nag_zsymv (f16tac) (PDF version)
f16 Chapter Contents
f16 Chapter Introduction
NAG Library Manual

NAG Library Function Document

nag_zsymv (f16tac)

 Contents

    1  Purpose
    7  Accuracy

1  Purpose

nag_zsymv (f16tac) performs matrix-vector multiplication for a complex symmetric matrix.

2  Specification

#include <nag.h>
#include <nagf16.h>
void  nag_zsymv (Nag_OrderType order, Nag_UploType uplo, Integer n, Complex alpha, const Complex a[], Integer pda, const Complex x[], Integer incx, Complex beta, Complex y[], Integer incy, NagError *fail)

3  Description

nag_zsymv (f16tac) performs the matrix-vector operation
yαAx+βy  
where A is an n by n complex symmetric matrix, x and y are n-element complex vectors, and α and β are complex scalars.

4  References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee http://www.netlib.org/blas/blast-forum/blas-report.pdf

5  Arguments

1:     order Nag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order=Nag_RowMajor. See Section 2.3.1.3 in How to Use the NAG Library and its Documentation for a more detailed explanation of the use of this argument.
Constraint: order=Nag_RowMajor or Nag_ColMajor.
2:     uplo Nag_UploTypeInput
On entry: specifies whether the upper or lower triangular part of A is stored.
uplo=Nag_Upper
The upper triangular part of A is stored.
uplo=Nag_Lower
The lower triangular part of A is stored.
Constraint: uplo=Nag_Upper or Nag_Lower.
3:     n IntegerInput
On entry: n, the order of the matrix A.
Constraint: n0.
4:     alpha ComplexInput
On entry: the scalar α.
5:     a[dim] const ComplexInput
Note: the dimension, dim, of the array a must be at least max1,pda×n.
On entry: the n by n symmetric matrix A.
If order=Nag_ColMajor, Aij is stored in a[j-1×pda+i-1].
If order=Nag_RowMajor, Aij is stored in a[i-1×pda+j-1].
If uplo=Nag_Upper, the upper triangular part of A must be stored and the elements of the array below the diagonal are not referenced.
If uplo=Nag_Lower, the lower triangular part of A must be stored and the elements of the array above the diagonal are not referenced.
6:     pda IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix A in the array a.
Constraint: pdamax1,n.
7:     x[dim] const ComplexInput
Note: the dimension, dim, of the array x must be at least max1,1+n-1incx.
On entry: the n-element vector x.
If incx>0, xi must be stored in x[i-1×incx], for i=1,2,,n.
If incx<0, xi must be stored in x[n-i×incx], for i=1,2,,n.
Intermediate elements of x are not referenced. If n=0, x is not referenced and may be NULL.
8:     incx IntegerInput
On entry: the increment in the subscripts of x between successive elements of x.
Constraint: incx0.
9:     beta ComplexInput
On entry: the scalar β.
10:   y[dim] ComplexInput/Output
Note: the dimension, dim, of the array y must be at least max1,1+n-1incy.
On entry: the vector y. See x for details of storage.
If beta=0, y need not be set.
On exit: the updated vector y.
11:   incy IntegerInput
On entry: the increment in the subscripts of y between successive elements of y.
Constraint: incy0.
12:   fail NagError *Input/Output
The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation).

6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, incx=value.
Constraint: incx0.
On entry, incy=value.
Constraint: incy0.
On entry, n=value.
Constraint: n0.
NE_INT_2
On entry, pda=value, n=value.
Constraint: pdamax1,n.
NE_INTERNAL_ERROR
An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

7  Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8  Parallelism and Performance

nag_zsymv (f16tac) is not threaded in any implementation.

9  Further Comments

None.

10  Example

This example computes the matrix-vector product
y=αAx+βy  
where
A = 1.0+1.0i 1.0+2.0i 1.0+3.0i 1.0+2.0i 2.0+2.0i 2.0+3.0i 1.0+3.0i 2.0+3.0i 3.0+3.0i ,  
x = -1.0+0.0i 0.0+2.0i -3.0+1.0i ,  
y = 6.0+4.5i 8.5+4.5i 12.0+5.5i ,  
α=1.0+0.0i   and   β=2.0+0.0i .  

10.1  Program Text

Program Text (f16tace.c)

10.2  Program Data

Program Data (f16tace.d)

10.3  Program Results

Program Results (f16tace.r)


nag_zsymv (f16tac) (PDF version)
f16 Chapter Contents
f16 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2016