivp_rk_step_revcomm
(d02pgc) (except when fail:code ¼ NE_BAD_PARAM, NE_INT_CHANGED, NE_MISSING_CALL,
NE_PREV_CALL, NE_PREV_CALL_INI or NE_RK_TGOT_EQ_TEND) by a call to nag_ode_ivp_rkt
s_errass (d02puc).

After a failure with fail:code ¼ NE_RK_GLOBAL_ERROR_S, NE_RK_GLOBAL_ERROR_T or
NE_RK_STEP_TOO_SMALL each of the diagnostic functions nag_ode_ivp_rkts_diag (d02ptc) and
nag_ode_ivp_rkts_errass (d02puc) may be called only once.

If nag_ode_ivp_rk_step_revcomm (d02pgc) returns with fail:code ¼ NE_STIFF_PROBLEM then it is
advisable to change to another code more suited to the solution of stiff problems. nag_ode_ivp_rk_
step_revcomm (d02pgc) will not return with fail:code ¼ NE_STIFF_PROBLEM if the problem is
actually stiff but it is estimated that integration can be completed using less function evaluations than
already computed.

10 Example

This example solves the equation

y00 ¼ �y; y 0ð Þ ¼ 0; y0 0ð Þ ¼ 1

reposed as

y01 ¼ y2

y02 ¼ �y1

over the range 0; 2�½ � with initial conditions y1 ¼ 0:0 and y2 ¼ 1:0. We use relative error control with
threshold values of 1:0e�8 for each solution component and print the solution at regular intervals using
the interpolation functions nag_ode_ivp_rk_interp_setup (d02phc) and nag_ode_ivp_rk_interp_eval
(d02pjc) within integration steps across the range; points on the range at which y1 or y2 change sign are
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also evaluated using a combination of the root finding function nag_zero_cont_func_brent_rcomm
(c05azc) and the interpolation functions. We use a medium order Runge–Kutta method
(method ¼ Nag RK 4 5) with tolerance tol ¼ 1:0e�5.

10.1 Program Text

/* nag_ode_ivp_rk_step_revcomm (d02pgc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagc05.h>
#include <nagd02.h>

int main(void)
{

/* Constants */
double const tol = 1.0e-5;
Integer const n = 2;
Integer const liwsav = 130;

/* Scalars */
double hnext, hstart, t, t1, t2, tend, tnow, tout, tprev, waste;
Integer ind, irevcm, j, k, nchange, stepcost,

stepsok, totf, lrwsav, lwcomm, exit_status = 0;
/* Arrays */
double c[17];
double *rwsav = 0, *thresh = 0, *troot = 0, *wcomm = 0, *y = 0,

*ynow = 0, *yout = 0, *yp = 0, *ypnow = 0, *yprev = 0;
Integer *iroot = 0, *iwsav = 0;
char nag_enum_arg[40];
/* Nag Types */
Nag_Boolean icheck;
NagError fail, fail2;
Nag_RK_method method;
Nag_ErrorAssess errass;

INIT_FAIL(fail);
INIT_FAIL(fail2);

printf("nag_ode_ivp_rk_step_revcomm (d02pgc) Example Program Results\n\n");

lrwsav = 350 + 32 * n;
lwcomm = 6 * n;

if (!(thresh = NAG_ALLOC((n), double)) ||
!(iwsav = NAG_ALLOC((liwsav), Integer)) ||
!(rwsav = NAG_ALLOC((lrwsav), double)) ||
!(ynow = NAG_ALLOC((n), double)) ||
!(ypnow = NAG_ALLOC((n), double)) ||
!(yprev = NAG_ALLOC((n), double)) ||
!(wcomm = NAG_ALLOC((lwcomm), double)) ||
!(yout = NAG_ALLOC((n), double)) ||
!(iroot = NAG_ALLOC((n), Integer)) ||
!(y = NAG_ALLOC((n), double)) ||
!(yp = NAG_ALLOC((n), double)) || !(troot = NAG_ALLOC((n), double))

)
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
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/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Set initial conditions for ODE and parameters for the integrator. */
#ifdef _WIN32

scanf_s(" %39s%*[^\n] ", nag_enum_arg, (unsigned)_countof(nag_enum_arg));
#else

scanf(" %39s%*[^\n] ", nag_enum_arg);
#endif

/* nag_enum_name_to_value (x04nac) Converts NAG enum member name to value. */
method = (Nag_RK_method) nag_enum_name_to_value(nag_enum_arg);

#ifdef _WIN32
scanf_s(" %39s%*[^\n] ", nag_enum_arg, (unsigned)_countof(nag_enum_arg));

#else
scanf(" %39s%*[^\n] ", nag_enum_arg);

#endif
errass = (Nag_ErrorAssess) nag_enum_name_to_value(nag_enum_arg);

#ifdef _WIN32
scanf_s("%lf%lf%*[^\n] ", &t, &tend);

#else
scanf("%lf%lf%*[^\n] ", &t, &tend);

#endif
for (j = 0; j < n; j++)

#ifdef _WIN32
scanf_s("%lf", &ynow[j]);

#else
scanf("%lf", &ynow[j]);

#endif
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

#ifdef _WIN32
scanf_s("%lf%*[^\n] ", &hstart);

#else
scanf("%lf%*[^\n] ", &hstart);

#endif
for (j = 0; j < n; j++)

#ifdef _WIN32
scanf_s("%lf", &thresh[j]);

#else
scanf("%lf", &thresh[j]);

#endif
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Initialize Runge-Kutta method for integrating ODE using
* nag_ode_ivp_rkts_setup (d02pqc).
*/

nag_ode_ivp_rkts_setup(n, t, tend, ynow, tol, thresh, method,
errass, hstart, iwsav, rwsav, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_ode_ivp_rkts_setup (d02pqc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

printf(" Calculation with tol = %8.1e\n", tol);
printf(" t y1 y2\n");
printf("%7.3f", t);
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for (k = 0; k < n; k++)
printf("%11.4f", ynow[k]);

printf("\n");

tout = 0.1;
tnow = t;

while (tnow < tend) {
tprev = tnow;
for (k = 0; k < n; ++k)

yprev[k] = ynow[k];

/* Solve ODE by Runge-Kutta method by a sequence of single steps.
* Each step requires a reverse communication loop around
* nag_ode_ivp_rk_step_revcomm (d02pgc).
*/

irevcm = 0;
while (irevcm >= 0) {

nag_ode_ivp_rk_step_revcomm(&irevcm, n, &tnow, ynow, ypnow, iwsav,
rwsav, &fail);

if (irevcm > 0) {
ypnow[0] = ynow[1];
ypnow[1] = -ynow[0];

}
}
if (irevcm==-2) {

if (fail.code != NE_RK_POINTS && fail.code != NE_STIFF_PROBLEM &&
fail.code != NW_RK_TOO_MANY) {

printf("Error from nag_ode_ivp_rk_step (d02pgc).\n%s\n", fail.message);
exit_status = 2;
goto END;

}
}

/* Detect sign changes in last step */
for (k = 0; k < n; ++k)

iroot[k] = 0;
nchange = 0;
for (k = 0; k < n; ++k) {

if (ynow[k] * yprev[k] < 0.0) {
iroot[nchange] = k + 1;
nchange++;

}
}
if (tnow >= tout || nchange > 0) {

/* nag_ode_ivp_rk_interp_setup (d02phc).
* Compute interpolant for the last step taken by the Runge-Kutta
* integrator nag_ode_ivp_rk_step_revcomm (d02pgc).
*/

irevcm = 0;
while (irevcm >= 0) {

nag_ode_ivp_rk_interp_setup(&irevcm, n, n, &t, y, yp, wcomm, lwcomm,
iwsav, rwsav, &fail);

if (irevcm > 0) {
yp[0] = y[1];
yp[1] = -y[0];

}
}
if (fail.code != NE_NOERROR) {

printf("Error from nag_ode_ivp_rk_interp_setup (d02phc).\n%s\n",
fail.message);

exit_status = 3;
goto END;

}
icheck = Nag_TRUE;
for (k = 0; k < nchange; ++k) {

j = iroot[k] - 1;
t1 = tprev;
t2 = tnow;
ind = 1;
/* nag_zero_cont_func_brent_rcomm (c05azc).
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* Locates a simple zero of a continuous function.
* Reverse communication.
*/

while (ind != 0) {
nag_zero_cont_func_brent_rcomm(&t1, &t2, y[j], tol,

Nag_Mixed, c, &ind, &fail);
if (ind > 1) {

/* nag_ode_ivp_rk_interp_eval (d02pjc).
* Evaluate interpolant at a point in the last integrated step
* as computed by nag_ode_ivp_rk_interp_setup (d02phc).
*/

nag_ode_ivp_rk_interp_eval(icheck, n, n, t1, 0, y, wcomm,
lwcomm, iwsav, rwsav, &fail2);

icheck = Nag_FALSE;
}

}
if (fail.code != NE_NOERROR) {

printf("Error from nag_zero_cont_func_brent_rcomm (c05azc).\n%s\n",
fail.message);

exit_status = 4;
goto END;

}
troot[k] = t1;

}
while (tnow >= tout) {

for (k = 0; k < nchange; k++) {
if (troot[k] < tout && iroot[k] > 0) {

printf("Component %2" NAG_IFMT " has a root at t = %7.4f\n",
iroot[k], troot[k]);

iroot[k] = -iroot[k];
}

}
nag_ode_ivp_rk_interp_eval(icheck, n, n, tout, 0, yout, wcomm,

lwcomm, iwsav, rwsav, &fail2);
icheck = Nag_FALSE;
printf("%7.3f", tout);
for (k = 0; k < n; k++) {

printf("%11.4f", yout[k]);
}
printf("\n");
tout = tout + 0.1;

}
for (k = 0; k < nchange; k++) {

if (iroot[k] > 0) {
printf("Component %2" NAG_IFMT " has a root at t = %7.4f\n",

iroot[k], troot[k]);
}

}
}

}
/* Get diagnostics on whole integration using
* nag_ode_ivp_rkts_diag (d02ptc).
*/

nag_ode_ivp_rkts_diag(&totf, &stepcost, &waste, &stepsok, &hnext,
iwsav, rwsav, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_ode_ivp_rkts_diag (d02ptc).\n%s\n", fail.message);
exit_status = 5;
goto END;

}
printf("\nCost of the integration in evaluations of f is %6" NAG_IFMT

"\n\n", totf);

END:
NAG_FREE(thresh);
NAG_FREE(ynow);
NAG_FREE(ypnow);
NAG_FREE(yprev);
NAG_FREE(yout);
NAG_FREE(y);
NAG_FREE(yp);
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NAG_FREE(wcomm);
NAG_FREE(rwsav);
NAG_FREE(iwsav);
NAG_FREE(iroot);
NAG_FREE(troot);
return exit_status;

}

10.2 Program Data

nag_ode_ivp_rk_step_revcomm (d02pgc) Example Program Data
Nag_RK_4_5 : method
Nag_ErrorAssess_on : errass
0.0 6.28318530717958647692 : tstart, tend
0.0 1.0 : yinit(1:n)
0.0 : hstart
1.0e-8 1.0e-8 : thres(1:n)

10.3 Program Results

nag_ode_ivp_rk_step_revcomm (d02pgc) Example Program Results

Calculation with tol = 1.0e-05
t y1 y2

0.000 0.0000 1.0000
0.100 0.0998 0.9950
0.200 0.1987 0.9801
0.300 0.2955 0.9553
0.400 0.3894 0.9211
0.500 0.4794 0.8776
0.600 0.5646 0.8253
0.700 0.6442 0.7648
0.800 0.7174 0.6967
0.900 0.7833 0.6216
1.000 0.8415 0.5403
1.100 0.8912 0.4536
1.200 0.9320 0.3624
1.300 0.9636 0.2675
1.400 0.9854 0.1700
1.500 0.9975 0.0707

Component 2 has a root at t = 1.5708
1.600 0.9996 -0.0292
1.700 0.9917 -0.1288
1.800 0.9738 -0.2272
1.900 0.9463 -0.3233
2.000 0.9093 -0.4161
2.100 0.8632 -0.5048
2.200 0.8085 -0.5885
2.300 0.7457 -0.6663
2.400 0.6755 -0.7374
2.500 0.5985 -0.8011
2.600 0.5155 -0.8569
2.700 0.4274 -0.9041
2.800 0.3350 -0.9422
2.900 0.2392 -0.9710
3.000 0.1411 -0.9900
3.100 0.0416 -0.9991

Component 1 has a root at t = 3.1416
3.200 -0.0584 -0.9983
3.300 -0.1577 -0.9875
3.400 -0.2555 -0.9668
3.500 -0.3508 -0.9365
3.600 -0.4425 -0.8968
3.700 -0.5298 -0.8481
3.800 -0.6119 -0.7910
3.900 -0.6878 -0.7259
4.000 -0.7568 -0.6536
4.100 -0.8183 -0.5748
4.200 -0.8716 -0.4903
4.300 -0.9162 -0.4008
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4.400 -0.9516 -0.3073
4.500 -0.9775 -0.2108
4.600 -0.9937 -0.1122
4.700 -0.9999 -0.0124

Component 2 has a root at t = 4.7124
4.800 -0.9962 0.0875
4.900 -0.9825 0.1865
5.000 -0.9589 0.2837
5.100 -0.9258 0.3780
5.200 -0.8835 0.4685
5.300 -0.8323 0.5544
5.400 -0.7728 0.6347
5.500 -0.7055 0.7087
5.600 -0.6313 0.7756
5.700 -0.5507 0.8347
5.800 -0.4646 0.8855
5.900 -0.3739 0.9275
6.000 -0.2794 0.9602
6.100 -0.1822 0.9833
6.200 -0.0831 0.9965

Component 1 has a root at t = 6.2832

Cost of the integration in evaluations of f is 356
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Example Program
First-order ODEs using Step-by-step Runge-Kutta

Medium-order Method using Two Tolerances

y-solution
y’-solution

y-error (tol = 0.00001)
y-error (tol = 0.0001)

sin(x)
cos(x)
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