nag_superlu_matrix_product (f11mkc) (PDF version)
f11 Chapter Contents
f11 Chapter Introduction
NAG Library Manual

NAG Library Function Document

nag_superlu_matrix_product (f11mkc)

 Contents

    1  Purpose
    7  Accuracy

1  Purpose

nag_superlu_matrix_product (f11mkc) computes a matrix-matrix or transposed matrix-matrix product involving a real, square, sparse nonsymmetric matrix stored in compressed column (Harwell–Boeing) format.

2  Specification

#include <nag.h>
#include <nagf11.h>
void  nag_superlu_matrix_product (Nag_OrderType order, Nag_TransType trans, Integer n, Integer m, double alpha, const Integer icolzp[], const Integer irowix[], const double a[], const double b[], Integer pdb, double beta, double c[], Integer pdc, NagError *fail)

3  Description

nag_superlu_matrix_product (f11mkc) computes either the matrix-matrix product CαAB+βC, or the transposed matrix-matrix product CαATB + βC, according to the value of the argument trans, where A is a real n by n sparse nonsymmetric matrix, of arbitrary sparsity pattern with nnz nonzero elements, B and C are n by m real dense matrices. The matrix A is stored in compressed column (Harwell–Boeing) storage format. The array a stores all nonzero elements of A, while arrays icolzp and irowix store the compressed column indices and row indices of A respectively.

4  References

None.

5  Arguments

1:     order Nag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order=Nag_RowMajor. See Section 2.3.1.3 in How to Use the NAG Library and its Documentation for a more detailed explanation of the use of this argument.
Constraint: order=Nag_RowMajor or Nag_ColMajor.
2:     trans Nag_TransTypeInput
On entry: specifies whether or not the matrix A is transposed.
trans=Nag_NoTrans
αAB+βC is computed.
trans=Nag_Trans
αATB+βC is computed.
Constraint: trans=Nag_NoTrans or Nag_Trans.
3:     n IntegerInput
On entry: n, the order of the matrix A.
Constraint: n0.
4:     m IntegerInput
On entry: m, the number of columns of matrices B and C.
Constraint: m0.
5:     alpha doubleInput
On entry: α, the scalar factor in the matrix multiplication.
6:     icolzp[dim] const IntegerInput
Note: the dimension, dim, of the array icolzp must be at least n+1.
On entry: icolzp[i-1] contains the index in A of the start of a new column. See Section 2.1.3 in the f11 Chapter Introduction.
7:     irowix[dim] const IntegerInput
Note: the dimension, dim, of the array irowix must be at least icolzp[n]-1, the number of nonzeros of the sparse matrix A.
On entry: the row index array of sparse matrix A.
8:     a[dim] const doubleInput
Note: the dimension, dim, of the array a must be at least icolzp[n]-1, the number of nonzeros of the sparse matrix A.
On entry: the array of nonzero values in the sparse matrix A.
9:     b[dim] const doubleInput
Note: the dimension, dim, of the array b must be at least
  • max1,pdb×m when order=Nag_ColMajor;
  • max1,n×pdb when order=Nag_RowMajor.
The i,jth element of the matrix B is stored in
  • b[j-1×pdb+i-1] when order=Nag_ColMajor;
  • b[i-1×pdb+j-1] when order=Nag_RowMajor.
On entry: the n by m matrix B.
10:   pdb IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array b.
Constraints:
  • if order=Nag_ColMajor, pdbmax1,n;
  • if order=Nag_RowMajor, pdbmax1,m.
11:   beta doubleInput
On entry: the scalar factor β.
12:   c[dim] doubleInput/Output
Note: the dimension, dim, of the array c must be at least
  • max1,pdc×m when order=Nag_ColMajor;
  • max1,n×pdc when order=Nag_RowMajor.
The i,jth element of the matrix C is stored in
  • c[j-1×pdc+i-1] when order=Nag_ColMajor;
  • c[i-1×pdc+j-1] when order=Nag_RowMajor.
On entry: the n by m matrix C.
On exit: C is overwritten by αAB+βC or αATB +βC depending on the value of trans.
13:   pdc IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array c.
Constraints:
  • if order=Nag_ColMajor, pdcmax1,n;
  • if order=Nag_RowMajor, pdcmax1,m.
14:   fail NagError *Input/Output
The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation).

6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, m=value.
Constraint: m0.
On entry, n=value.
Constraint: n0.
On entry, pdb=value.
Constraint: pdb>0.
On entry, pdc=value.
Constraint: pdc>0.
NE_INT_2
On entry, pdb=value and m=value.
Constraint: pdbmax1,m.
On entry, pdb=value and n=value.
Constraint: pdbmax1,n.
On entry, pdc=value and m=value.
Constraint: pdcmax1,m.
On entry, pdc=value and n=value.
Constraint: pdcmax1,n.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

7  Accuracy

Not applicable.

8  Parallelism and Performance

nag_superlu_matrix_product (f11mkc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
Please consult the x06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9  Further Comments

None.

10  Example

This example reads in a sparse matrix A and a dense matrix B. It then calls nag_superlu_matrix_product (f11mkc) to compute the matrix-matrix product C=AB and the transposed matrix-matrix product C=ATB, where
A= 2.00 1.00 0 0 0 0 0 1.00 -1.00 0 4.00 0 1.00 0 1.00 0 0 0 1.00 2.00 0 -2.00 0 0 3.00   and  B= 0.70 1.40 0.16 0.32 0.52 1.04 0.77 1.54 0.28 0.56 .  

10.1  Program Text

Program Text (f11mkce.c)

10.2  Program Data

Program Data (f11mkce.d)

10.3  Program Results

Program Results (f11mkce.r)


nag_superlu_matrix_product (f11mkc) (PDF version)
f11 Chapter Contents
f11 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2016