
NAG Library Function Document

nag_zpbsvx (f07hpc)

1 Purpose

nag_zpbsvx (f07hpc) uses the Cholesky factorization

A ¼ UHU or A ¼ LLH

to compute the solution to a complex system of linear equations

AX ¼ B;

where A is an n by n Hermitian positive definite band matrix of bandwidth 2kd þ 1ð Þ and X and B are
n by r matrices. Error bounds on the solution and a condition estimate are also provided.

2 Specification

#include <nag.h>
#include <nagf07.h>

void nag_zpbsvx (Nag_OrderType order, Nag_FactoredFormType fact,
Nag_UploType uplo, Integer n, Integer kd, Integer nrhs, Complex ab[],
Integer pdab, Complex afb[], Integer pdafb,
Nag_EquilibrationType *equed, double s[], Complex b[], Integer pdb,
Complex x[], Integer pdx, double *rcond, double ferr[], double berr[],
NagError *fail)

3 Description

nag_zpbsvx (f07hpc) performs the following steps:

1. If fact ¼ Nag EquilibrateAndFactor, real diagonal scaling factors, DS , are computed to equilibrate
the system:

DSADSð Þ D�1
S X

� �
¼ DSB:

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if
equilibration is used, A is overwritten by DSADS and B by DSB.

2. If fact ¼ Nag NotFactored or Nag EquilibrateAndFactor, the Cholesky decomposition is used to
factor the matrix A (after equilibration if fact ¼ Nag EquilibrateAndFactor) as A ¼ UHU if
uplo ¼ Nag Upper or A ¼ LLH if uplo ¼ Nag Lower, where U is an upper triangular matrix and L
is a lower triangular matrix.

3. If the leading i by i principal minor of A is not positive definite, then the function returns with
fail:errnum ¼ i and fail:code ¼ NE_MAT_NOT_POS_DEF. Otherwise, the factored form of A is
used to estimate the condition number of the matrix A. If the reciprocal of the condition number is
less than machine precision, fail:code ¼ NE_SINGULAR_WP is returned as a warning, but the
function still goes on to solve for X and compute error bounds as described below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by DS so that it solves the original system
before equilibration.

f07 – Linear Equations (LAPACK) f07hpc

Mark 25 f07hpc.1

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: fact – Nag_FactoredFormType Input

On entry: specifies whether or not the factorized form of the matrix A is supplied on entry, and if
not, whether the matrix A should be equilibrated before it is factorized.

fact ¼ Nag Factored
afb contains the factorized form of A. If equed ¼ Nag Equilibrated, the matrix A has been
equilibrated with scaling factors given by s. ab and afb will not be modified.

fact ¼ Nag NotFactored
The matrix A will be copied to afb and factorized.

fact ¼ Nag EquilibrateAndFactor
The matrix A will be equilibrated if necessary, then copied to afb and factorized.

Constraint: fact ¼ Nag Factored, Nag NotFactored or Nag EquilibrateAndFactor.

3: uplo – Nag_UploType Input

On entry: if uplo ¼ Nag Upper, the upper triangle of A is stored.

If uplo ¼ Nag Lower, the lower triangle of A is stored.

Constraint: uplo ¼ Nag Upper or Nag Lower.

4: n – Integer Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: n � 0.

5: kd – Integer Input

On entry: kd, the number of superdiagonals of the matrix A if uplo ¼ Nag Upper, or the number
of subdiagonals if uplo ¼ Nag Lower.

Constraint: kd � 0.

6: nrhs – Integer Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: nrhs � 0.

f07hpc NAG Library Manual

f07hpc.2 Mark 25

http://www.netlib.org/lapack/lug

7: ab½dim� – Complex Input/Output

Note: the dimension, dim, of the array ab must be at least max 1; pdab� nð Þ.
On entry: the upper or lower triangle of the Hermitian band matrix A, except if
fact ¼ Nag Factored and equed ¼ Nag Equilibrated, in which case ab must contain the
equilibrated matrix DSADS .

This is stored as a notional two-dimensional array with row elements or column elements stored
contiguously. The storage of elements of Aij, depends on the order and uplo arguments as
follows:

if order ¼ Nag ColMajor and uplo ¼ Nag Upper,
Aij i s s t o r e d i n ab½kd þ i� jþ j� 1ð Þ � pdab�, f o r j ¼ 1; . . . ; n a n d
i ¼ max 1; j� kdð Þ; . . . ; j;

if order ¼ Nag ColMajor and uplo ¼ Nag Lower,
Aij i s s t o r e d i n ab½i� jþ j� 1ð Þ � pdab�, f o r j ¼ 1; . . . ; n a n d
i ¼ j; . . . ;min n; jþ kdð Þ;

if order ¼ Nag RowMajor and uplo ¼ Nag Upper,
Aij i s s t o r e d i n ab½j� iþ i� 1ð Þ � pdab�, f o r i ¼ 1; . . . ; n a n d
j ¼ i; . . . ;min n; iþ kdð Þ;

if order ¼ Nag RowMajor and uplo ¼ Nag Lower,
Aij i s s t o r e d i n ab½kd þ j� iþ i� 1ð Þ � pdab�, f o r i ¼ 1; . . . ; n a n d
j ¼ max 1; i� kdð Þ; . . . ; i.

On exit: if fact ¼ Nag EquilibrateAndFactor and equed ¼ Nag Equilibrated, ab is overwritten by
DSADS .

8: pdab – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array ab.

Constraint: pdab � kdþ 1.

9: afb½dim� – Complex Input/Output

Note: the dimension, dim, of the array afb must be at least max 1; pdafb� nð Þ.
On entry: if fact ¼ Nag Factored, afb contains the triangular factor U or L from the Cholesky
factorization A ¼ UHU or A ¼ LLH of the band matrix A, in the same storage format as A. If
equed ¼ Nag Equilibrated, afb is the factorized form of the equilibrated matrix A.

On exit: if fact ¼ Nag NotFactored, afb returns the triangular factor U or L from the Cholesky
factorization A ¼ UHU or A ¼ LLH.

If fact ¼ Nag EquilibrateAndFactor, afb returns the triangular factor U or L from the Cholesky
factorization A ¼ UHU or A ¼ LLH of the equilibrated matrix A (see the description of ab for the
form of the equilibrated matrix).

10: pdafb – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array afb.

Constraint: pdafb � kdþ 1.

11: equed – Nag_EquilibrationType * Input/Output

On entry: if fact ¼ Nag NotFactored or Nag EquilibrateAndFactor, equed need not be set.

If fact ¼ Nag Factored, equed must specify the form of the equilibration that was performed as
follows:

f07 – Linear Equations (LAPACK) f07hpc

Mark 25 f07hpc.3

if equed ¼ Nag NoEquilibration, no equilibration;

if equed ¼ Nag Equilibrated, equilibration was performed, i.e., A has been replaced by
DSADS .

On exit: if fact ¼ Nag Factored, equed is unchanged from entry.

Otherwise, if no constraints are violated, equed specifies the form of the equilibration that was
performed as specified above.

Constraint: if fact ¼ Nag Factored, equed ¼ Nag NoEquilibration or Nag Equilibrated.

12: s½dim� – double Input/Output

Note: the dimension, dim, of the array s must be at least max 1;nð Þ.
On entry: if fact ¼ Nag NotFactored or Nag EquilibrateAndFactor, s need not be set.

If fact ¼ Nag Factored and equed ¼ Nag Equilibrated, s must contain the scale factors, DS , for
A; each element of s must be positive.

On exit: if fact ¼ Nag Factored, s is unchanged from entry.

Otherwise, if no constraints are violated and equed ¼ Nag Equilibrated, s contains the scale
factors, DS , for A; each element of s is positive.

13: b½dim� – Complex Input/Output

Note: the dimension, dim, of the array b must be at least

max 1;pdb� nrhsð Þ when order ¼ Nag ColMajor;
max 1;n� pdbð Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix B is stored in

b½ j� 1ð Þ � pdbþ i� 1� when order ¼ Nag ColMajor;
b½ i� 1ð Þ � pdbþ j� 1� when order ¼ Nag RowMajor.

On entry: the n by r right-hand side matrix B.

On exit: if equed ¼ Nag NoEquilibration, b is not modified.

If equed ¼ Nag Equilibrated, b is overwritten by DSB.

14: pdb – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array b.

Constraints:

if order ¼ Nag ColMajor, pdb � max 1; nð Þ;
if order ¼ Nag RowMajor, pdb � max 1; nrhsð Þ.

15: x½dim� – Complex Output

Note: the dimension, dim, of the array x must be at least

max 1;pdx� nrhsð Þ when order ¼ Nag ColMajor;
max 1;n� pdxð Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix X is stored in

x½ j� 1ð Þ � pdxþ i� 1� when order ¼ Nag ColMajor;
x½ i� 1ð Þ � pdxþ j� 1� when order ¼ Nag RowMajor.

On exit: if fail:code ¼ NE_NOERROR or NE_SINGULAR_WP, the n by r solution matrix X to
the original system of equations. Note that the arrays A and B are modified on exit if
equed ¼ Nag Equilibrated, and the solution to the equilibrated system is D�1

S X.

f07hpc NAG Library Manual

f07hpc.4 Mark 25

16: pdx – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array x.

Constraints:

if order ¼ Nag ColMajor, pdx � max 1;nð Þ;
if order ¼ Nag RowMajor, pdx � max 1; nrhsð Þ.

17: rcond – double * Output

On exit: if no constraints are violated, an estimate of the reciprocal condition number of the matrix

A (after equilibration if that is performed), computed as rcond ¼ 1:0= Ak k1 A�1
�� ��

1

� �
.

18: ferr½nrhs� – double Output

On exit: if fail:code ¼ NE_NOERROR or NE_SINGULAR_WP, an estimate of the forward error
bound for each computed solution vector, such that x̂j � xj

�� ��
1= xj
�� ��

1 � ferr½j� 1� where x̂j is

the jth column of the computed solution returned in the array x and xj is the corresponding
column of the exact solution X. The estimate is as reliable as the estimate for rcond, and is
almost always a slight overestimate of the true error.

19: berr½nrhs� – double Output

On exit: if fail:code ¼ NE_NOERROR or NE_SINGULAR_WP, an estimate of the component-
wise relative backward error of each computed solution vector x̂j (i.e., the smallest relative change
in any element of A or B that makes x̂j an exact solution).

20: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, kd ¼ valueh i.
Constraint: kd � 0.

On entry, n ¼ valueh i.
Constraint: n � 0.

On entry, nrhs ¼ valueh i.
Constraint: nrhs � 0.

On entry, pdab ¼ valueh i.
Constraint: pdab > 0.

On entry, pdafb ¼ valueh i.
Constraint: pdafb > 0.

On entry, pdb ¼ valueh i.
Constraint: pdb > 0.

f07 – Linear Equations (LAPACK) f07hpc

Mark 25 f07hpc.5

On entry, pdx ¼ valueh i.
Constraint: pdx > 0.

NE_INT_2

On entry, pdab ¼ valueh i and kd ¼ valueh i.
Constraint: pdab � kdþ 1.

On entry, pdafb ¼ valueh i and kd ¼ valueh i.
Constraint: pdafb � kdþ 1.

On entry, pdb ¼ valueh i and n ¼ valueh i.
Constraint: pdb � max 1;nð Þ.
On entry, pdb ¼ valueh i and nrhs ¼ valueh i.
Constraint: pdb � max 1;nrhsð Þ.
On entry, pdx ¼ valueh i and n ¼ valueh i.
Constraint: pdx � max 1; nð Þ.
On entry, pdx ¼ valueh i and nrhs ¼ valueh i.
Constraint: pdx � max 1; nrhsð Þ.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_MAT_NOT_POS_DEF

The leading minor of order valueh i of A is not positive definite, so the factorization could not be
completed, and the solution has not been computed. rcond ¼ 0:0 is returned.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_SINGULAR_WP

U (or L) is nonsingular, but rcond is less than machine precision, meaning that the matrix is
singular to working precision. Nevertheless, the solution and error bounds are computed because
there are a number of situations where the computed solution can be more accurate than the value
of rcond would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

if uplo ¼ Nag Upper, Ej j � c nð Þ� UHj j Uj j;
if uplo ¼ Nag Lower, Ej j � c nð Þ� Lj j LHj j,

c nð Þ is a modest linear function of n, and � is the machine precision. See Section 10.1 of Higham (2002)
for further details.

If x̂ is the true solution, then the computed solution x satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ

where cond A; x̂; bð Þ ¼ A�1
�� �� Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
�� �� Aj j�� ��

1 � �1 Að Þ. If x̂ is the

f07hpc NAG Library Manual

f07hpc.6 Mark 25

jth column of X, then wc is returned in berr½j� 1� and a bound on x� x̂k k1= x̂k k1 is returned in
ferr½j� 1�. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

nag_zpbsvx (f07hpc) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

nag_zpbsvx (f07hpc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

When n� k, the factorization of A requires approximately 4n kþ 1ð Þ2 floating-point operations, where
k is the number of superdiagonals.

For each right-hand side, computation of the backward error involves a minimum of 32nk floating-point
operations. Each step of iterative refinement involves an additional 48nk operations. At most five steps
of iterative refinement are performed, but usually only one or two steps are required. Estimating the
forward error involves solving a number of systems of equations of the form Ax ¼ b; the number is
usually 4 or 5 and never more than 11. Each solution involves approximately 16nk operations.

The real analogue of this function is nag_dpbsvx (f07hbc).

10 Example

This example solves the equations

AX ¼ B;

where A is the Hermitian positive definite band matrix

A ¼
9:39 1:08� 1:73i 0 0
1:08þ 1:73i 1:69 �0:04þ 0:29i 0
0 �0:04� 0:29i 2:65 �0:33þ 2:24i
0 0 �0:33� 2:24i 2:17

0
B@

1
CA

and

B ¼
�12:42þ 68:42i 54:30� 56:56i
�9:93þ 0:88i 18:32þ 4:76i
�27:30� 0:01i �4:40þ 9:97i

5:31þ 23:63i 9:43þ 1:41i

0
B@

1
CA:

Error estimates for the solutions, information on equilibration and an estimate of the reciprocal of the
condition number of the scaled matrix A are also output.

10.1 Program Text

/* nag_zpbsvx (f07hpc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 23, 2011.
*/

#include <stdio.h>
#include <nag.h>
#include <nagx04.h>

f07 – Linear Equations (LAPACK) f07hpc

Mark 25 f07hpc.7

#include <nag_stdlib.h>
#include <nagf07.h>

int main(void)
{

/* Scalars */
double rcond;
Integer exit_status = 0, i, j, kd, n, nrhs, pdab, pdafb, pdb,

pdx;

/* Arrays */
Complex *ab = 0, *afb = 0, *b = 0, *x = 0;
double *berr = 0, *ferr = 0, *s = 0;
char nag_enum_arg[40];

/* Nag Types */
NagError fail;
Nag_UploType uplo;
Nag_OrderType order;
Nag_EquilibrationType equed;

#ifdef NAG_COLUMN_MAJOR
#define AB_UPPER(I, J) ab[(J-1)*pdab + kd + I - J]
#define AB_LOWER(I, J) ab[(J-1)*pdab + I - J]
#define B(I, J) b[(J-1)*pdb + I - 1]

order = Nag_ColMajor;
#else
#define AB_UPPER(I, J) ab[(I-1)*pdab + J - I]
#define AB_LOWER(I, J) ab[(I-1)*pdab + kd + J - I]
#define B(I, J) b[(I-1)*pdb + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

printf("nag_zpbsvx (f07hpc) Example Program Results\n\n");
/* Skip heading in data file */

#ifdef _WIN32
scanf_s("%*[^\n]");

#else
scanf("%*[^\n]");

#endif

#ifdef _WIN32
scanf_s("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[^\n]", &n, &kd, &nrhs);

#else
scanf("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[^\n]", &n, &kd, &nrhs);

#endif
if (n < 0 || kd < 0 || nrhs < 0)

{
printf("%s\n", "Invalid n or kd or nrhs");
exit_status = 1;
goto END;

}
#ifdef _WIN32

scanf_s(" %39s%*[^\n]", nag_enum_arg, _countof(nag_enum_arg));
#else

scanf(" %39s%*[^\n]", nag_enum_arg);
#endif

/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/

uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg);

/* Allocate memory */
if (!(ab = NAG_ALLOC((kd+1) * n, Complex)) ||

!(afb = NAG_ALLOC((kd+1) * n, Complex)) ||
!(b = NAG_ALLOC(n * nrhs, Complex)) ||
!(x = NAG_ALLOC(n * nrhs, Complex)) ||
!(berr = NAG_ALLOC(nrhs, double)) ||
!(ferr = NAG_ALLOC(nrhs, double)) ||
!(s = NAG_ALLOC(n, double)))

f07hpc NAG Library Manual

f07hpc.8 Mark 25

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
pdab = kd+1;
pdafb = kd+1;

#ifdef NAG_COLUMN_MAJOR
pdb = n;
pdx = n;

#else
pdb = nrhs;
pdx = nrhs;

#endif

/* Read the upper or lower triangular part of the band matrix A */
/* from data file */
if (uplo == Nag_Upper)

for (i = 1; i <= n; ++i)
for (j = i; j <= MIN(n, i + kd); ++j)

#ifdef _WIN32
scanf_s(" (%lf , %lf)", &AB_UPPER(i, j).re, &AB_UPPER(i, j).im);

#else
scanf(" (%lf , %lf)", &AB_UPPER(i, j).re, &AB_UPPER(i, j).im);

#endif
else

for (i = 1; i <= n; ++i)
for (j = MAX(1, i - kd); j <= i; ++j)

#ifdef _WIN32
scanf_s(" (%lf , %lf)", &AB_LOWER(i, j).re, &AB_LOWER(i, j).im);

#else
scanf(" (%lf , %lf)", &AB_LOWER(i, j).re, &AB_LOWER(i, j).im);

#endif
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

/* Read B from data file */
for (i = 1; i <= n; ++i)

for (j = 1; j <= nrhs; ++j)
#ifdef _WIN32

scanf_s(" (%lf , %lf)", &B(i, j).re, &B(i, j).im);
#else

scanf(" (%lf , %lf)", &B(i, j).re, &B(i, j).im);
#endif
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

/* Solve the equations AX = B for X using nag_zpbsvx (f07hpc). */
nag_zpbsvx(order, Nag_EquilibrateAndFactor, uplo, n, kd, nrhs, ab, pdab,

afb, pdafb, &equed, s, b, pdb, x, pdx, &rcond, ferr, berr, &fail);
if (fail.code != NE_NOERROR && fail.code != NE_SINGULAR)

{
printf("Error from nag_zpbsvx (f07hpc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print solution using nag_gen_complx_mat_print_comp (x04dbc). */
fflush(stdout);
nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,

nrhs, x, pdx, Nag_BracketForm, "%7.4f",
"Solution(s)", Nag_IntegerLabels, 0,
Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

f07 – Linear Equations (LAPACK) f07hpc

Mark 25 f07hpc.9

printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

/* Print error bounds, condition number and the form of equilibration */
printf("\nBackward errors (machine-dependent)\n");
for (j = 0; j < nrhs; ++j) printf("%11.1e%s", berr[j], j%7 == 6?"\n":" ");

printf("\n\nEstimated forward error bounds (machine-dependent)\n");
for (j = 0; j < nrhs; ++j) printf("%11.1e%s", ferr[j], j%7 == 6?"\n":" ");

printf("\n\nEstimate of reciprocal condition number\n%11.1e\n\n", rcond);
if (equed == Nag_NoEquilibration)

printf("A has not been equilibrated\n");
else if (equed == Nag_RowAndColumnEquilibration)

printf("A has been row and column scaled as diag(S)*A*diag(S)\n");
if (fail.code == NE_SINGULAR)

{
printf("Error from nag_zpbsvx (f07hpc).\n%s\n", fail.message);
exit_status = 1;

}
END:
NAG_FREE(ab);
NAG_FREE(afb);
NAG_FREE(b);
NAG_FREE(x);
NAG_FREE(berr);
NAG_FREE(ferr);
NAG_FREE(s);

return exit_status;
}

#undef AB_UPPER
#undef AB_LOWER
#undef B

10.2 Program Data

nag_zpbsvx (f07hpc) Example Program Data
4 1 2 : n kd nrhs
Nag_Upper : uplo

(9.39, 0.00) (1.08, -1.73)
(1.69, 0.00) (-0.04, 0.29)

(2.65, 0.00) (-0.33, 2.24)
(2.17, 0.00) : matrix A

(-12.42,68.42) (54.30,-56.56)
(-9.93, 0.88) (18.32, 4.76)
(-27.30,-0.01) (-4.40, 9.97)
(5.31,23.63) (9.43, 1.41) : matrix B

10.3 Program Results

nag_zpbsvx (f07hpc) Example Program Results

Solution(s)
1 2

1 (-1.0000, 8.0000) (5.0000,-6.0000)
2 (2.0000,-3.0000) (2.0000, 3.0000)
3 (-4.0000,-5.0000) (-8.0000, 4.0000)
4 (7.0000, 6.0000) (-1.0000,-7.0000)

Backward errors (machine-dependent)
8.2e-17 5.4e-17

Estimated forward error bounds (machine-dependent)
3.6e-14 3.0e-14

f07hpc NAG Library Manual

f07hpc.10 Mark 25

Estimate of reciprocal condition number
7.6e-03

A has not been equilibrated

f07 – Linear Equations (LAPACK) f07hpc

Mark 25 f07hpc.11 (last)

	f07hpc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Anderson et al. (1999)
	Golub and Van Loan (1996)
	Higham (2002)

	5 Arguments
	order
	fact
	uplo
	n
	kd
	nrhs
	ab
	pdab
	afb
	pdafb
	equed
	s
	b
	pdb
	x
	pdx
	rcond
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_MAT_NOT_POS_DEF
	NE_NO_LICENCE
	NE_SINGULAR_WP

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

