NAG Library Function Document nag_fresnel_s (s20acc)

1 Purpose

nag_fresnel_s (s20acc) returns a value for the Fresnel integral $S(x)$.

2 Specification

```
#include <nag.h>
#include <nags.h>
double nag_fresnel_s (double x)
```


3 Description

nag_fresnel_s (s20acc) evaluates an approximation to the Fresnel integral

$$
S(x)=\int_{0}^{x} \sin \left(\frac{\pi}{2} t^{2}\right) d t
$$

Note: $S(x)=-S(-x)$, so the approximation need only consider $x \geq 0.0$.
The function is based on three Chebyshev expansions:
For $0<x \leq 3$,

$$
S(x)=x^{3} \sum_{r=0} a_{r} T_{r}(t), \quad \text { with } t=2\left(\frac{x}{3}\right)^{4}-1
$$

For $x>3$,

$$
S(x)=\frac{1}{2}-\frac{f(x)}{x} \cos \left(\frac{\pi}{2} x^{2}\right)-\frac{g(x)}{x^{3}} \sin \left(\frac{\pi}{2} x^{2}\right)
$$

where $f(x)=\sum_{r=0} b_{r} T_{r}(t)$,
and $g(x)=\sum_{r=0} c_{r} T_{r}(t)$,
with $t=2\left(\frac{3}{x}\right)^{4}-1$.
For small $x, S(x) \simeq \frac{\pi}{6} x^{3}$. This approximation is used when x is sufficiently small for the result to be correct to machine precision. For very small x, this approximation would underflow; the result is then set exactly to zero.
For large $x, f(x) \simeq \frac{1}{\pi}$ and $g(x) \simeq \frac{1}{\pi^{2}}$. Therefore for moderately large x, when $\frac{1}{\pi^{2} x^{3}}$ is negligible compared with $\frac{1}{2}$, the second term in the approximation for $x>3$ may be dropped. For very large x, when $\frac{1}{\pi x}$ becomes negligible, $S(x) \simeq \frac{1}{2}$. However there will be considerable difficulties in calculating $\cos \left(\frac{\pi}{2} x^{2}\right)$ accurately before this final limiting value can be used. Since $\cos \left(\frac{\pi}{2} x^{2}\right)$ is periodic, its value is essentially determined by the fractional part of x^{2}. If $x^{2}=N+\theta$ where N is an integer and $0 \leq \theta<1$, then $\cos \left(\frac{\pi}{2} x^{2}\right)$ depends on θ and on N modulo 4. By exploiting this fact, it is possible to retain
significance in the calculation of $\cos \left(\frac{\pi}{2} x^{2}\right)$ either all the way to the very large x limit, or at least until the integer part of $\frac{x}{2}$ is equal to the maximum integer allowed on the machine.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications

5 Arguments

$\begin{array}{ll}\text { 1: } & \mathbf{x}-\text { double } \\ \text { On entry: the argument } x \text { of the function. }\end{array}$

6 Error Indicators and Warnings

None.

7 Accuracy

Let δ and ϵ be the relative errors in the argument and result respectively.
If δ is somewhat larger than the machine precision (i.e., if δ is due to data errors etc.), then ϵ and δ are approximately related by:

$$
\epsilon \simeq\left|\frac{x \sin \left(\frac{\pi}{2} x^{2}\right)}{S(x)}\right| \delta
$$

Figure 1 shows the behaviour of the error amplification factor $\left|\frac{x \sin \left(\frac{\pi}{2} x^{2}\right)}{S(x)}\right|$.
However if δ is of the same order as the machine precision, then rounding errors could make ϵ slightly larger than the above relation predicts.
For small $x, \epsilon \simeq 3 \delta$ and hence there is only moderate amplification of relative error. Of course for very small x where the correct result would underflow and exact zero is returned, relative error-control is lost.

For moderately large values of x,

$$
|\epsilon| \simeq\left|2 x \sin \left(\frac{\pi}{2} x^{2}\right)\right||\delta|
$$

and the result will be subject to increasingly large amplification of errors. However the above relation breaks down for large values of x (i.e., when $\frac{1}{x^{2}}$ is of the order of the machine precision); in this region the relative error in the result is essentially bounded by $\frac{2}{\pi x}$.

Hence the effects of error amplification are limited and at worst the relative error loss should not exceed half the possible number of significant figures.

Figure 1

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

This example reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

10.1 Program Text

```
/* nag_fresnel_s (s20acc) Example Program.
    *
    * Copyright 2014 Numerical Algorithms Group.
    *
    * Mark 2 revised, 1992.
    */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>
int main(void)
{
    Integer exit_status = 0;
    double x, y;
    /* Skip heading in data file */
#ifdef _WIN32
    scanf_s("%*[^\n]");
#else
    scanf("%*[^\n]");
#endif
```

```
    printf("nag_fresnel_s (s20acc) Example Program Results\n");
    printf(" x y\n");
#ifdef _WIN32
    while (scanf_s("%lf", &x) != EOF)
#else
    while (scanf("%lf", &x) != EOF)
#endif
        {
            /* nag_fresnel_s (s20acc).
            * Fresnel integral S(x)
            */
            y = nag_fresnel_s(x);
            printf("%12.3e%12.3e\n", x, y);
        }
    return exit_status;
}
```


10.2 Program Data

```
nag_fresnel_s (s20acc) Example Program Data
    0.0
    0.5
    1.0
    2.0
    4.0
    5.0
    6.0
    8.0
        10.0
        -1.0
        1000.0
```


10.3 Program Results

```
nag_fresnel_s (s20acc) Example Program Results
    x
    0.000e+00
    5.000e-
    1.000e+0
    2.000e+00
    4.000e+00
    5.000e+00 4.992e-01
    6.000e+00 4.470e-01
    8.000e+00 4.602e-01
    1.000e+01 4.682e-01
    -1.000e+00 -4.383e-01
    1.000e+03 4.997e-01
```

Example Program
Returns a Value for the Fresnel Integral $S(x)$

