205 — Random Number Generators g05ryc

NAG Library Function Document

nag_rand matrix_multi_students_t (g05ryc)

1 Purpose

nag rand_matrix_multi_students t (g05ryc) sets up a reference vector and generates an array of
pseudorandom numbers from a multivariate Student’s ¢ distribution with v degrees of freedom, mean
vector a and covariance matrix S*5C'.

2 Specification

#include <nag.h>
#include <nagg05.h>

void nag_rand_matrix_multi_students_t (Nag_OrderType order,
Nag_ModeRNG mode, Integer n, Integer df, Integer m, const double xmul],
const double c[], Integer pdc, double r[], Integer lr, Integer statel],
double x[], Integer pdx, NagError *fail)

3 Description

When the covariance matrix is nonsingular (i.e., strictly positive definite), the distribution has probability
density function

fla) =

14

F(#) 1+ (x—a)'C Y z—a)| °
(o)™ (v/2)|C

where m is the number of dimensions, v is the degrees of freedom, a is the vector of means, = is the
vector of positions and *5C' is the covariance matrix.

v
$:a+\/:z
s

where z is generated by nag rand normal (g05skc) from a Normal distribution with mean zero and
covariance matrix C' and s is generated by nag rand chi sq (g05sdc) from a x2-distribution with v
degrees of freedom.

The function returns the value

One of the initialization functions nag rand init_repeatable (gO5kfc) (for a repeatable sequence if
computed sequentially) or nag_rand init nonrepeatable (g05kgc) (for a non-repeatable sequence) must
be called prior to the first call to nag rand matrix_multi_students t (g05ryc).

4 References
Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison—Wesley
Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

5 Arguments

1: order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by

Mark 25 g05ryc.1

g05ryc NAG Library Manual

order = Nag_ RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint. order = Nag_RowMajor or Nag_ColMajor.

2: mode — Nag ModeRNG Input
On entry: a code for selecting the operation to be performed by the function.

mode = Nag_InitializeReference
Set up reference vector only.

mode = Nag_GenerateFromReference
Generate variates using reference vector set up in a prior call to
nag_rand_matrix_multi_students t (g05ryc).

mode = Nag_InitializeAndGenerate
Set up reference vector and generate variates.

Constraint: mode = Nag_InitializeReference, Nag_GenerateFromReference or
Nag_InitializeAndGenerate.

3: n — Integer Input
On entry: n, the number of random variates required.

Constraint: n > 0.

4: df — Integer Input
On entry: v, the number of degrees of freedom of the distribution.

Constraint. df > 3.

5: m — Integer Input
On entry: m, the number of dimensions of the distribution.

Constraint: m > 0.

6: xmu[m] — const double Input

On entry: a, the vector of means of the distribution.

7: c¢[dim] — const double Input
Note: the dimension, dim, of the array ¢ must be at least pdec x m.
The (i, j)th element of the matrix C' is stored in

c[(j — 1) x pde + i — 1] when order = Nag_ColMajor;
c[(i — 1) x pdc + j — 1] when order = Nag_RowMajor.

On entry: matrix which, along with df, defines the covariance of the distribution. Only the upper
triangle need be set.

Constraint: ¢ must be positive semidefinite to machine precision.

8: pdc — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array c.

Constraint: pde > m.

g05ryc.2 Mark 25

205 — Random Number Generators g05ryc

10:

11:

12:

13:

14:

6

r[lr] — double Input/Output

On entry: if mode = Nag_GenerateFromReference, the reference vector as set up by
nag rand matrix _multi_students t (g05ryc) in a previous call with
mode = Nag_InitializeReference or Nag_InitializeAndGenerate.

On exit: if mode = Nag_InitializeReference or Nag_InitializeAndGenerate, the reference vector
that can be used in subsequent calls to nag rand matrix multi students t (gO5ryc) with
mode = Nag_GenerateFromReference.

Ir — Integer Input

On entry: the dimension of the array r. If mode = Nag_GenerateFromReference, it must be the
same as the value of Ir specified in the prior call to nag rand matrix_multi_students t (g05ryc)
with mode = Nag_InitializeReference or Nag_InitializeAndGenerate.

Constraint: Ir > m x (m+ 1) 4 2.

state[dim] — Integer Communication Array

Note: the dimension, dim, of this array is dictated by the requirements of associated functions that
must have been previously called. This array MUST be the same array passed as argument state in
the previous call to nag rand init_repeatable (g05kfc) or nag rand init nonrepeatable (g05kgc).

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

x[dim] — double Output
Note: the dimension, dim, of the array x must be at least

max (1, pdx x m) when order = Nag_ColMajor;
max(1,n x pdx) when order = Nag_RowMajor.

Where X(i,j) appears in this document, it refers to the array element

x[(j — 1) x pdx + ¢ — 1] when order = Nag_ColMajor;
x[(i — 1) x pdx + j — 1] when order = Nag_RowMajor.

On exit: the array of pseudorandom multivariate Student’s ¢ vectors generated by the function,
with X(i,7) holding the jth dimension for the ith variate.
pdx — Integer Input
On entry: the stride used in the array x.
Constraints:

if order = Nag_ColMajor, pdx > n;

if order = Nag_ RowMajor, pdx > m.
fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

Mark 25 g05ryc.3

g05ryc NAG Library Manual

NE_INT

On entry, df = (value).
Constraint: df > 3.

On entry, Ir is not large enough, Ir = (value): minimum length required = (value).

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.
NE_INT 2

On entry, pde = (value) and m = (value).
Constraint: pdc > m.

On entry, pdx = (value) and m = (value).
Constraint: pdx > m.

On entry, pdx = (value) and n = (value).
Constraint: pdx > n.
NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.
NE_INVALID STATE

On entry, state vector has been corrupted or not initialized.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.
NE_POS _DEF

On entry, the covariance matrix C' is not positive semidefinite to machine precision.

NE_PREV_CALL

m is not the same as when r was set up in a previous call.
Previous value of m = (value) and m = (value).

7 Accuracy

Not applicable.

8 Parallelism and Performance

nag rand_matrix_multi_students t (g05ryc) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library.

nag rand matrix multi students t (g05ryc) makes calls to BLAS and/or LAPACK routines, which may
be threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

g05ryc.4 Mark 25

205 — Random Number Generators g05ryc

9 Further Comments

The time taken by nag rand matrix_multi_students_t (g05ryc) is of order nm?>.

It is recommended that the diagonal elements of C' should not differ too widely in order of magnitude.
This may be achieved by scaling the variables if necessary. The actual matrix decomposed is
C+ E = LL", where E is a diagonal matrix with small positive diagonal elements. This ensures that,
even when C' is singular, or nearly singular, the Cholesky factor L corresponds to a positive definite
covariance matrix that agrees with C within machine precision.

10 Example

This example prints ten pseudorandom observations from a multivariate Student’s ¢-distribution with ten
degrees of freedom, means vector

1.0
2.0
-3.0
0.0

and ¢ matrix

1.69 0.39 —1.86 0.07
0.39 9801 -7.07 —-0.71
—-1.86 —7.07 11.56 0.03 |’
0.07 —-0.71 0.03 0.01

generated by nag_rand matrix_multi_students t (g05ryc). All ten observations are generated by a single
call to nag rand matrix_multi_students t (g05ryc) with mode = Nag_InitializeAndGenerate. The
random number generator is initialized by nag rand init repeatable (g05kfc).

10.1 Program Text

/* nag_rand_matrix_multi_students_t (g0O5ryc) Example Program.
*

* Copyright 2014 Numerical Algorithms Group.

* Mark 9, 2009.

*/
/* Pre-processor includes */
#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg05.h>

#define X(I, J) x[(order == Nag_ColMajor)?(J*pdx + I):(I*pdx + J)]
#define C(I, J) c[(order == Nag_ColMajor)?(J*pdc + I):(I*pdc + J)]

int main(void)

{
/* Integer scalar and array declarations */
Integer exit_status = 0;
Integer i, j, lstate, lr, x_size;
Integer *state = 0;
Integer pdx;

/* NAG structures */
NagError fail;
Nag_ModeRNG mode;

/* Double scalar and array declarations */
double *r = 0, *x = 0;

/* Use column major order */

Mark 25 g05rye.5

g05ryc NAG Library Manual

Nag_OrderType order = Nag_RowMajor;

/* Set the number of variables and variates */
Integer m = 4;
Integer n = 10;

/* Input the covariance matrix */

double c[] = { 1.69e0, 0.39e0, -1.86e0, 0.07e0,
0.39e0, 98.01e0, -7.07e0, -0.71e0,
-1.86e0, -7.07e0, 11.56e0, 0.03e0,
0.07¢0, -0.71e0, 0.03e0, 0.0le0 };

Integer pdc = 4;

/* Input the means */
double xmul[] = { 1.0e0, 2.0e0, -3.0e0, 0.0e0 };

/* Set the degrees of freedom*/
Integer df = 10;

/* Choose the base generator */
Nag_BaseRNG genid = Nag_Basic;

Integer subid = 0;

/* Set the seed */

Integer seed[] = { 1762543 };
Integer lseed = 1;

/* Initialise the error structure */
INIT_FAIL(fail);

printf("nag_rand matrix_multi_students_t (g05ryc) "
"Example Program Results\n\n");

/* Get the length of the state array */
lstate = -1;
nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);
if (fail.code != NE_NOERROR)
{
printf ("Error from nag_rand_init_repeatable (gO5kfc).\n%s\n",
fail.message) ;

exit_status = 1;
goto END;
¥
pdx = (order == Nag_ColMajor)?n:m;
x_size = (order == Nag_ColMajor)?pdx * m:pdx * n;

/* Calculate the size of the reference vector */
lr = m*m+m+2;

/* Allocate arrays */
if (!(r = NAG_ALLOC(lr, double)) ||
1 (x = NAG_ALLOC(x_size, double)) ||
! (state = NAG_ALLOC(lstate, Integer)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

3

/* Initialise the generator to a repeatable sequence */
nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);
if (fail.code != NE_NOERROR)
{
printf ("Error from nag_rand_init_repeatable (g05kfc).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
3

/* Set up reference vector and generate N numbers */

g05ryc.6 Mark 25

205 — Random Number Generators g05ryc

mode = Nag_InitializeAndGenerate;
nag_rand_matrix_multi_students_t(order, mode, n, df, m, xmu, c, pdc, r,
lr, state, x, pdx, &fail);
if (fail.code != NE_NOERROR)
{
printf(
"Error from nag_rand_matrix_multi_students_t (g05ryc).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
}

/* Display the variates */
for (i = 0; 1 < n; i++)

{
printf (" ");
for (3 = 0; j < m; j++)
printf("%9.4f%s", X(i, j), (J+1)%102" ":"\n");
if (m%10) printf("\n");
}
END:

NAG_FREE (1) ;
NAG_FREE (x) ;
NAG_FREE (state) ;

return exit_status;
10.2 Program Data
None.

10.3 Program Results

nag_rand_matrix_multi_students_t (g05ryc) Example Program Results

1.4957 -15.6226 -3.8101 0.1294
-1.0827 -6.7473 0.6696 -0.0391
2.1369 6.3861 -5.7413 0.0140
2.2481 -16.0417 -1.0982 0.1641
-0.2550 3.5166 -0.2541 -0.0592
0.9731 -4.3553 -4.4181 0.0043
0.7098 -3.4281 1.1741 0.0586
1.8827 23.2619 1.5140 -0.0704
0.9904 22.7479 0.1811 -0.0893
1.5026 2.7753 -2.2805 -0.0112

Mark 25 g05rye.7 (last)

	g05ryc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Knuth (1981)
	Wilkinson (1965)

	5 Arguments
	order
	mode
	n
	df
	m
	xmu
	c
	pdc
	r
	lr
	state
	x
	pdx
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_INVALID_STATE
	NE_NO_LICENCE
	NE_POS_DEF
	NE_PREV_CALL

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

