f07 — Linear Equations (LAPACK) f07kdc

1

NAG Library Function Document
nag_dpstrf (f07kdc)

Purpose

nag_dpstrf (f07kdc) computes the Cholesky factorization with complete pivoting of a real symmetric
positive semidefinite matrix.

2

Specification

#include <nag.h>
#include <nagf07.h>

void nag_dpstrf (Nag_OrderType order, Nag_UploType uplo, Integer n,

3

double al[], Integer pda, Integer piv([], Integer *rank, double tol,
NagError *fail)

Description

nag_dpstrf (f07kdc) forms the Cholesky factorization of a real symmetric positive semidefinite matrix A
cither as PTAP = UTU if uplo = Nag Upper or PTAP = LL" if uplo = Nag_Lower, where P is a
permutation matrix, U is an upper triangular matrix and L is lower triangular.

This algorithm does not attempt to check that A is positive semidefinite.

4

References

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

Lucas C (2004) LAPACK-style codes for Level 2 and 3 pivoted Cholesky factorizations LAPACK
Working Note No. 161. Technical Report CS-04-522 Department of Computer Science, University of
Tennessee, 107 Ayres Hall, Knoxville, TN 37996-1301, USA http://www.netlib.org/lapack/lawnspdf/
lawn161.pdf

5

1:

Arguments

order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

uplo — Nag_ UploType Input
On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.
uplo = Nag_Upper
The upper triangular part of A is stored and A is factorized as UTU, where U is upper
triangular.

uplo = Nag_Lower
The lower triangular part of A is stored and A is factorized as LL', where L is lower
triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

Mark 25 f07kdc. 1

http://www.netlib.org/lapack/lawnspdf/lawn161.pdf
http://www.netlib.org/lapack/lawnspdf/lawn161.pdf

f07kdc NAG Library Manual

6

n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

a[dim] — double Input/Output
Note: the dimension, dim, of the array a must be at least max(1, pda X n).

On entry: the n by n symmetric positive semidefinite matrix A.

If order = Nag_ColMajor, A;; is stored in a[(j — 1) x pda+ i —1].

If order = Nag_RowMajor, A;; is stored in a[(i — 1) x pda+ j — 1].

If uplo = Nag_Upper, the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If uplo = Nag_Lower, the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if uplo = Nag_Upper, the first rank rows of the upper triangle of A are overwritten with
the nonzero elements of the Cholesky factor U, and the remaining rows of the triangle are
destroyed.

If uplo = Nag_Lower, the first rank columns of the lower triangle of A are overwritten with the
nonzero elements of the Cholesky factor L, and the remaining columns of the triangle are
destroyed.

pda — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array a.

Constraint: pda > max(1,n).

piv[n] — Integer Output
On exit: piv is such that the nonzero entries of P are P(piv[k —1],k) =1, for k=1,2,...,n.

rank — Integer * Output
On exit: the computed rank of A given by the number of steps the algorithm completed.

tol — double Input

On entry: user defined tolerance. If tol < 0, then n X]{n&ll.X|Akk| x machine precision will be used.
o=1,n

The algorithm terminates at the rth step if the (r + 1)th step pivot < tol.

fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

f07kdc.2 Mark 25

f07 — Linear Equations (LAPACK) f07kdc

NE_INT

On entry, n = (value).
Constraint: n > 0.

NE_INT_2
On entry, pda = (value) and n = (value).
Constraint: pda > max(1,n).
NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NW_NOT_POS_DEF

The matrix A is not positive definite. It is either positive semidefinite with computed rank as
returned in rank and less than n, or it may be indefinite, see Section 9.

7 Accuracy

If uplo = Nag_Lower and rank = r, the computed Cholesky factor L and permutation matrix P satisfy
the following upper bound

|A— PLLTPT
1Al

I < 2rc(r)e(||W]), + 1)2 + O(ez),

where

Li; 0

>7 Lll S Rrxra

c(r) is a modest linear function of r, € is machine precision, and

Wl < - 1)

So there is no guarantee of stability of the algorithm for large n and r, although |||, is generally small
in practice.

8 Parallelism and Performance

nag_dpstrf (f07kdc) is not threaded by NAG in any implementation.

nag_dpstrf (f07kdc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

Mark 25 f07kdc.3

f07kdc NAG Library Manual

9 Further Comments

The total number of floating-point operations is approximately nr? —2/3r3, where r is the computed
rank of A.

This algorithm does not attempt to check that A is positive semidefinite, and in particular the rank
detection criterion in the algorithm is based on A being positive semidefinite. If there is doubt over
semidefiniteness then you should use the indefinite factorization nag_dsytrf (f07mdc). See Lucas (2004)
for further information.

The complex analogue of this function is nag_zpstrf (f07krc).

10 Example
This example computes the Cholesky factorization of the matrix A, where

2.51 4.04 334 134 129
4.04 822 738 2.68 244
A=]334 738 7.06 224 214
1.34 268 224 096 0.80
1.29 244 214 0.80 0.74

10.1 Program Text
/* nag_dpstrf (f07kdc) Example Program.
*

* Copyright 2014 Numerical Algorithms Group.

* Mark 25, 2014.
*/

#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)

{
/* Scalars */
Integer exit_status = 0;
Integer i, j, n, pda, rank;
double tol;
/* Arrays */
double *a = 0;
Integer *piv = 0;
char nag_enum_arg[40];

/* Nag Types */
Nag_UploType uplo;
Nag_OrderType order;
Nag_MatrixType matrix;
NagError fail;

INIT FAIL(fail);

printf("nag_dpstrf (£07kdc) Example Program Results\n");
/* Skip heading in data file and retrieve data */
#ifdef _WIN32
scanf_s("%$*["\n]%"NAG_IFMT"%39s%*["\nl]", &n, nag_enum_arg, _countof(nag_en-
um_arg)) ;
#else
scanf ("$*["\n]%"NAG_IFMT"%39s%*["\nl]", &n, nag_enum_arg) ;
#endif
uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg) ;
if (! (a = NAG_ALLOC(n*n, double)) ||
! (piv = NAG_ALLOC(n, Integer)))
{
printf("Allocation failure\n");
exit_status = -1;

f07kdc.4 Mark 25

f07 — Linear Equations (LAPACK)

goto END;
¥

pda = n;
#ifdef NAG_COLUMN_MAJOR

order = Nag_ColMajor;
#define A(I, J) al(J-1)*pda + I-1]
#else

order = Nag_RowMajor;
#define A(I, J) al(I-1)*pda + J-1]
#endif

/* Read triangular part of A from data file
if (uplo == Nag_Upper) {

matrix = Nag_UpperMatrix;

for (i = 1; i <= n; i++)

for (j = 1i; j <= n; J++)
#ifdef _WIN32
scanf_s("s1f", &A(i, J));
#else
scanf ("$1f", &A(i, 3));
#endif
} else if (uplo == Nag_Lower) {
matrix = Nag_LowerMatrix;
for (1 = 1; 1 <= n; 1i++)
for (j = 1; J <= 1i; j++)
#ifdef _WIN32
scanf_s("%1f", &A(i, J3));
#else
scanf ("s1f", &A(i, 3F));
#endif
} else {
printf("Invalid uplo.\n");
exit_status = 1;
goto END;
¥
#ifdef _WIN32
scanf_s("s*["\nl");

#else

scanf ("s*[*\nl");
#endif

tol = -1.0;

/* Factorize A using nag_dpstrf (£07kdc) wh
* factorization of real symmetric positive

*/

f07kdc

*/

ich performs a Cholesky
semidefinite matrix.

nag_dpstrf(order, uplo, n, a, pda, piv, &rank, tol, &fail);

if (fail.code == NW_NOT_POS_DEF) {
/* A is not of full rank.
* Zero out columns rank+l to n.
*
/
if (uplo == Nag_Upper)
for (j = rank + 1; j <= n; j++)
for (i = rank + 1; i <= j; i++)
A(i, j) = 0.0;
else if (uplo == Nag_Lower)
for (j = rank + 1; j <= n; j++)
for (i = j; 1 <= n; i++)
A(i, j) = 0.0;

}

else if (fail.code != NE_NOERROR) {
printf ("Error from nag_dpstrf (£07kdc)\n%
exit_status = 1;
goto END;

¥

/* Print rank of A. */
printf ("\nComputed rank: %"NAG_IFMT"\n\n",

Mark 25

s\n", fail.message) ;

rank) ;

f07kde.5

f07kdc

/* Print factorization using
* nag_gen_real_mat_print
* Print real general matrix (easy-to-use)

*/

(x04cac) .

nag_gen_real_mat_print(order, matrix, Nag_NonUnitDiag, n,

printf ("Error from nag_gen_ real mat_print

"Fa
if (fail.code != NE_NOERRO
exit_status = 1;
goto END;

b

/* Print pivot indices. */
printf ("\nPivots:\n") ;

i < n; i++) pr

for (i = 0;
printf ("\n");
END:

NAG_FREE (a) ;
NAG_FREE (piv) ;
return exit_status;

}

10.2 Program Data

7kdc) Example

Nag_Lower

nag_dpstrf (f0
5
2.51
4.04 8.22
3.34 7.38
1.34 2.68
1.29 2.44

7.06
2.24 0.96
2.14 0.80

10.3 Program Results

nag_dpstrf

(f0

Computed rank:

Factor

b wN

Pivots:

OO NNEN

1

.8671
.4091
.5741
.9348
.8510

7kdc) Example

3

2

0.7242
-0.3965
0.0315
0.1254

ctor", 0, &fail);
R) {

intf ("$11"NAG_IFMT"",

Program Data
n, uplo

0.74 : matrix A

Program Results

3 4
0.5262
-0.2920 0.0000
-0.0018 0.0000
3 4

piv[il);

0.0000

n,

(x04cac) .\n%s\n",

NAG Library Manual

a, pda,

fail.message);

f07kdc.6 (last)

Mark 25

	f07kdc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Higham (2002)
	Lucas (2004)

	5 Arguments
	order
	uplo
	n
	a
	pda
	piv
	rank
	tol
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NW_NOT_POS_DEF

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

