205 — Random Number Generators g05ryc

NAG Library Function Document

nag_rand matrix_multi_students_t (g05ryc)

1 Purpose

nag rand_matrix_multi_students t (g05ryc) sets up a reference vector and generates an array of
pseudorandom numbers from a multivariate Student’s ¢ distribution with v degrees of freedom, mean
vector a and covariance matrix S*5C'.

2 Specification

#include <nag.h>
#include <nagg05.h>

void nag_rand_matrix_multi_students_t (Nag_OrderType order,
Nag_ModeRNG mode, Integer n, Integer df, Integer m, const double xmul],
const double c[], Integer pdc, double r[], Integer lr, Integer statel],
double x[], Integer pdx, NagError *fail)

3 Description

When the covariance matrix is nonsingular (i.e., strictly positive definite), the distribution has probability
density function
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where m is the number of dimensions, v is the degrees of freedom, a is the vector of means, = is the
vector of positions and *5C' is the covariance matrix.

v
$:a+\/:z
s

where z is generated by nag rand normal (g05skc) from a Normal distribution with mean zero and
covariance matrix C' and s is generated by nag rand chi sq (g05sdc) from a x2-distribution with v
degrees of freedom.

The function returns the value

One of the initialization functions nag rand init_repeatable (gO5kfc) (for a repeatable sequence if
computed sequentially) or nag_rand init nonrepeatable (g05kgc) (for a non-repeatable sequence) must
be called prior to the first call to nag rand matrix_multi_students t (g05ryc).

4  References
Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison—Wesley
Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

5  Arguments

1: order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
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order = Nag_ RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint. order = Nag_RowMajor or Nag_ColMajor.

2: mode — Nag ModeRNG Input
On entry: a code for selecting the operation to be performed by the function.

mode = Nag_InitializeReference
Set up reference vector only.

mode = Nag_GenerateFromReference
Generate variates using reference vector set up in a prior call to
nag_rand_matrix_multi_students t (g05ryc).

mode = Nag_InitializeAndGenerate
Set up reference vector and generate variates.

Constraint: mode = Nag_InitializeReference, Nag_GenerateFromReference or
Nag_InitializeAndGenerate.

3: n — Integer Input
On entry: n, the number of random variates required.

Constraint: n > 0.

4: df — Integer Input
On entry: v, the number of degrees of freedom of the distribution.

Constraint. df > 3.

5: m — Integer Input
On entry: m, the number of dimensions of the distribution.

Constraint: m > 0.

6: xmu[m] — const double Input

On entry: a, the vector of means of the distribution.

7: c¢[dim] — const double Input
Note: the dimension, dim, of the array ¢ must be at least pdec x m.
The (i, j)th element of the matrix C' is stored in

c[(j — 1) x pde + i — 1] when order = Nag_ColMajor;
c[(i — 1) x pdc + j — 1] when order = Nag_RowMajor.

On entry: matrix which, along with df, defines the covariance of the distribution. Only the upper
triangle need be set.

Constraint: ¢ must be positive semidefinite to machine precision.

8: pdc — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array c.

Constraint: pde > m.
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10:

11:

12:

13:

14:

6

r[lr] — double Input/Output

On entry: if mode = Nag_GenerateFromReference, the reference vector as set up by
nag rand matrix _multi_students t (g05ryc) in a previous call with
mode = Nag_InitializeReference or Nag_InitializeAndGenerate.

On exit: if mode = Nag_InitializeReference or Nag_InitializeAndGenerate, the reference vector
that can be used in subsequent calls to nag rand matrix multi students t (gO5ryc) with
mode = Nag_GenerateFromReference.

Ir — Integer Input

On entry: the dimension of the array r. If mode = Nag_GenerateFromReference, it must be the
same as the value of Ir specified in the prior call to nag rand matrix_multi_students t (g05ryc)
with mode = Nag_InitializeReference or Nag_InitializeAndGenerate.

Constraint: Ir > m x (m+ 1) 4 2.

state[dim] — Integer Communication Array

Note: the dimension, dim, of this array is dictated by the requirements of associated functions that
must have been previously called. This array MUST be the same array passed as argument state in
the previous call to nag rand init_repeatable (g05kfc) or nag rand init nonrepeatable (g05kgc).

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

x[dim] — double Output
Note: the dimension, dim, of the array x must be at least

max (1, pdx x m) when order = Nag_ColMajor;
max(1,n x pdx) when order = Nag_RowMajor.

Where X(i,j) appears in this document, it refers to the array element

x[(j — 1) x pdx + ¢ — 1] when order = Nag_ColMajor;
x[(i — 1) x pdx + j — 1] when order = Nag_RowMajor.

On exit: the array of pseudorandom multivariate Student’s ¢ vectors generated by the function,
with X(i,7) holding the jth dimension for the ith variate.
pdx — Integer Input
On entry: the stride used in the array x.
Constraints:

if order = Nag_ColMajor, pdx > n;

if order = Nag_ RowMajor, pdx > m.
fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.
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NE_INT

On entry, df = (value).
Constraint: df > 3.

On entry, Ir is not large enough, Ir = (value): minimum length required = (value).

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.
NE_INT 2

On entry, pde = (value) and m = (value).
Constraint: pdc > m.

On entry, pdx = (value) and m = (value).
Constraint: pdx > m.

On entry, pdx = (value) and n = (value).
Constraint: pdx > n.
NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.
NE_INVALID STATE

On entry, state vector has been corrupted or not initialized.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.
NE_POS _DEF

On entry, the covariance matrix C' is not positive semidefinite to machine precision.

NE_PREV_CALL

m is not the same as when r was set up in a previous call.
Previous value of m = (value) and m = (value).

7  Accuracy

Not applicable.

8 Parallelism and Performance

nag rand_matrix_multi_students t (g05ryc) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library.

nag rand matrix multi students t (g05ryc) makes calls to BLAS and/or LAPACK routines, which may
be threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The time taken by nag rand matrix_multi_students_t (g05ryc) is of order nm?>.

It is recommended that the diagonal elements of C' should not differ too widely in order of magnitude.
This may be achieved by scaling the variables if necessary. The actual matrix decomposed is
C+ E = LL", where E is a diagonal matrix with small positive diagonal elements. This ensures that,
even when C' is singular, or nearly singular, the Cholesky factor L corresponds to a positive definite
covariance matrix that agrees with C within machine precision.

10 Example

This example prints ten pseudorandom observations from a multivariate Student’s ¢-distribution with ten
degrees of freedom, means vector

1.0
2.0
-3.0
0.0

and ¢ matrix

1.69 0.39 —1.86 0.07
0.39 9801 -7.07 —-0.71
—-1.86 —7.07 11.56 0.03 |’
0.07 —-0.71 0.03 0.01

generated by nag_rand matrix_multi_students t (g05ryc). All ten observations are generated by a single
call to nag rand matrix_multi_students t (g05ryc) with mode = Nag_InitializeAndGenerate. The
random number generator is initialized by nag rand init repeatable (g05kfc).

10.1 Program Text

/* nag_rand_matrix_multi_students_t (g0O5ryc) Example Program.
*

* Copyright 2014 Numerical Algorithms Group.

* Mark 9, 2009.

*/
/* Pre-processor includes */
#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg05.h>

#define X(I, J) x[(order == Nag_ColMajor)?(J*pdx + I):(I*pdx + J)]
#define C(I, J) c[(order == Nag_ColMajor)?(J*pdc + I):(I*pdc + J)]

int main(void)

{
/* Integer scalar and array declarations */
Integer exit_status = 0;
Integer i, j, lstate, lr, x_size;
Integer *state = 0;
Integer pdx;

/* NAG structures */
NagError fail;
Nag_ModeRNG mode;

/* Double scalar and array declarations */
double *r = 0, *x = 0;

/* Use column major order */
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Nag_OrderType order = Nag_RowMajor;

/* Set the number of variables and variates */
Integer m = 4;
Integer n = 10;

/* Input the covariance matrix */

double c[] = { 1.69e0, 0.39e0, -1.86e0, 0.07e0,
0.39e0, 98.01e0, -7.07e0, -0.71e0,
-1.86e0, -7.07e0, 11.56e0, 0.03e0,
0.07¢0, -0.71e0, 0.03e0, 0.0le0 };

Integer pdc = 4;

/* Input the means */
double xmul[] = { 1.0e0, 2.0e0, -3.0e0, 0.0e0 };

/* Set the degrees of freedom*/
Integer df = 10;

/* Choose the base generator */
Nag_BaseRNG genid = Nag_Basic;

Integer subid = 0;

/* Set the seed */

Integer seed[] = { 1762543 };
Integer lseed = 1;

/* Initialise the error structure */
INIT_FAIL(fail);

printf("nag_rand matrix_multi_students_t (g05ryc) "
"Example Program Results\n\n");

/* Get the length of the state array */
lstate = -1;
nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);
if (fail.code != NE_NOERROR)
{
printf ("Error from nag_rand_init_repeatable (gO5kfc).\n%s\n",
fail.message) ;

exit_status = 1;
goto END;
¥
pdx = (order == Nag_ColMajor)?n:m;
x_size = (order == Nag_ColMajor)?pdx * m:pdx * n;

/* Calculate the size of the reference vector */
lr = m*m+m+2;

/* Allocate arrays */
if (!(r = NAG_ALLOC(lr, double)) ||
1 (x = NAG_ALLOC(x_size, double)) ||
! (state = NAG_ALLOC(lstate, Integer)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

3

/* Initialise the generator to a repeatable sequence */
nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);
if (fail.code != NE_NOERROR)
{
printf ("Error from nag_rand_init_repeatable (g05kfc).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
3

/* Set up reference vector and generate N numbers */
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mode = Nag_InitializeAndGenerate;
nag_rand_matrix_multi_students_t(order, mode, n, df, m, xmu, c, pdc, r,
lr, state, x, pdx, &fail);
if (fail.code != NE_NOERROR)
{
printf(
"Error from nag_rand_matrix_multi_students_t (g05ryc).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
}

/* Display the variates */
for (i = 0; 1 < n; i++)

{
printf (" ");
for (3 = 0; j < m; j++)
printf("%9.4f%s", X(i, j), (J+1)%102" ":"\n");
if (m%10) printf("\n");
}
END:

NAG_FREE (1) ;
NAG_FREE (x) ;
NAG_FREE (state) ;

return exit_status;
10.2 Program Data
None.

10.3 Program Results

nag_rand_matrix_multi_students_t (g05ryc) Example Program Results

1.4957 -15.6226 -3.8101 0.1294
-1.0827 -6.7473 0.6696 -0.0391
2.1369 6.3861 -5.7413 0.0140
2.2481 -16.0417 -1.0982 0.1641
-0.2550 3.5166 -0.2541 -0.0592
0.9731 -4.3553 -4.4181 0.0043
0.7098 -3.4281 1.1741 0.0586
1.8827 23.2619 1.5140 -0.0704
0.9904 22.7479 0.1811 -0.0893
1.5026 2.7753 -2.2805 -0.0112
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