NAG Library Function Document

nag prob von mises (g01erc)

1 Purpose

nag_prob_von_mises (g01erc) returns the probability associated with the lower tail of the von Mises distribution between $-\pi$ and π .

2 Specification

```
#include <nag.h>
#include <nagg01.h>
double nag_prob_von_mises (double t, double vk, NagError *fail)
```

3 Description

The von Mises distribution is a symmetric distribution used in the analysis of circular data. The lower tail area of this distribution on the circle with mean direction $\mu_0 = 0$ and concentration argument kappa, κ , can be written as

$$\Pr(\Theta \le \theta : \kappa) = \frac{1}{2\pi I_0(\kappa)} \int_{-\pi}^{\theta} e^{\kappa \cos \Theta} d\Theta,$$

where θ is reduced modulo 2π so that $-\pi \le \theta < \pi$ and $\kappa \ge 0$. Note that if $\theta = \pi$ then nag_prob_von_mises (g01erc) returns a probability of 1. For very small κ the distribution is almost the uniform distribution, whereas for $\kappa \to \infty$ all the probability is concentrated at one point.

The method of calculation for small κ involves backwards recursion through a series expansion in terms of modified Bessel functions, while for large κ an asymptotic Normal approximation is used.

In the case of small κ the series expansion of $Pr(\Theta \leq \theta; \kappa)$ can be expressed as

$$\Pr(\Theta \leq \theta : \kappa) = \frac{1}{2} + \frac{\theta}{(2\pi)} + \frac{1}{\pi I_0(\kappa)} \sum_{n=1}^{\infty} n^{-1} I_n(\kappa) \sin n\theta,$$

where $I_n(\kappa)$ is the modified Bessel function. This series expansion can be represented as a nested expression of terms involving the modified Bessel function ratio R_n ,

$$R_n(\kappa) = \frac{I_n(\kappa)}{I_{n-1}(\kappa)}, \quad n = 1, 2, 3, \dots,$$

which is calculated using backwards recursion.

For large values of κ (see Section 7) an asymptotic Normal approximation is used. The angle Θ is transformed to the nearly Normally distributed variate Z,

$$Z = b(\kappa) \sin \frac{\Theta}{2}$$

where

$$b(\kappa) = \frac{\sqrt{\frac{2}{\pi}}e^{\kappa}}{I_0(\kappa)}$$

and $b(\kappa)$ is computed from a continued fraction approximation. An approximation to order κ^{-4} of the asymptotic normalizing series for z is then used. Finally the Normal probability integral is evaluated.

For a more detailed analysis of the methods used see Hill (1977).

Mark 25 g01erc.1

g01erc NAG Library Manual

4 References

Hill G W (1977) Algorithm 518: Incomplete Bessel function I_0 : The Von Mises distribution *ACM Trans. Math. Software* 3 279–284

Mardia K V (1972) Statistics of Directional Data Academic Press

5 Arguments

1: \mathbf{t} - double

On entry: θ , the observed von Mises statistic measured in radians.

2: $\mathbf{v}\mathbf{k}$ – double Input

On entry: the concentration parameter κ , of the von Mises distribution.

Constraint: $\mathbf{vk} \geq 0.0$.

3: **fail** – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE ALLOC FAIL

Dynamic memory allocation failed.

See Section 3.2.1.2 in the Essential Introduction for further information.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.

See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly. See Section 3.6.5 in the Essential Introduction for further information.

NE REAL

On entry, $\mathbf{v}\mathbf{k} = \langle value \rangle$. Constraint: $\mathbf{v}\mathbf{k} > 0.0$.

7 Accuracy

nag_prob_von_mises (g01erc) uses one of two sets of constants depending on the value of *machine precision*. One set gives an accuracy of six digits and uses the Normal approximation when $\mathbf{v}\mathbf{k} \geq 6.5$, the other gives an accuracy of 12 digits and uses the Normal approximation when $\mathbf{v}\mathbf{k} \geq 50.0$.

8 Parallelism and Performance

Not applicable.

g01erc.2 Mark 25

9 Further Comments

Using the series expansion for small κ the time taken by nag_prob_von_mises (g01erc) increases linearly with κ ; for larger κ , for which the asymptotic Normal approximation is used, the time taken is much less.

If angles outside the region $-\pi \le \theta < \pi$ are used care has to be taken in evaluating the probability of being in a region $\theta_1 \le \theta \le \theta_2$ if the region contains an odd multiple of π , $(2n+1)\pi$. The value of $F(\theta_2;\kappa) - F(\theta_1;\kappa)$ will be negative and the correct probability should then be obtained by adding one to the value.

10 Example

This example inputs four values from the von Mises distribution along with the values of the argument κ . The probabilities are computed and printed.

10.1 Program Text

```
/* nag_prob_von_mises (g01erc) Example Program.
\star Copyright 2014 Numerical Algorithms Group.
* Mark 7, 2001.
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg01.h>
int main(void)
  /* Scalars */
 double p, t, vk;
 Integer
          exit_status, i__, n;
 NagError fail;
 INIT_FAIL(fail);
 exit_status = 0;
 printf("nag_prob_von_mises (g01erc) Example Program Results\n\n");
  /* Skip heading in data file */
#ifdef _WIN32
 scanf_s("%*[^\n] ");
#else
 scanf("%*[^\n] ");
#endif
#ifdef WIN32
 scanf_s("%"NAG_IFMT"%*[^\n] ", &n);
#else
 scanf("%"NAG_IFMT"%*[^\n] ", &n);
#endif
 for (i_ = 1; i_ <= n; ++i_)
#ifdef _WIN32
     scanf_s("%lf%lf%*[^\n] ", &t, &vk);
#else
     scanf("%lf%lf%*[^\n] ", &t, &vk);
#endif
      /* nag_prob_von_mises (g01erc).
       * Computes probability for von Mises distribution
     p = nag_prob_von_mises(t, vk, &fail);
      if (fail.code != NE_NOERROR)
```

Mark 25 g01erc.3

g01erc NAG Library Manual

10.2 Program Data

```
nag_prob_von_mises (g01erc) Example Program Data
4
7.0 0.0
2.8 2.4
1.0 1.0
-1.4 1.3
```

10.3 Program Results

nag_prob_von_mises (g01erc) Example Program Results

```
p = 0.6141
p = 0.9983
p = 0.7944
p = 0.1016
```

g01erc.4 (last) Mark 25