NAG Library Function Document

nag_zero_nonlin_eqns_rcomm (c05qdc)

1 Purpose

nag_zero_nonlin_eqns_rcomm (c05qdc) is a comprehensive reverse communication function that finds a solution of a system of nonlinear equations by a modification of the Powell hybrid method.

2 Specification

```
#include <nag.h>
#include <nagc05.h>
void nag_zero_nonlin_eqns_rcomm (Integer *irevcm, Integer n, double x[],
    double fvec[], double xtol, Integer ml, Integer mu, double epsfcn,
    Nag_ScaleType scale_mode, double diag[], double factor, double fjac[],
    double r[], double qtf[], Integer iwsav[], double rwsav[],
    NagError *fail)
```


3 Description

The system of equations is defined as:

$$
f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0, \quad i=1,2, \ldots, n .
$$

nag_zero_nonlin_eqns_rcomm (c05qdc) is based on the MINPACK routine HYBRD (see Moré et al. (1980)). It chooses the correction at each step as a convex combination of the Newton and scaled gradient directions. The Jacobian is updated by the rank-1 method of Broyden. At the starting point, the Jacobian is approximated by forward differences, but these are not used again until the rank-1 method fails to produce satisfactory progress. For more details see Powell (1970).

4 References

Moré J J, Garbow B S and Hillstrom K E (1980) User guide for MINPACK-1 Technical Report ANL-80-74 Argonne National Laboratory
Powell M J D (1970) A hybrid method for nonlinear algebraic equations Numerical Methods for Nonlinear Algebraic Equations (ed P Rabinowitz) Gordon and Breach

5 Arguments

Note: this function uses reverse communication. Its use involves an initial entry, intermediate exits and re-entries, and a final exit, as indicated by the argument irevem. Between intermediate exits and reentries, all arguments other than fvec must remain unchanged.

1: irevem - Integer * Input/Output
On initial entry: must have the value 0 .
On intermediate exit: specifies what action you must take before re-entering nag_zero_nonli n_eqns_rcomm (c05qdc) with irevem unchanged. The value of irevem should be interpreted as follows:
irevem $=1$
Indicates the start of a new iteration. No action is required by you, but \mathbf{x} and fvec are available for printing.
irevem $=2$
Indicates that before re-entry to nag_zero_nonlin_eqns_rcomm (c05qdc), fvec must contain the function values $f_{i}(x)$.
On final exit: irevem $=0$, and the algorithm has terminated.
Constraint: $\mathbf{i r e v e m}=0,1$ or 2.
2: $\quad \mathbf{n}$ - Integer
Input
On entry: n, the number of equations.
Constraint: $\mathbf{n}>0$.
3: $\quad \mathbf{x}[\mathbf{n}]$ - double
Input/Output
On initial entry: an initial guess at the solution vector.
On intermediate exit: contains the current point.
On final exit: the final estimate of the solution vector.
4: $\quad \mathbf{f v e c}[\mathbf{n}]$ - double
Input/Output
On initial entry: need not be set.
On intermediate re-entry: if irevem $=1$, fvec must not be changed.
If irevem $=2$, fvec must be set to the values of the functions computed at the current point \mathbf{x}.
On final exit: the function values at the final point, \mathbf{x}.
5: \quad xtol - double
Input
On initial entry: the accuracy in \mathbf{x} to which the solution is required.
Suggested value: $\sqrt{\epsilon}$, where ϵ is the machine precision returned by nag_machine_precision (X02AJC).

Constraint: $\mathbf{x t o l} \geq 0.0$.
6: $\quad \mathbf{m l}$ - Integer
Input
On initial entry: the number of subdiagonals within the band of the Jacobian matrix. (If the Jacobian is not banded, or you are unsure, set $\mathbf{m l}=\mathbf{n}-1$.)
Constraint: $\mathbf{m l} \geq 0$.
mu - Integer
Input
On initial entry: the number of superdiagonals within the band of the Jacobian matrix. (If the Jacobian is not banded, or you are unsure, set $\mathbf{m u}=\mathbf{n}-1$.)
Constraint: $\mathbf{m u} \geq 0$.
epsfen - double
Input
On initial entry: the order of the largest relative error in the functions. It is used in determining a suitable step for a forward difference approximation to the Jacobian. If epsfen is less than machine precision (returned by nag_machine_precision (X 02 AJC)) then machine precision is used. Consequently a value of 0.0 will often be suitable.

Suggested value: epsfcn $=0.0$.
9: \quad scale_mode - Nag_ScaleType
Input
On initial entry: indicates whether or not you have provided scaling factors in diag.
If scale_mode $=$ Nag_ScaleProvided the scaling must have been supplied in diag.

Otherwise, if scale_mode $=$ Nag_NoScaleProvided, the variables will be scaled internally.
Constraint: scale_mode $=$ Nag_NoScaleProvided or Nag_ScaleProvided.
10: $\quad \operatorname{diag}[\mathbf{n}]$ - double
Input/Output
On entry: if scale_mode $=$ Nag_ScaleProvided, diag must contain multiplicative scale factors for the variables.

If scale_mode $=$ Nag_NoScaleProvided, diag need not be set.
Constraint: if scale_mode $=$ Nag_ScaleProvided, $\boldsymbol{\operatorname { d i a g }}[i-1]>0.0$, for $i=1,2, \ldots, n$.
On exit: the scale factors actually used (computed internally if scale_mode $=$ Nag_NoScaleProvided).

11: factor - double
Input
On initial entry: a quantity to be used in determining the initial step bound. In most cases, factor should lie between 0.1 and 100.0. (The step bound is factor $\times\|\boldsymbol{\operatorname { d i a g }} \times \mathbf{x}\|_{2}$ if this is nonzero; otherwise the bound is factor.)

Suggested value: factor $=100.0$.
Constraint: factor >0.0.
12: $\quad \mathbf{f j a c}[\mathbf{n} \times \mathbf{n}]-$ double
Input/Output
Note: the (i, j) th element of the matrix is stored in $\mathbf{f j a c}[(j-1) \times \mathbf{n}+i-1]$.
On initial entry: need not be set.
On intermediate exit: must not be changed.
On final exit: the orthogonal matrix Q produced by the $Q R$ factorization of the final approximate Jacobian.

13: $\quad \mathbf{r}[\mathbf{n} \times(\mathbf{n}+\mathbf{1}) / \mathbf{2}]-$ double
Input/Output
On initial entry: need not be set.
On intermediate exit: must not be changed.
On final exit: the upper triangular matrix R produced by the $Q R$ factorization of the final approximate Jacobian, stored row-wise.

14: $\quad \mathbf{q t f}[\mathbf{n}]$ - double
Input/Output
On initial entry: need not be set.
On intermediate exit: must not be changed.
On final exit: the vector $Q^{\mathrm{T}} f$.

15: iwsav[17] - Integer
Communication Array
16: $\boldsymbol{r w s a v}[\mathbf{4} \times \mathbf{n}+\mathbf{1 0}]$ - double Communication Array
The arrays iwsav and rwsav MUST NOT be altered between calls to nag_zero_nonlin_eqns_r comm (c05qdc).

17: fail - NagError *
Input/Output
The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in How to Use the NAG Library and its Documentation for further information.

NE_BAD_PARAM

On entry, argument \langle value \rangle had an illegal value.

NE_DIAG_ELEMENTS

On entry, scale_mode $=$ Nag_ScaleProvided and diag contained a non-positive element.

NE_INT

On entry, irevem $=\langle$ value \rangle.
Constraint: $\mathbf{i r e v e m}=0,1$ or 2.
On entry, ml $=\langle$ value \rangle.
Constraint: $\mathbf{m l} \geq 0$.
On entry, mu $=\langle$ value \rangle.
Constraint: $\mathbf{m u} \geq 0$.
On entry, $\mathbf{n}=\langle$ value \rangle.
Constraint: $\mathbf{n}>0$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_IMPROVEMENT

The iteration is not making good progress, as measured by the improvement from the last $\langle v a l u e\rangle$ iterations.

The iteration is not making good progress, as measured by the improvement from the last $\langle v a l u e\rangle$ Jacobian evaluations.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in How to Use the NAG Library and its Documentation for further information.

NE_REAL

On entry, factor $=\langle$ value \rangle.
Constraint: factor >0.0.
On entry, $\mathbf{x t o l}=\langle$ value \rangle.
Constraint: $\mathbf{x t o l} \geq 0.0$.

NE_TOO_SMALL

No further improvement in the solution is possible. xtol is too small: $\mathbf{x t o l}=\langle$ value \rangle.

7 Accuracy

If \hat{x} is the true solution and D denotes the diagonal matrix whose entries are defined by the array diag, then nag_zero_nonlin_eqns_rcomm (c05qdc) tries to ensure that

$$
\|D(x-\hat{x})\|_{2} \leq \mathbf{x t o l} \times\|D \hat{x}\|_{2}
$$

If this condition is satisfied with $\mathbf{x t o l}=10^{-k}$, then the larger components of $D x$ have k significant decimal digits. There is a danger that the smaller components of $D x$ may have large relative errors, but the fast rate of convergence of nag_zero_nonlin_eqns_rcomm (c05qdc) usually obviates this possibility.
If $\mathbf{x t o l}$ is less than machine precision and the above test is satisfied with the machine precision in place of $\mathbf{x t o l}$, then the function exits with fail.code $=$ NE_TOO_SMALL.
Note: this convergence test is based purely on relative error, and may not indicate convergence if the solution is very close to the origin.

The convergence test assumes that the functions are reasonably well behaved. If this condition is not satisfied, then nag_zero_nonlin_eqns_rcomm (c05qdc) may incorrectly indicate convergence. The validity of the answer can be checked, for example, by rerunning nag_zero_nonlin_eqns_rcomm (c05qdc) with a lower value for $\mathbf{x t o l}$.

8 Parallelism and Performance

nag_zero_nonlin_eqns_rcomm (c05qdc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_zero_nonlin_eqns_rcomm (c05qdc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Notefor your implementation for any additional implementation-specific information.

9 Further Comments

The time required by nag_zero_nonlin_eqns_rcomm (c05qdc) to solve a given problem depends on n, the behaviour of the functions, the accuracy requested and the starting point. The number of arithmetic operations executed by nag_zero_nonlin_eqns_rcomm (c05qdc) to process the evaluation of functions in the main program in each exit is approximately $11.5 \times n^{2}$. The timing of nag_zero_nonlin_eqns_rcomm (c05qdc) is strongly influenced by the time spent evaluating the functions.
Ideally the problem should be scaled so that, at the solution, the function values are of comparable magnitude.

The number of function evaluations required to evaluate the Jacobian may be reduced if you can specify $\mathbf{m l}$ and $\mathbf{m u}$ accurately.

10 Example

This example determines the values x_{1}, \ldots, x_{9} which satisfy the tridiagonal equations:

$$
\begin{aligned}
\left(3-2 x_{1}\right) x_{1}-2 x_{2} & =-1, \\
-x_{i-1}+\left(3-2 x_{i}\right) x_{i}-2 x_{i+1} & =-1, \quad i=2,3, \ldots, 8 \\
-x_{8}+\left(3-2 x_{9}\right) x_{9} & =-1 .
\end{aligned}
$$

10.1 Program Text

```
/* nag_zero_nonlin_eqns_rcomm (c05qdc) Example Program.
    *
    * NAGPRODCODE Version.
    *
    * Copyright 2016 Numerical Algorithms Group.
    *
    * Mark 26, 2016.
    */
#include <nag.h>
#include <nagx04.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagc05.h>
#include <nagx02.h>
#ifdef __cplusplus
extern "C"
{
#endif
    static void NAG_CALL fcn(Integer n, const double x[], double fvec[]);
#ifdef __cplusplus
}
#endif
int main(void)
{
    Integer exit_status = 0, i, n = 9, irevcm, ml, mu;
    double *diag = 0, *fjac = 0, *fvec = 0, *qtf = 0, *rr = 0, *x = 0,
            *rwsav = 0;
    Integer *iwsav = 0;
    double epsfcn, factor, xtol;
    /* Nag Types */
    NagError fail;
    Nag_ScaleType scale_mode;
    INIT_FAIL(fail);
    printf("nag_zero_nonlin_eqns_rcomm (c05qdc) Example Program Results\n");
    if (n > 0) {
        if (!(diag = NAG_ALLOC(n, double)) ||
            !(fjac = NAG_ALLOC(n * n, double)) ||
            !(fvec = NAG_ALLOC(n, double)) ||
            !(qtf = NAG_ALLOC(n, double)) ||
            !(r = NAG_ALLOC(n * (n + 1) / 2, double)) ||
            !(x = NAG ALLOC(n, double)) ||
            !(iwsav = NAG_ALLOC(17, Integer)) ||
            !(rwsav = NAG_ALLOC(4 * n + 10, double)))
        {
            printf("Allocation failure\n");
            exit_status = -1;
            goto END;
        }
    }
    else {
        printf("Invalid n.\n");
        exit_status = 1;
        goto END;
}
    /* The following starting values provide a rough solution. */
    for (i = 0; i < n; i++)
        x[i] = -1.0;
    /* nag_machine_precision (x02ajc).
    * The machine precision
    */
    xtol = sqrt(nag_machine_precision);
```

```
    for (i = 0; i < n; i++)
    diag[i] = 1.0;
ml = 1;
mu = 1;
epsfcn = 0.0;
scale_mode = Nag_ScaleProvided;
factor = 100.0;
irevcm = 0;
/* nag_zero_nonlin_eqns_rcomm (c05qdc).
    * Solution of a system of nonlinear equations (function values only,
    * reverse communication)
    */
do {
    nag_zero_nonlin_eqns_rcomm(&irevcm, n, x, fvec, xtol, ml, mu,
                                    epsfcn, scale_mode, diag, factor, fjac, r,
                                    qtf, iwsav, rwsav, &fail);
    switch (irevcm) {
    case 1:
        /* x and fvec are available for printing */
            break;
        case 2:
            fcn(n, x, fvec);
            break;
        }
    } while (irevcm != 0);
if (fail.code != NE_NOERROR) {
    printf("Error from nag_zero_nonlin_eqns_rcomm (c05qdc).\n%s\n",
                fail.message);
    exit_status = 1;
    if (fail.code != NE_TOO_SMALL && fail.code != NE_NO_IMPROVEMENT)
        goto END;
    }
printf(fail.code == NE_NOERROR ? "Final approximate" : "Approximate");
printf(" solution\n\n");
for (i = 0; i < n; i++)
    printf("%12.4f%s", x[i], (i % 3 == 2 || i == n - 1) ? "\n" : " ");
if (fail.code != NE_NOERROR)
    exit_status = 2;
END:
    NAG_FREE(diag);
    NAG_FREE(fjac);
    NAG_FREE(fvec);
    NAG_FREE(qtf);
    NAG_FREE(r);
    NAG_FREE(x);
    NAG_FREE(iwsav);
    NAG_FREE(rwsav);
    return exit_status;
}
static void NAG_CALL fcn(Integer n, const double x[], double fvec[])
{
    Integer k;
    for (k = 0; k < n; ++k) {
        fvec[k] = (3.0 - x[k] * 2.0) * x[k] + 1.0;
        if (k > O)
```

```
        fvec[k] -= x[k - 1];
    if (k < n - 1)
        fvec[k] -= x[k + 1] * 2.0;
    }
}
```


10.2 Program Data

None.

10.3 Program Results

```
nag_zero_nonlin_eqns_rcomm (c05qdc) Example Program Results
Final approximate solution
```

-0.5707	-0.6816	-0.7017
-0.7042	-0.7014	-0.6919
-0.6658	-0.5960	-0.4164

