
NAG Library Chapter Introduction

x06 – OpenMP Utilities

Contents

1 Scope of the Chapter . 2

2 Background to the Problems . 2

3 Recommendations on Choice and Use of Available Functions 2

3.1 Parallelism and Performance . 2

3.2 Serial Implementations of the NAG C Library. 3

4 Functionality Index. 3

5 Auxiliary Functions Associated with Library Function Arguments 3

6 Functions Withdrawn or Scheduled for Withdrawal . 3

x06 – OpenMP Interfaces Introduction – x06

Mark 25 x06.1

1 Scope of the Chapter

This chapter contains utilities for controlling the OpenMP environment for your program. They are based
on OpenMP runtime library routines, although their functionality varies slightly.

2 Background to the Problems

These functions have been designed to be used with multi-threaded implementations of the NAG C
Library. In these implementations, these functions enable you to change and interrogate the OpenMP
threading environment for your whole program. In describing their use we assume you have followed the
recommendations in the Users’ Note. Functions are provided to control the number of threads, test
whether you have active threads, get a thread’s unique thread number and enable and disable nested
parallelism. Readers are directed to the Essential Introduction for a wider discussion on parallelism.

As these functions apply to the whole program they will affect the OpenMP in your calling program,
OpenMP used internally in the NAG C Library and also multi-threading in any underlying vendor
libraries, where provided. See the Users’ Note of your implementation for information on what
underlying libraries have been used and for the scope of the X06 functions.

OpenMP uses the notion of Internal Control Variables (ICVs) to control the behaviour of a multi-
threaded program. There are only two that are relevant to this chapter. One is used in determining the
number of threads and the other controls the nesting of parallel regions. The user does not have direct
access to ICVs, but they can be changed or reported with a call to an X06 function.

3 Recommendations on Choice and Use of Available Functions

3.1 Multi-threaded Implementations of the NAG Library

If you are not using OpenMP in your program we recommend you set the number of threads with the

OMP_NUM_THREADS environment variable as described in the Users’ Note. This is the number of threads
that will then be used in multi-threaded NAG C Library functions. The ICV is set from this environment
variable but the value can be changed with a call to nag_omp_set_num_threads (x06aac). It applies to
the next parallel region, whether that is your own, one encountered by a NAG function or an underlying
vendor library routine.

Whilst the ICV strongly influences the number of threads used, the design of OpenMP is such that it
does not dictate it. Many factors affect the number of threads in a particular parallel region including, but
not restricted to, the presence of a num_threads clause and the number of threads already in use by a
program. However, in most cases the number of threads requested will be used. The value of the ICV is
retrieved with a call to nag_omp_get_max_threads (x06acc). The return value is an upper bound on the
number of threads. If it is crucial to know the number of threads that are actually in use for a particular
parallel region we recommend you get this number with a call to nag_omp_get_num_threads (x06abc),
once you are inside the parallel region.

OpenMP threads have a unique thread number, which can be retrieved for a particular thread by a call to
nag_omp_get_thread_num (x06adc). The master thread is always numbered 0.

To check whether you are in an active parallel region, where there is more than one thread,
nag_omp_in_parallel (x06afc) can be used.

The functions nag_omp_get_num_threads (x06abc), nag_omp_get_thread_num (x06adc) and
nag_omp_in_parallel (x06afc) are only relevant when called from within an OpenMP parallel region.
This could be one of your own or one in a NAG function. The cases where these routines apply to NAG
functions are the ones which take a user-supplied function. There are functions in Chapters d01, d03,
e05 and f01 which contain parallel regions that have calls to user-supplied functions from within them.
You may, for example, wish to know the thread number, the number of threads or simply check whether
this NAG parallel region is an active one in your supplied function.

Nested parallelism is where a parallel region is contained within another. That is, each thread in the
outer region spawns its own inner parallel region of which it is the master thread. nag_omp_set_nested
(x06agc) can be used to enable nested parallelism by setting the nesting ICV. nag_omp_get_nested
(x06ahc) can be used to retrieve the value of this ICV. Nesting will be disabled by default and you

Introduction – x06 NAG Library Manual

x06.2 Mark 25

should have a good reason for using nested parallel regions with careful thought given to the hardware
resources you have.

If you wish to call a NAG multi-threaded function and have it execute in parallel from each thread in
your own parallel region you will need to enable nested parallelism. If you do not enable it the NAG
function will simply execute in serial. When using nesting the environment variable OMP_NUM_THREADS

can be given a comma-separated list of integers representing the number of threads you wish to use at
each level of parallelism. Recall that nag_omp_set_num_threads (x06aac) can be used to set the number
of threads for the next parallel region. To change the number of threads for a NAG function in this
scenario, you would call nag_omp_set_num_threads (x06aac) once inside your own parallel region.

3.2 Serial Implementations of the NAG C Library

When using a serial implementation of the NAG C Library the X06 functions return a value in line with
your whole program being executed in serial. This is irrespective of what OMP_NUM_THREADS has been
set to or if you have compiled your program with OpenMP.

Table 1 shows the behaviour of these functions in serial implementations of the NAG C Library.

Note that underlying vendor libraries may still be using multi-threading. Check the Users’ Note
document of your implementation.

If you are using OpenMP in your code together with a serial implementation of the NAG C Library, we
recommend you use the OpenMP runtime library routines directly to control threading in your program.

Function Behaviour when called from a serial implementation of the NAG
C Library

nag_omp_set_num_threads (x06aac) No effect
nag_omp_get_num_threads (x06abc) Returns 1
nag_omp_get_max_threads (x06acc) Returns 1
nag_omp_get_thread_num (x06adc) Returns 0
nag_omp_in_parallel (x06afc) Returns 0
nag_omp_set_nested (x06agc) No effect
nag_omp_get_nested (x06ahc) Returns 0

4 Functionality Index

Active parallel region test .. nag_omp_in_parallel (x06afc)

Nested OpenMP Parallelism
enable or disable ... nag_omp_set_nested (x06agc)
get nesting status .. nag_omp_get_nested (x06ahc)

Number of OpenMP Threads
get upper bound for next parallel region nag_omp_get_max_threads (x06acc)
in current team ... nag_omp_get_num_threads (x06abc)
set for next parallel region ... nag_omp_set_num_threads (x06aac)

Thread number .. nag_omp_get_thread_num (x06adc)

5 Auxiliary Functions Associated with Library Function Arguments

None.

6 Functions Withdrawn or Scheduled for Withdrawal

None.

x06 – OpenMP Interfaces Introduction – x06

Mark 25 x06.3 (last)

	x06 - OpenMP Utilities, Chapter Introduction
	1 Scope of the Chapter
	2 Background to the Problems
	3 Recommendations on Choice and Use of Available Functions
	3.1 Multi-threaded Implementations of the NAG Library
	3.2 Serial Implementations of the NAG C Library

	4 Functionality Index
	5 Auxiliary Functions Associated with Library Function Arguments
	6 Functions Withdrawn or Scheduled for Withdrawal

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

