nag_zunmtr (f08fuc) (PDF version)
f08 Chapter Contents
f08 Chapter Introduction
NAG Library Manual

NAG Library Function Document

nag_zunmtr (f08fuc)

 Contents

    1  Purpose
    7  Accuracy

1  Purpose

nag_zunmtr (f08fuc) multiplies an arbitrary complex matrix C by the complex unitary matrix Q which was determined by nag_zhetrd (f08fsc) when reducing a complex Hermitian matrix to tridiagonal form.

2  Specification

#include <nag.h>
#include <nagf08.h>
void  nag_zunmtr (Nag_OrderType order, Nag_SideType side, Nag_UploType uplo, Nag_TransType trans, Integer m, Integer n, const Complex a[], Integer pda, const Complex tau[], Complex c[], Integer pdc, NagError *fail)

3  Description

nag_zunmtr (f08fuc) is intended to be used after a call to nag_zhetrd (f08fsc), which reduces a complex Hermitian matrix A to real symmetric tridiagonal form T by a unitary similarity transformation: A=QTQH. nag_zhetrd (f08fsc) represents the unitary matrix Q as a product of elementary reflectors.
This function may be used to form one of the matrix products
QC , QHC , CQ ​ or ​ CQH ,  
overwriting the result on C (which may be any complex rectangular matrix).
A common application of this function is to transform a matrix Z of eigenvectors of T to the matrix QZ of eigenvectors of A.

4  References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5  Arguments

1:     order Nag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order=Nag_RowMajor. See Section 2.3.1.3 in How to Use the NAG Library and its Documentation for a more detailed explanation of the use of this argument.
Constraint: order=Nag_RowMajor or Nag_ColMajor.
2:     side Nag_SideTypeInput
On entry: indicates how Q or QH is to be applied to C.
side=Nag_LeftSide
Q or QH is applied to C from the left.
side=Nag_RightSide
Q or QH is applied to C from the right.
Constraint: side=Nag_LeftSide or Nag_RightSide.
3:     uplo Nag_UploTypeInput
On entry: this must be the same argument uplo as supplied to nag_zhetrd (f08fsc).
Constraint: uplo=Nag_Upper or Nag_Lower.
4:     trans Nag_TransTypeInput
On entry: indicates whether Q or QH is to be applied to C.
trans=Nag_NoTrans
Q is applied to C.
trans=Nag_ConjTrans
QH is applied to C.
Constraint: trans=Nag_NoTrans or Nag_ConjTrans.
5:     m IntegerInput
On entry: m, the number of rows of the matrix C; m is also the order of Q if side=Nag_LeftSide.
Constraint: m0.
6:     n IntegerInput
On entry: n, the number of columns of the matrix C; n is also the order of Q if side=Nag_RightSide.
Constraint: n0.
7:     a[dim] const ComplexInput
Note: the dimension, dim, of the array a must be at least
  • max1,pda×m when side=Nag_LeftSide;
  • max1,pda×n when side=Nag_RightSide.
On entry: details of the vectors which define the elementary reflectors, as returned by nag_zhetrd (f08fsc).
8:     pda IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix A in the array a.
Constraints:
  • if side=Nag_LeftSide, pda max1,m ;
  • if side=Nag_RightSide, pda max1,n .
9:     tau[dim] const ComplexInput
Note: the dimension, dim, of the array tau must be at least
  • max1,m-1 when side=Nag_LeftSide;
  • max1,n-1 when side=Nag_RightSide.
On entry: further details of the elementary reflectors, as returned by nag_zhetrd (f08fsc).
10:   c[dim] ComplexInput/Output
Note: the dimension, dim, of the array c must be at least
  • max1,pdc×n when order=Nag_ColMajor;
  • max1,m×pdc when order=Nag_RowMajor.
The i,jth element of the matrix C is stored in
  • c[j-1×pdc+i-1] when order=Nag_ColMajor;
  • c[i-1×pdc+j-1] when order=Nag_RowMajor.
On entry: the m by n matrix C.
On exit: c is overwritten by QC or QHC or CQ or CQH as specified by side and trans.
11:   pdc IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array c.
Constraints:
  • if order=Nag_ColMajor, pdcmax1,m;
  • if order=Nag_RowMajor, pdcmax1,n.
12:   fail NagError *Input/Output
The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation).

6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_ENUM_INT_3
On entry, side=value, m=value, n=value and pda=value.
Constraint: if side=Nag_LeftSide, pda max1,m ;
if side=Nag_RightSide, pda max1,n .
NE_INT
On entry, m=value.
Constraint: m0.
On entry, n=value.
Constraint: n0.
On entry, pda=value.
Constraint: pda>0.
On entry, pdc=value.
Constraint: pdc>0.
NE_INT_2
On entry, pdc=value and m=value.
Constraint: pdcmax1,m.
On entry, pdc=value and n=value.
Constraint: pdcmax1,n.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

7  Accuracy

The computed result differs from the exact result by a matrix E such that
E2 = Oε C2 ,  
where ε is the machine precision.

8  Parallelism and Performance

nag_zunmtr (f08fuc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_zunmtr (f08fuc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the x06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9  Further Comments

The total number of real floating-point operations is approximately 8m2n if side=Nag_LeftSide and 8mn2 if side=Nag_RightSide.
The real analogue of this function is nag_dormtr (f08fgc).

10  Example

This example computes the two smallest eigenvalues, and the associated eigenvectors, of the matrix A, where
A = -2.28+0.00i 1.78-2.03i 2.26+0.10i -0.12+2.53i 1.78+2.03i -1.12+0.00i 0.01+0.43i -1.07+0.86i 2.26-0.10i 0.01-0.43i -0.37+0.00i 2.31-0.92i -0.12-2.53i -1.07-0.86i 2.31+0.92i -0.73+0.00i .  
Here A is Hermitian and must first be reduced to tridiagonal form T by nag_zhetrd (f08fsc). The program then calls nag_dstebz (f08jjc) to compute the requested eigenvalues and nag_zstein (f08jxc) to compute the associated eigenvectors of T. Finally nag_zunmtr (f08fuc) is called to transform the eigenvectors to those of A.

10.1  Program Text

Program Text (f08fuce.c)

10.2  Program Data

Program Data (f08fuce.d)

10.3  Program Results

Program Results (f08fuce.r)


nag_zunmtr (f08fuc) (PDF version)
f08 Chapter Contents
f08 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2016