
NAG Library Function Document

nag_glm_gamma (g02gdc)

1 Purpose

nag_glm_gamma (g02gdc) fits a generalized linear model with gamma errors.

2 Specification

#include <nag.h>
#include <nagg02.h>

void nag_glm_gamma (Nag_Link link, Nag_IncludeMean mean, Integer n,
const double x[], Integer tdx, Integer m, const Integer sx[],
Integer ip, const double y[], const double wt[], double offset[],
double *scale, double ex_power, double *dev, double *df, double b[],
Integer *rank, double se[], double cov[], double v[], Integer tdv,
double tol, Integer max_iter, Integer print_iter, const char *outfile,
double eps, NagError *fail)

3 Description

A generalized linear model with gamma errors consists of the following elements:

(a) a set of n observations, yi, from a gamma distribution with probability density function:

1

� �ð Þ
�y

�

� ��
exp ��y

�

� �
1

y
:

� being constant for the sample.

(b) X, a set of p independent variables for each observation, x1; x2; . . . ; xp.

(c) a linear model:

� ¼
X

�jxj:

(d) a link between the linear predictor, �, and the mean of the distribution, �, � ¼ g �ð Þ. The possible
link functions are:

(i) power link: � ¼ �a, for a constant a,

(ii) identity link: � ¼ �,

(iii) log link: � ¼ log�,

(iv) square root link: � ¼ ffiffiffi
�
p

,

(e) reciprocal link: � ¼ 1
� .

(f) a measure of fit, an adjusted deviance. This is a function related to the deviance, but defined for
y ¼ 0:

Xn
i¼1

dev� yi; �̂ið Þ ¼
Xn
i¼1

2 log �̂ið Þ þ
yi
�̂i

� �� �

The linear arguments are estimated by iterative weighted least squares. An adjusted dependent variable,
z, is formed:

z ¼ � þ y� �ð Þd�
d�

and a working weight, w,

g02 – Correlation and Regression Analysis g02gdc

Mark 25 g02gdc.1

w ¼
ffiffiffiffiffiffiffiffi
�
d�

d�

s
; where � ¼ 1

�
:

At each iteration an approximation to the estimate of �, �̂ is found by the weighted least squares
regression of z on X with weights w.

nag_glm_gamma (g02gdc) finds a QR decomposition of w
1
2X , i.e.,

w
1
2X ¼ QR where R is a p by p triangular matrix and Q is an n by p column orthogonal matrix.

If R is of full rank then �̂ is the solution to:

R�̂ ¼ QTw
1
2z

If R is not of full rank a solution is obtained by means of a singular value decomposition (SVD) of R.

R ¼ Q� D 0
0 0

� �
PT:

where D is a k by k diagonal matrix with nonzero diagonal elements, k being the rank of R and w
1
2X .

This gives the solution

�̂ ¼ P1D
�1 Q� 0

0 I

� �
QTw

1
2z

P1 being the first k columns of P , i.e., P ¼ P1P0ð Þ.
The iterations are continued until there is only a small change in the deviance.

The initial values for the algorithm are obtained by taking

�̂ ¼ g yð Þ
The scale argument, ��1 is estimated by a moment estimator:

�̂�1 ¼
Xn
i¼1

yi � �̂ið Þ=�̂½ �2

n� kð Þ :

The fit of the model can be assessed by examining and testing the deviance, in particular, by comparing
the difference in deviance between nested models, i.e., when one model is a sub-model of the other. The
difference in deviance or adjusted deviance between two nested models with known � has,
asymptotically, a �2 distribution with degrees of freedom given by the difference in the degrees of
freedom associated with the two deviances.

The arguments estimates, �̂, are asymptotically Normally distributed with variance-covariance matrix:

C ¼ R�1R�1T
in the full rank case, otherwise

C ¼ P1D
�2PT

1

The residuals and influence statistics can also be examined.

The estimated linear predictor �̂ ¼ X�̂, can be written as Hw
1
2z for an n by n matrix H. The ith diagonal

elements of H, hi, give a measure of the influence of the ith values of the independent variables on the
fitted regression model. These are known as leverages.

The fitted values are given by �̂ ¼ g�1 �̂ð Þ.
nag_glm_gamma (g02gdc) also computes the Anscombe residuals, r:

ri ¼
3 y

1
3
i � �̂

1
3
i

� �
�̂

1
3
i

g02gdc NAG Library Manual

g02gdc.2 Mark 25

An option allows the use of prior weights, !i. This gives a model with:

�i ¼ �!i
In many linear regression models the first term is taken as a mean term or an intercept, i.e., xi;1 ¼ 1, for
i ¼ 1; 2; . . . ; n. This is provided as an option.

Often only some of the possible independent variables are included in a model, the facility to select
variables to be included in the model is provided.

If part of the linear predictor can be represented by a variable with a known coefficient then this can be
included in the model by using an offset, o:

� ¼ oþ
X

�jxj:

If the model is not of full rank the solution given will be only one of the possible solutions. Other
estimates may be obtained by applying constraints to the arguments. These solutions can be obtained by
using nag_glm_tran_model (g02gkc) after using nag_glm_gamma (g02gdc).

Only certain linear combinations of the arguments will have unique estimates, these are known as
estimable functions, these can be estimated and tested using nag_glm_est_func (g02gnc).

Details of the SVD, are made available, in the form of the matrix P �:

P � ¼ D�1PT
1

PT
0

� �
:

4 References

Cook R D and Weisberg S (1982) Residuals and Influence in Regression Chapman and Hall

McCullagh P and Nelder J A (1983) Generalized Linear Models Chapman and Hall

5 Arguments

1: link – Nag_Link Input

On entry: indicates which link function is to be used.

link ¼ Nag Expo
An exponent link is used.

link ¼ Nag Iden
An identity link is used.

link ¼ Nag Log
A log link is used.

link ¼ Nag Sqrt
A square root link is used.

link ¼ Nag Reci
A reciprocal link is used.

Constraint: link ¼ Nag Expo, Nag Iden, Nag Log, Nag Sqrt or Nag Reci.

2: mean – Nag_IncludeMean Input

On entry: indicates if a mean term is to be included.

mean ¼ Nag MeanInclude
A mean term, (intercept), will be included in the model.

mean ¼ Nag MeanZero
The model will pass through the origin, zero point.

Constraint: mean ¼ Nag MeanInclude or Nag MeanZero.

g02 – Correlation and Regression Analysis g02gdc

Mark 25 g02gdc.3

3: n – Integer Input

On entry: the number of observations, n.

Constraint: n � 2.

4: x½n� tdx� – const double Input

On entry: x½ i � 1ð Þ � tdxþ j � 1� must contain the ith observation for the jth independent
variable, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

5: tdx – Integer Input

On entry: the stride separating matrix column elements in the array x.

Constraint: tdx � m.

6: m – Integer Input

On entry: the total number of independent variables.

Constraint: m � 1.

7: sx½m� – const Integer Input

On entry: indicates which independent variables are to be included in the model.

If sx½j� 1� > 0, then the variable contained in the jth column of x is included in the regression
model.

Constraints:

sx½j � 1� � 0, for j ¼ 1; 2; . . . ;m;
if mean ¼ Nag MeanInclude, then exactly ip� 1 values of sx must be > 0;
if mean ¼ Nag MeanZero, then exactly ip values of sx must be > 0.

8: ip – Integer Input

On entry: the number p of independent variables in the model, including the mean or intercept if
present.

Constraint: ip must be > 0.

9: y½n� – const double Input

On entry: observations on the dependent variable, yi, for i ¼ 1; 2; . . . ; n.

Constraint: y½i � 1� � 0, for i ¼ 1; 2; . . . ; n.

10: wt½n� – const double Input

On entry: if weighted estimates are required, then wt must contain the weights to be used.
Otherwise wt need not be defined and may be set to NULL.

If wt½i� 1� ¼ 0:0, then the ith observation is not included in the model, in which case the
effective number of observations is the number of observations with positive weights.

If wt is NULL, then the effective number of observations is n.

Constraint: wt is NULL or wt½i � 1� � 0:0, for i ¼ 1; 2; . . . ; n.

11: offset½n� – double Input

On entry: if an offset is required then offset must contain the values of the offset o. Otherwise
offset must be supplied as NULL.

g02gdc NAG Library Manual

g02gdc.4 Mark 25

12: scale – double * Input/Output

On entry: the scale argument for the gamma model, ��1.

If scale ¼ 0:0, then the scale argument is estimated with the function using the formula described
in Section 3.

On exit: if on input scale ¼ 0:0, then scale contains the estimated value of the scale argument,
�̂�1. If on input scale 6¼ 0:0, then scale is unchanged on exit.

Constraint: scale � 0:0.

13: ex power – double Input

On entry: if link ¼ Nag Expo then ex_power must contain the power a of the exponential.

If link 6¼ Nag Expo, ex_power is not referenced.

Constraint: if link ¼ Nag Expo, ex power 6¼ 0:0.

14: dev – double * Output

On exit: the adjusted deviance for the fitted model.

15: df – double * Output

On exit: the degrees of freedom associated with the deviance for the fitted model.

16: b½ip� – double Output

On exit: the estimates of the arguments of the generalized linear model, �̂.

If mean ¼ Nag MeanInclude, then b½0� will contain the estimate of the mean argument and b½i�
will contain the coefficient of the variable contained in column j of x, where sx½j� 1� is the ith
positive value in the array sx.

If mean ¼ Nag MeanZero, then b½i� 1� will contain the coefficient of the variable contained in
column j of x, where sx½j� 1� is the ith positive value in the array sx.

17: rank – Integer * Output

On exit: the rank of the independent variables.

If the model is of full rank, then rank ¼ ip.

If the model is not of full rank, then rank is an estimate of the rank of the independent variables.
rank is calculated as the number of singular values greater than eps� (largest singular value). It is
possible for the SVD to be carried out but rank to be returned as ip.

18: se½ip� – double Output

On exit: the standard errors of the linear arguments.

se½i � 1� contains the standard error of the parameter estimate in b½i � 1�, for i ¼ 1; 2; . . . ; ip.

19: cov½ip� ipþ 1ð Þ=2� – double Output

On exit: the ip� ipþ 1ð Þ=2 elements of cov contain the upper triangular part of the variance-
covariance matrix of the ip parameter estimates given in b. They are stored packed by column,
i.e., the covariance between the parameter estimate given in b½i� and the parameter estimate given
in b½j�, j � i, is stored in cov½j j þ 1ð Þ=2þ i�, for i ¼ 0; 1; . . . ; ip� 1 and j ¼ i; . . . ; ip� 1.

20: v½n� tdv� – double Output

On exit: auxiliary information on the fitted model.

v½ i � 1ð Þ � tdv�, contains the linear predictor value, �i, for i ¼ 1; 2; . . . ; n.

g02 – Correlation and Regression Analysis g02gdc

Mark 25 g02gdc.5

v½ i � 1ð Þ � tdvþ 1�, contains the fitted value, �̂i, for i ¼ 1; 2; . . . ; n.

v½ i � 1ð Þ � tdvþ 2�, contains the variance standardization, �i, for i ¼ 1; 2; . . . ; n.

v½ i � 1ð Þ � tdvþ 3�, contains the working weight, wi, for i ¼ 1; 2; . . . ; n.

v½ i� 1ð Þ � tdvþ 4�, contains the Anscombe residual, ri, for i ¼ 1; 2; . . . ; n.

v½ i � 1ð Þ � tdvþ 5�, contains the leverage, hi, for i ¼ 1; 2; . . . ; n.

v½ i� 1ð Þ � tdvþ j � 1�, for j ¼ 7; 8; . . . ; ipþ 6, contains the results of the QR decomposition or
the singular value decomposition.

If the model is not of full rank, i.e., rank < ip, then the first ip rows of columns 7 to ipþ 6
contain the P � matrix.

21: tdv – Integer Input

On entry: the stride separating matrix column elements in the array v.

Constraint: tdv � ipþ 6.

22: tol – double Input

On entry: indicates the accuracy required for the fit of the model.

The iterative weighted least squares procedure is deemed to have converged if the absolute change
in deviance between interactions is less than tol� (1.0+Current Deviance). This is approximately
an absolute precision if the deviance is small and a relative precision if the deviance is large.

If 0:0 � tol < machine precision, then the function will use 10� machine precision.

Constraint: tol � 0:0.

23: max iter – Integer Input

On entry: the maximum number of iterations for the iterative weighted least squares.

If max iter ¼ 0, then a default value of 10 is used.

Constraint: max iter � 0.

24: print iter – Integer Input

On entry: indicates if the printing of information on the iterations is required and the rate at which
printing is produced.

print iter � 0
There is no printing.

print iter > 0
The following items are printed every print_iter iterations:

(i) the deviance,

(ii) the current estimates, and

(iii) if the weighted least squares equations are singular then this is indicated.

25: outfile – const char * Input

On entry: a null terminated character string giving the name of the file to which results should be
printed. If outfile is NULL or an empty string then the stdout stream is used. Note that the file
will be opened in the append mode.

26: eps – double Input

On entry: the value of eps is used to decide if the independent variables are of full rank and, if
not, what the rank of the independent variables is. The smaller the value of eps the stricter the
criterion for selecting the singular value decomposition.

g02gdc NAG Library Manual

g02gdc.6 Mark 25

If 0:0 � eps < machine precision, then the function will use machine precision instead.

Constraint: eps � 0:0.

27: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_2_INT_ARG_LT

On entry, tdx ¼ valueh i while m ¼ valueh i. These arguments must satisfy tdx � m.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument link had an illegal value.

On entry, argument mean had an illegal value.

NE_INT_ARG_LT

On entry, ip ¼ valueh i.
Constraint: ip � 1.

On entry, m ¼ valueh i.
Constraint: m � 1.

On entry, max_iter must not be less than 0: max iter ¼ valueh i.
On entry, n ¼ valueh i.
Constraint: n � 2.

On entry, sx½ valueh i� must not be less than 0: sx½ valueh i� ¼ valueh i.
On entry, tdv ¼ valueh i while ip ¼ valueh i. These arguments must satisfy tdv � ipþ 6.

NE_IP_GT_OBSERV

ip is greater than the effective number of observations.

NE_IP_INCOMP_SX

ip is incompatible with mean and sx.

NE_LSQ_ITER_NOT_CONV

The iterative weighted least squares has failed to converge in max iter ¼ valueh i iterations. The
value of max_iter could be increased but it may be advantageous to examine the convergence
using the print_iter option. This may indicate that the convergence is slow because the solution is
at a boundary in which case it may be better to reformulate the model.

NE_NOT_APPEND_FILE

Cannot open file stringh i for appending.

NE_NOT_CLOSE_FILE

Cannot close file stringh i.

g02 – Correlation and Regression Analysis g02gdc

Mark 25 g02gdc.7

NE_RANK_CHANGED

The rank of the model has changed during the weighted least squares iterations. The estimate for
� returned may be reasonable, but you should check how the deviance has changed during
iterations.

NE_REAL_ARG_LT

On entry, eps must not be less than 0.0: eps ¼ valueh i.
On entry, scale must not be less than 0.0: scale ¼ valueh i.
On entry, tol must not be less than 0.0: tol ¼ valueh i.
On entry, wt½ valueh i� must not be less than 0.0: wt½ valueh i� ¼ valueh i.
On entry, y½ valueh i� must not be less than 0.0: y½ valueh i� ¼ valueh i.

NE_REAL_ENUM_ARG_CONS

On entry, ex power ¼ 0:0, link ¼ Nag Expo. These arguments must satisfy link ¼ Nag Expo and
ex power 6¼ 0:0.

NE_SVD_NOT_CONV

The singular value decomposition has failed to converge.

NE_VALUE_AT_BOUNDARY_D

A fitted value is at a boundary, i.e., �̂ ¼ 0:0. This may occur if there are small values of y and the
model is not suitable for the data. The model should be reformulated with, perhaps, some
observations dropped.

NE_ZERO_DOF_ERROR

The degrees of freedom for error are 0. A saturated model has been fitted.

7 Accuracy

The accuracy is determined by tol as described in Section 5. As the adjusted deviance is a function of

log� the accuracy of the �̂’s will be a function of tol. tol should therefore be set to a smaller value than

the accuracy required for �̂.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

A set of 10 observations from two groups is input and a model for the two groups is fitted.

10.1 Program Text

/* nag_glm_gamma (g02gdc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 4, 1996.
* Mark 8 revised, 2004.
*

g02gdc NAG Library Manual

g02gdc.8 Mark 25

*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <ctype.h>
#include <nagg02.h>

#define X(I, J) x[(I) *tdx + J]
#define V(I, J) v[(I) *tdv + J]

int main(void)
{

Integer exit_status = 0, i, ip, j, m, max_iter, n, print_iter, rank;
Integer *sx = 0;
Integer tdv, tdx;
double dev, df, eps, ex_power, scale, tol;
double *b = 0, *cov = 0, *offsetptr = (double *) 0;
double *se = 0, *v = 0, *wt = 0, *wtptr, *x = 0, *y = 0;
char nag_enum_arg[40];
Nag_IncludeMean mean;
Nag_Link link;
Nag_Boolean weight;
NagError fail;

INIT_FAIL(fail);

printf("nag_glm_gamma (g02gdc) Example Program Results\n");
/* Skip heading in data file */

#ifdef _WIN32
scanf_s("%*[^\n]");

#else
scanf("%*[^\n]");

#endif
#ifdef _WIN32

scanf_s(" %39s", nag_enum_arg, _countof(nag_enum_arg));
#else

scanf(" %39s", nag_enum_arg);
#endif

/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/

link = (Nag_Link) nag_enum_name_to_value(nag_enum_arg);
#ifdef _WIN32

scanf_s(" %39s", nag_enum_arg, _countof(nag_enum_arg));
#else

scanf(" %39s", nag_enum_arg);
#endif

mean = (Nag_IncludeMean) nag_enum_name_to_value(nag_enum_arg);
#ifdef _WIN32

scanf_s(" %39s", nag_enum_arg, _countof(nag_enum_arg));
#else

scanf(" %39s", nag_enum_arg);
#endif

weight = (Nag_Boolean) nag_enum_name_to_value(nag_enum_arg);
#ifdef _WIN32

scanf_s("%"NAG_IFMT" %"NAG_IFMT" %"NAG_IFMT" %lf", &n, &m, &print_iter,
&scale);

#else
scanf("%"NAG_IFMT" %"NAG_IFMT" %"NAG_IFMT" %lf", &n, &m, &print_iter,

&scale);
#endif

if (n >= 2 && m >= 1)
{

if (!(wt = NAG_ALLOC(n, double)) ||
!(x = NAG_ALLOC(n*(m), double)) ||
!(y = NAG_ALLOC(n, double)) ||
!(sx = NAG_ALLOC(m, Integer)))

{
printf("Allocation failure\n");

g02 – Correlation and Regression Analysis g02gdc

Mark 25 g02gdc.9

exit_status = -1;
goto END;

}
tdx = m;

}
else

{
printf("Invalid n or m.\n");
exit_status = 1;
return exit_status;

}
if (weight)

{
wtptr = wt;
for (i = 0; i < n; i++)

{
for (j = 0; j < m; j++)

#ifdef _WIN32
scanf_s("%lf", &X(i, j));

#else
scanf("%lf", &X(i, j));

#endif
#ifdef _WIN32

scanf_s("%lf%lf", &y[i], &wt[i]);
#else

scanf("%lf%lf", &y[i], &wt[i]);
#endif

}
}

else
{

wtptr = (double *) 0;
for (i = 0; i < n; i++)

{
for (j = 0; j < m; j++)

#ifdef _WIN32
scanf_s("%lf", &X(i, j));

#else
scanf("%lf", &X(i, j));

#endif
#ifdef _WIN32

scanf_s("%lf", &y[i]);
#else

scanf("%lf", &y[i]);
#endif

}
}

for (j = 0; j < m; j++)
#ifdef _WIN32

scanf_s("%"NAG_IFMT"", &sx[j]);
#else

scanf("%"NAG_IFMT"", &sx[j]);
#endif

/* Calculate ip */
ip = 0;
for (j = 0; j < m; j++)

if (sx[j] > 0) ip += 1;
if (mean == Nag_MeanInclude)

ip += 1;
if (link == Nag_Expo)

#ifdef _WIN32
scanf_s("%lf", &ex_power);

#else
scanf("%lf", &ex_power);

#endif
else

ex_power = 0.0;

if (!(b = NAG_ALLOC(ip, double)) ||
!(v = NAG_ALLOC(n*(ip+6), double)) ||

g02gdc NAG Library Manual

g02gdc.10 Mark 25

!(se = NAG_ALLOC(ip, double)) ||
!(cov = NAG_ALLOC(ip*(ip+1)/2, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
tdv = ip+6;

/* Set other control parameters */
max_iter = 10;
tol = 5e-5;
eps = 1e-6;

/* nag_glm_gamma (g02gdc).
* Fits a generalized linear model with gamma errors
*/

nag_glm_gamma(link, mean, n, x, tdx, m, sx, ip, y,
wtptr, offsetptr, &scale, ex_power, &dev, &df, b, &rank,
se, cov, v, tdv, tol, max_iter,
print_iter, "", eps, &fail);

if (fail.code == NE_NOERROR || fail.code == NE_LSQ_ITER_NOT_CONV ||
fail.code == NE_RANK_CHANGED || fail.code == NE_ZERO_DOF_ERROR)

{
if (fail.code != NE_NOERROR) {

printf("Error from nag_glm_gamma (g02gdc).\n%s\n",
fail.message);

}
printf("\nDeviance = %13.4e\n", dev);
printf("Degrees of freedom = %3.1f\n\n", df);
printf(" Estimate Standard error\n\n");
for (i = 0; i < ip; i++)

printf("%14.4f%14.4f\n", b[i], se[i]);
printf("\n");
printf(" y fitted value Residual Leverage\n\n");
for (i = 0; i < n; ++i)

{
printf("%7.1f%10.2f%12.4f%10.3f\n", y[i], V(i, 1), V(i, 4),

V(i, 5));
}

}
else

{
printf("Error from nag_glm_gamma (g02gdc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

END:
NAG_FREE(wt);
NAG_FREE(x);
NAG_FREE(y);
NAG_FREE(sx);
NAG_FREE(b);
NAG_FREE(v);
NAG_FREE(se);
NAG_FREE(cov);

return exit_status;
}

g02 – Correlation and Regression Analysis g02gdc

Mark 25 g02gdc.11

10.2 Program Data

nag_glm_gamma (g02gdc) Example Program Data
Nag_Reci Nag_MeanInclude Nag_FALSE 10 1 0 0.0
1.0 1.0
1.0 0.3
1.0 10.5
1.0 9.7
1.0 10.9
0.0 0.62
0.0 0.12
0.0 0.09
0.0 0.50
0.0 2.14
1

10.3 Program Results

nag_glm_gamma (g02gdc) Example Program Results

Deviance = 3.5034e+01
Degrees of freedom = 8.0

Estimate Standard error

1.4408 0.6678
-1.2865 0.6717

y fitted value Residual Leverage

1.0 6.48 -1.3909 0.200
0.3 6.48 -1.9228 0.200

10.5 6.48 0.5236 0.200
9.7 6.48 0.4318 0.200

10.9 6.48 0.5678 0.200
0.6 0.69 -0.1107 0.200
0.1 0.69 -1.3287 0.200
0.1 0.69 -1.4815 0.200
0.5 0.69 -0.3106 0.200
2.1 0.69 1.3665 0.200

g02gdc NAG Library Manual

g02gdc.12 (last) Mark 25

	g02gdc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Cook and Weisberg (1982)
	McCullagh and Nelder (1983)

	5 Arguments
	link
	mean
	n
	x
	tdx
	m
	sx
	ip
	y
	wt
	offset
	scale
	ex_power
	dev
	df
	b
	rank
	se
	cov
	v
	tdv
	tol
	max_iter
	print_iter
	outfile
	eps
	fail

	6 Error Indicators and Warnings
	NE_2_INT_ARG_LT
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT_ARG_LT
	NE_IP_GT_OBSERV
	NE_IP_INCOMP_SX
	NE_LSQ_ITER_NOT_CONV
	NE_NOT_APPEND_FILE
	NE_NOT_CLOSE_FILE
	NE_RANK_CHANGED
	NE_REAL_ARG_LT
	NE_REAL_ENUM_ARG_CONS
	NE_SVD_NOT_CONV
	NE_VALUE_AT_BOUNDARY_D
	NE_ZERO_DOF_ERROR

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

