/* nag_zpftri (f07wwc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf01.h>
#include <nagf07.h>
#include <nagx04.h>
int main(void)
{
/* Scalars */
Integer exit_status = 0;
Integer i, j, k, lar1, lar2, lenar, n, pdar, pda, q;
/* Arrays */
Complex *ar = 0, *a = 0;
char nag_enum_arg[40];
/* NAG types */
Nag_RFP_Store transr;
Nag_UploType uplo;
Nag_OrderType order;
Nag_MatrixType matrix;
Nag_DiagType diag = Nag_NonUnitDiag;
NagError fail;
#ifdef NAG_COLUMN_MAJOR
order = Nag_ColMajor;
#define AR(I,J) ar[J*pdar + I]
#else
order = Nag_RowMajor;
#define AR(I,J) ar[I*pdar + J]
#endif
INIT_FAIL(fail);
printf("nag_zpftri (f07wwc) Example Program Results\n\n");
/* Skip heading in data file */
scanf("%*[^\n]");
scanf("%" NAG_IFMT "", &n);
scanf("%39s", nag_enum_arg);
uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg);
scanf("%39s%*[^\n]", nag_enum_arg);
transr = (Nag_RFP_Store) nag_enum_name_to_value(nag_enum_arg);
lenar = (n * (n + 1)) / 2;
if (!(ar = NAG_ALLOC(lenar, Complex)) || !(a = NAG_ALLOC(n * n, Complex)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
pda = n;
/* Setup dimensions for RFP array ar. */
k = n / 2;
q = n - k;
if (transr == Nag_RFP_Normal) {
lar1 = 2 * k + 1;
lar2 = q;
}
else {
lar1 = q;
lar2 = 2 * k + 1;
}
if (order == Nag_RowMajor) {
pdar = lar2;
}
else {
pdar = lar1;
}
/* Read matrix into RFP array ar. */
for (i = 0; i < lar1; i++) {
for (j = 0; j < lar2; j++) {
scanf(" ( %lf , %lf ) ", &AR(i, j).re, &AR(i, j).im);
}
}
/* Factorize A using nag_zpftrf (f07wrc) which performs a Cholesky
* factorization of a complex Hermitian positive definite matrix in
* Rectangular Full Packed format
*/
nag_zpftrf(order, transr, uplo, n, ar, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_zpftrf (f07wrc)\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Compute inverse of A using nag_zpftri (f07wwc). */
nag_zpftri(order, transr, uplo, n, ar, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_zpftri (f07wwc)\n%s\n", fail.message);
exit_status = 2;
goto END;
}
/* Convert A to full matrix format using nag_ztfttr (f01vhc). */
nag_ztfttr(order, transr, uplo, n, ar, a, pda, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_ztfttr (f01vhc)\n%s\n", fail.message);
exit_status = 3;
goto END;
}
matrix = (uplo == Nag_Lower ? Nag_LowerMatrix : Nag_UpperMatrix);
fflush(stdout);
/* nag_gen_complx_mat_print_comp (x04dbc).
* Print complex general matrix (comprehensive).
*/
nag_gen_complx_mat_print_comp(order, matrix, diag, n, n, a, pda,
Nag_BracketForm, "%7.4f", "Inverse",
Nag_IntegerLabels, 0, Nag_IntegerLabels,
0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_gen_complx_mat_print_comp (x04dbc)\n%s\n",
fail.message);
exit_status = 4;
}
END:
NAG_FREE(ar);
NAG_FREE(a);
return exit_status;
}