NAG Library Function Document
nag_complex_sym_lin_solve (f04dhc)
1 Purpose
nag_complex_sym_lin_solve (f04dhc) computes the solution to a complex system of linear equations , where is an by complex symmetric matrix and and are by matrices. An estimate of the condition number of and an error bound for the computed solution are also returned.
2 Specification
#include <nag.h> |
#include <nagf04.h> |
void |
nag_complex_sym_lin_solve (Nag_OrderType order,
Nag_UploType uplo,
Integer n,
Integer nrhs,
Complex a[],
Integer pda,
Integer ipiv[],
Complex b[],
Integer pdb,
double *rcond,
double *errbnd,
NagError *fail) |
|
3 Description
The diagonal pivoting method is used to factor as , if , or , if , where (or ) is a product of permutation and unit upper (lower) triangular matrices, and is symmetric and block diagonal with by and by diagonal blocks. The factored form of is then used to solve the system of equations .
4 References
Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999)
LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia
http://www.netlib.org/lapack/lug
Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia
5 Arguments
- 1:
– Nag_OrderTypeInput
-
On entry: the
order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by
. See
Section 2.3.1.3 in How to Use the NAG Library and its Documentation for a more detailed explanation of the use of this argument.
Constraint:
or .
- 2:
– Nag_UploTypeInput
-
On entry: if
, the upper triangle of the matrix
is stored.
If , the lower triangle of the matrix is stored.
Constraint:
or .
- 3:
– IntegerInput
-
On entry: the number of linear equations , i.e., the order of the matrix .
Constraint:
.
- 4:
– IntegerInput
-
On entry: the number of right-hand sides , i.e., the number of columns of the matrix .
Constraint:
.
- 5:
– ComplexInput/Output
-
Note: the dimension,
dim, of the array
a
must be at least
.
The
th element of the matrix
is stored in
- when ;
- when .
On entry: the
by
complex symmetric matrix
.
If
, the leading
n by
n upper triangular part of the array
a contains the upper triangular part of the matrix
, and the strictly lower triangular part of
a is not referenced.
If
, the leading
n by
n lower triangular part of the array
a contains the lower triangular part of the matrix
, and the strictly upper triangular part of
a is not referenced.
On exit: if
NE_NOERROR, the block diagonal matrix
and the multipliers used to obtain the factor
or
from the factorization
or
as computed by
nag_zsytrf (f07nrc).
- 6:
– IntegerInput
-
On entry: the stride separating row or column elements (depending on the value of
order) in the array
a.
Constraint:
.
- 7:
– IntegerOutput
-
On exit: if
NE_NOERROR, details of the interchanges and the block structure of
, as determined by
nag_zsytrf (f07nrc).
- If , then rows and columns and were interchanged, and is a by diagonal block;
- if and , then rows and columns and were interchanged and is a by diagonal block;
- if and , then rows and columns and were interchanged and is a by diagonal block.
- 8:
– ComplexInput/Output
-
Note: the dimension,
dim, of the array
b
must be at least
- when
;
- when
.
The
th element of the matrix
is stored in
- when ;
- when .
On entry: the by matrix of right-hand sides .
On exit: if
NE_NOERROR or
NE_RCOND, the
by
solution matrix
.
- 9:
– IntegerInput
-
On entry: the stride separating row or column elements (depending on the value of
order) in the array
b.
Constraints:
- if ,
;
- if , .
- 10:
– double *Output
-
On exit: if no constraints are violated, an estimate of the reciprocal of the condition number of the matrix , computed as .
- 11:
– double *Output
-
On exit: if
NE_NOERROR or
NE_RCOND, an estimate of the forward error bound for a computed solution
, such that
, where
is a column of the computed solution returned in the array
b and
is the corresponding column of the exact solution
. If
rcond is less than
machine precision, then
errbnd is returned as unity.
- 12:
– NagError *Input/Output
-
The NAG error argument (see
Section 2.7 in How to Use the NAG Library and its Documentation).
6 Error Indicators and Warnings
- NE_ALLOC_FAIL
-
Dynamic memory allocation failed.
The double allocatable memory required is
n, and the Complex allocatable memory required is
, where
lwork is the optimum workspace required by
nag_zsysv (f07nnc). If this failure occurs it may be possible to solve the equations by calling the packed storage version of nag_complex_sym_lin_solve (f04dhc),
nag_complex_sym_packed_lin_solve (f04djc), or by calling
nag_zsysv (f07nnc) directly with less than the optimum workspace (see
Chapter f07).
See
Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.
- NE_BAD_PARAM
-
On entry, argument had an illegal value.
- NE_INT
-
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: .
On entry, .
Constraint: .
- NE_INT_2
-
On entry, and .
Constraint: .
On entry, and .
Constraint: .
On entry, and .
Constraint: .
- NE_INTERNAL_ERROR
-
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact
NAG for assistance.
An unexpected error has been triggered by this function. Please contact
NAG.
See
Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.
- NE_NO_LICENCE
-
Your licence key may have expired or may not have been installed correctly.
See
Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.
- NE_RCOND
-
A solution has been computed, but
rcond is less than
machine precision so that the matrix
is numerically singular.
- NE_SINGULAR
-
Diagonal block of the block diagonal matrix is zero. The factorization has been completed, but the solution could not be computed.
7 Accuracy
The computed solution for a single right-hand side,
, satisfies an equation of the form
where
and
is the
machine precision. An approximate error bound for the computed solution is given by
where
, the condition number of
with respect to the solution of the linear equations. nag_complex_sym_lin_solve (f04dhc) uses the approximation
to estimate
errbnd. See Section 4.4 of
Anderson et al. (1999) for further details.
8 Parallelism and Performance
nag_complex_sym_lin_solve (f04dhc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the
x06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the
Users' Note for your implementation for any additional implementation-specific information.
The total number of floating-point operations required to solve the equations is proportional to . The condition number estimation typically requires between four and five solves and never more than eleven solves, following the factorization.
In practice the condition number estimator is very reliable, but it can underestimate the true condition number; see Section 15.3 of
Higham (2002) for further details.
Function
nag_herm_lin_solve (f04chc) is for complex Hermitian matrices, and the real analogue of nag_complex_sym_lin_solve (f04dhc) is
nag_real_sym_lin_solve (f04bhc).
10 Example
This example solves the equations
where
is the symmetric indefinite matrix
and
An estimate of the condition number of and an approximate error bound for the computed solutions are also printed.
10.1 Program Text
Program Text (f04dhce.c)
10.2 Program Data
Program Data (f04dhce.d)
10.3 Program Results
Program Results (f04dhce.r)