NAG Library Function Document nag_zpbsvx (f07hpc)

1 Purpose

nag_zpbsvx (f07hpc) uses the Cholesky factorization

$$
A=U^{\mathrm{H}} U \quad \text { or } \quad A=L L^{\mathrm{H}}
$$

to compute the solution to a complex system of linear equations

$$
A X=B
$$

where A is an n by n Hermitian positive definite band matrix of bandwidth $\left(2 k_{d}+1\right)$ and X and B are n by r matrices. Error bounds on the solution and a condition estimate are also provided.

2 Specification

```
#include <nag.h>
#include <nagf07.h>
void nag_zpbsvx (Nag_OrderType order, Nag_FactoredFormType fact,
    Nag_UploType uplo, Integer n, Integer kd, Integer nrhs, Complex ab[],
        Integer pdab, Complex afb[], Integer pdafb,
        Nag_EquilibrationType *equed, double s[], Complex b[], Integer pdb,
        complex x[], Integer pdx, double *rcond, double ferr[], double berr[],
        NagError *fail)
```


3 Description

nag_zpbsvx (f07hpc) performs the following steps:

1. If fact $=$ Nag_EquilibrateAndFactor, real diagonal scaling factors, D_{S}, are computed to equilibrate the system:

$$
\left(D_{S} A D_{S}\right)\left(D_{S}^{-1} X\right)=D_{S} B
$$

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if equilibration is used, A is overwritten by $D_{S} A D_{S}$ and B by $D_{S} B$.
2. If fact $=$ Nag_NotFactored or Nag_EquilibrateAndFactor, the Cholesky decomposition is used to factor the matrix A (after equilibration if fact $=$ Nag_EquilibrateAndFactor) as $A=U^{\mathrm{H}} U$ if uplo $=$ Nag_Upper or $A=L L^{\mathrm{H}}$ if uplo $=$ Nag_Lower, where U is an upper triangular matrix and L is a lower triangular matrix.
3. If the leading i by i principal minor of A is not positive definite, then the function returns with fail.errnum $=i$ and fail.code $=$ NE_MAT_NOT_POS_DEF. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, fail.code $=$ NE_SINGULAR_WP is returned as a warning, but the function still goes on to solve for X and compute error bounds as described below.
4. The system of equations is solved for X using the factored form of A.
5. Iterative refinement is applied to improve the computed solution matrix and to calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix X is premultiplied by D_{S} so that it solves the original system before equilibration.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore
Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: order - Nag_OrderType
Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., rowmajor ordering or column-major ordering. C language defined storage is specified by order $=$ Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

Constraint: order $=$ Nag_RowMajor or Nag_ColMajor.
2: fact - Nag_FactoredFormType
Input
On entry: specifies whether or not the factorized form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factorized.
fact $=$ Nag_Factored
$\mathbf{a f b}$ contains the factorized form of A. If equed $=$ Nag_Equilibrated, the matrix A has been equilibrated with scaling factors given by \mathbf{s}. ab and $\mathbf{a f b}$ will not be modified.
fact $=$ Nag $_{-}$NotFactored
The matrix A will be copied to afb and factorized.
fact $=$ Nag_EquilibrateAndFactor
The matrix A will be equilibrated if necessary, then copied to $\mathbf{a f b}$ and factorized.
Constraint: fact $=$ Nag_Factored, Nag_NotFactored or Nag_EquilibrateAndFactor.
3: uplo - Nag_UploType Input
On entry: if uplo $=$ Nag_Upper, the upper triangle of A is stored.
If uplo $=$ Nag_Lower, the lower triangle of A is stored.
Constraint: uplo $=$ Nag_Upper or Nag_Lower.
4: $\quad \mathbf{n}$ - Integer
Input
On entry: n, the number of linear equations, i.e., the order of the matrix A.
Constraint: $\mathbf{n} \geq 0$.
5: kd - Integer Input
On entry: k_{d}, the number of superdiagonals of the matrix A if uplo $=$ Nag_Upper, or the number of subdiagonals if uplo = Nag_Lower.

Constraint: $\mathbf{k d} \geq 0$.
6: nrhs - Integer Input
On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.
Constraint: $\mathbf{n r h s} \geq 0$.
$\mathbf{a b}[\mathrm{dim}]$ - Complex
Input/Output
Note: the dimension, dim, of the array $\mathbf{a b}$ must be at least $\max (1, \mathbf{p d a b} \times \mathbf{n})$.
On entry: the upper or lower triangle of the Hermitian band matrix A, except if fact $=$ Nag_Factored and equed $=$ Nag_Equilibrated, in which case ab must contain the equilibrated matrix $D_{S} A D_{S}$.

This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. The storage of elements of $A_{i j}$, depends on the order and uplo arguments as follows:

$$
\begin{aligned}
& \text { if order }=\text { Nag_ColMajor and uplo }=\text { Nag_Upper, } \\
& A_{i j} \text { is stored in } \mathbf{a b}\left[k_{d}+i-j+(j-1) \times \text { pdab }\right] \text {, for } j=1, \ldots, n \text { and } \\
& i=\max \left(1, j-k_{d}\right), \ldots, j \text {; } \\
& \text { if order }=\text { Nag_ColMajor and uplo }=\text { Nag_Lower, } \\
& A_{i j} \text { is stored in } \mathbf{a b}[i-j+(j-1) \times \text { pdab }] \text {, for } j=1, \ldots, n \text { and } \\
& i=j, \ldots, \min \left(n, j+k_{d}\right) ; \\
& \text { if order }=\text { Nag_RowMajor and uplo }=\text { Nag_Upper, } \\
& A_{i j} \text { is stored in } \mathbf{a b}[j-i+(i-1) \times \text { pdab }] \text {, for } i=1, \ldots, n \text { and } \\
& j=i, \ldots, \min \left(n, i+k_{d}\right) \text {; } \\
& \text { if order }=\text { Nag_RowMajor and uplo }=\text { Nag_Lower, } \\
& A_{i j} \text { is stored in } \mathbf{a b}\left[k_{d}+j-i+(i-1) \times \mathbf{p d a b}\right] \text {, for } i=1, \ldots, n \text { and } \\
& j=\max \left(1, i-k_{d}\right), \ldots, i .
\end{aligned}
$$

On exit: if fact $=$ Nag_EquilibrateAndFactor and equed $=$ Nag_Equilibrated, ab is overwritten by $D_{S} A D_{S}$.

8: pdab - Integer Input
On entry: the stride separating row or column elements (depending on the value of order) of the matrix A in the array $\mathbf{a b}$.
Constraint: $\mathbf{p d a b} \geq \mathbf{k d}+1$.
9: $\quad \mathbf{a f b}[\mathrm{dim}]-$ Complex
Input/Output
Note: the dimension, dim, of the array $\mathbf{a f b}$ must be at least $\max (1, \mathbf{p d a f b} \times \mathbf{n})$.
On entry: if fact $=$ Nag_Factored, $\mathbf{a f b}$ contains the triangular factor U or L from the Cholesky factorization $A=U^{\mathrm{H}} U$ or $A=L L^{\mathrm{H}}$ of the band matrix A, in the same storage format as A. If equed $=$ Nag_Equilibrated, $\mathbf{a f b}$ is the factorized form of the equilibrated matrix A.

On exit: if fact $=$ Nag_NotFactored, afb returns the triangular factor U or L from the Cholesky factorization $A=U^{\mathrm{H}} U$ or $A=L L^{\mathrm{H}}$.
If fact $=$ Nag_EquilibrateAndFactor, $\mathbf{a f b}$ returns the triangular factor U or L from the Cholesky factorization $A=U^{\mathrm{H}} U$ or $A=L L^{\mathrm{H}}$ of the equilibrated matrix A (see the description of ab for the form of the equilibrated matrix).
pdafb - Integer
Input
On entry: the stride separating row or column elements (depending on the value of order) of the matrix A in the array $\mathbf{a f b}$.
Constraint: $\mathbf{p d a f b} \geq \mathbf{k d}+1$.
11: equed - Nag_EquilibrationType *
Input/Output
On entry: if fact $=$ Nag_NotFactored or Nag_EquilibrateAndFactor, equed need not be set.
If fact $=$ Nag_Factored, equed must specify the form of the equilibration that was performed as follows:
if equed $=$ Nag_NoEquilibration, no equilibration;
if equed $=$ Nag_Equilibrated, equilibration was performed, i.e., A has been replaced by $D_{S} A D_{S}$.
On exit: if fact $=$ Nag_Factored, equed is unchanged from entry.
Otherwise, if no constraints are violated, equed specifies the form of the equilibration that was performed as specified above.
Constraint: if fact $=$ Nag_Factored, equed $=$ Nag_NoEquilibration or Nag_Equilibrated.
12:
$\mathbf{s}[\operatorname{dim}]$ - double
Input/Output
Note: the dimension, dim, of the array \mathbf{s} must be at least $\max (1, \mathbf{n})$.
On entry: if fact $=$ Nag_NotFactored or Nag_EquilibrateAndFactor, \mathbf{s} need not be set.
If fact $=$ Nag_Factored and equed $=$ Nag_Equilibrated, \mathbf{s} must contain the scale factors, D_{S}, for A; each element of \mathbf{s} must be positive.

On exit: if fact $=$ Nag_Factored, \mathbf{s} is unchanged from entry.
Otherwise, if no constraints are violated and equed $=$ Nag_Equilibrated, \mathbf{s} contains the scale factors, D_{S}, for A; each element of \mathbf{s} is positive.

13: $\quad \mathbf{b}[\operatorname{dim}]$ - Complex
Input/Output
Note: the dimension, dim, of the array \mathbf{b} must be at least
$\max (1, \mathbf{p d b} \times \mathbf{n r h s})$ when order $=$ Nag_ColMajor;
$\max (1, \mathbf{n} \times \mathbf{p d b})$ when order $=$ Nag_RowMajor.
The (i, j) th element of the matrix B is stored in
$\mathbf{b}[(j-1) \times \mathbf{p d b}+i-1]$ when order $=$ Nag_ColMajor;
$\mathbf{b}[(i-1) \times \mathbf{p d b}+j-1]$ when order $=$ Nag_RowMajor.

On entry: the n by r right-hand side matrix B.
On exit: if equed $=$ Nag_NoEquilibration, \mathbf{b} is not modified.
If equed $=$ Nag_Equilibrated, \mathbf{b} is overwritten by $D_{S} B$.
14: $\quad \mathbf{p d b}$ - Integer
Input
On entry: the stride separating row or column elements (depending on the value of order) in the array \mathbf{b}.
Constraints:

> if order $=$ Nag_ColMajor, $\mathbf{p d b} \geq \max (1, \mathbf{n})$
> if order $=$ Nag_RowMajor, $\mathbf{p d b} \geq \max (1, \mathbf{n r h s})$.
$\mathbf{x}[\operatorname{dim}]$ - Complex
Output
Note: the dimension, dim, of the array \mathbf{x} must be at least
$\max (1, \mathbf{p d x} \times \mathbf{n r h s})$ when order $=$ Nag_ColMajor;
$\max (1, \mathbf{n} \times \mathbf{p d x})$ when order $=$ Nag_RowMajor.
The (i, j) th element of the matrix X is stored in

$$
\begin{aligned}
& \mathbf{x}[(j-1) \times \mathbf{p d x}+i-1] \text { when } \text { order }=\text { Nag_ColMajor; } \\
& \mathbf{x}[(i-1) \times \mathbf{p d x}+j-1] \text { when order }=\text { Nag_RowMajor. }
\end{aligned}
$$

On exit: if fail.code $=$ NE_NOERROR or NE_SINGULAR_WP, the n by r solution matrix X to the original system of equations. Note that the arrays A and B are modified on exit if equed $=$ Nag_Equilibrated, and the solution to the equilibrated system is $D_{S}^{-1} X$.

16: pdx - Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array \mathbf{x}.
Constraints:

$$
\begin{aligned}
& \text { if order }=\text { Nag_ColMajor, } \mathbf{p d x} \geq \max (1, \mathbf{n}) \\
& \text { if order }=\text { Nag_RowMajor, } \mathbf{p d x} \geq \max (1, \mathbf{n r h s}) .
\end{aligned}
$$

17: rcond - double *
Output
On exit: if no constraints are violated, an estimate of the reciprocal condition number of the matrix A (after equilibration if that is performed), computed as rcond $=1.0 /\left(\|A\|_{1}\left\|A^{-1}\right\|_{1}\right)$.

18: \quad ferr[nrhs] - double
Output
On exit: if fail.code $=$ NE_NOERROR or NE_SINGULAR_WP, an estimate of the forward error bound for each computed solution vector, such that $\left\|\hat{x}_{j}-x_{j}\right\|_{\infty} /\left\|x_{j}\right\|_{\infty} \leq \mathbf{f e r r}[j-1]$ where \hat{x}_{j} is the j th column of the computed solution returned in the array \mathbf{x} and x_{j} is the corresponding column of the exact solution X. The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.

19: berr[nrhs] - double
Output
On exit: if fail.code $=$ NE_NOERROR or NE_SINGULAR_WP, an estimate of the componentwise relative backward error of each computed solution vector \hat{x}_{j} (i.e., the smallest relative change in any element of A or B that makes \hat{x}_{j} an exact solution).

20: fail - NagError *
Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument \langle value \rangle had an illegal value.

NE_INT

On entry, $\mathbf{k d}=\langle$ value \rangle.
Constraint: $\mathbf{k d} \geq 0$.
On entry, $\mathbf{n}=\langle$ value \rangle.
Constraint: $\mathbf{n} \geq 0$.
On entry, nrhs $=\langle$ value \rangle.
Constraint: nrhs ≥ 0.
On entry, pdab $=\langle$ value \rangle.
Constraint: pdab >0.
On entry, pdafb $=\langle$ value \rangle.
Constraint: pdafb >0.
On entry, $\mathbf{p d b}=\langle$ value \rangle.
Constraint: pdb >0.

On entry, $\mathbf{p d x}=\langle$ value \rangle.
Constraint: pdx >0.

NE_INT_2

On entry, pdab $=\langle$ value \rangle and $\mathbf{k d}=\langle$ value \rangle.
Constraint: $\mathbf{p d a b} \geq \mathbf{k d}+1$.
On entry, pdafb $=\langle$ value \rangle and $\mathbf{k d}=\langle$ value \rangle.
Constraint: pdafb $\geq \mathbf{k d}+1$.
On entry, $\mathbf{p d b}=\langle$ value \rangle and $\mathbf{n}=\langle$ value \rangle.
Constraint: $\mathbf{p d b} \geq \max (1, \mathbf{n})$.
On entry, $\mathbf{p d b}=\langle$ value \rangle and $\mathbf{n r h s}=\langle$ value \rangle.
Constraint: pdb $\geq \max (1, \mathbf{n r h s})$.
On entry, $\mathbf{p d x}=\langle$ value \rangle and $\mathbf{n}=\langle$ value \rangle.
Constraint: $\mathbf{p d x} \geq \max (1, \mathbf{n})$.
On entry, $\mathbf{p d x}=\langle$ value \rangle and $\mathbf{n r h s}=\langle$ value \rangle.
Constraint: pdx $\geq \max (1$, nrhs $)$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_MAT_NOT_POS_DEF

The leading minor of order $\langle v a l u e\rangle$ of A is not positive definite, so the factorization could not be completed, and the solution has not been computed. rcond $=0.0$ is returned.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_SINGULAR_WP

U (or L) is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of equations $(A+E) x=b$, where

$$
\begin{aligned}
& \text { if uplo }=\text { Nag_Upper, }|E| \leq c(n) \epsilon\left|U^{\mathrm{H}} \| U\right| \text {; } \\
& \text { if uplo }=\text { Nag_Lower, }|E| \leq c(n) \epsilon|L|\left|L^{\mathrm{H}}\right|,
\end{aligned}
$$

$c(n)$ is a modest linear function of n, and ϵ is the machine precision. See Section 10.1 of Higham (2002) for further details.

If \hat{x} is the true solution, then the computed solution x satisfies a forward error bound of the form

$$
\frac{\|x-\hat{x}\|_{\infty}}{\|\hat{x}\|_{\infty}} \leq w_{c} \operatorname{cond}(A, \hat{x}, b)
$$

where $\operatorname{cond}(A, \hat{x}, b)=\left\|\left|A^{-1}\right|(|A||\hat{x}|+|b|)\right\|_{\infty} /\|\hat{x}\|_{\infty} \leq \operatorname{cond}(A)=\left\|\left|A^{-1}\right||A|\right\|_{\infty} \leq \kappa_{\infty}(A)$. If \hat{x} is the
j th column of X, then w_{c} is returned in $\operatorname{berr}[j-1]$ and a bound on $\|x-\hat{x}\|_{\infty} /\|\hat{x}\|_{\infty}$ is returned in ferr $[j-1]$. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

nag_zpbsvx (f07hpc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_zpbsvx (f07hpc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

When $n \gg k$, the factorization of A requires approximately $4 n(k+1)^{2}$ floating-point operations, where k is the number of superdiagonals.

For each right-hand side, computation of the backward error involves a minimum of $32 n k$ floating-point operations. Each step of iterative refinement involves an additional $48 n k$ operations. At most five steps of iterative refinement are performed, but usually only one or two steps are required. Estimating the forward error involves solving a number of systems of equations of the form $A x=b$; the number is usually 4 or 5 and never more than 11 . Each solution involves approximately $16 n k$ operations.

The real analogue of this function is nag_dpbsvx (f07hbc).

10 Example

This example solves the equations

$$
A X=B
$$

where A is the Hermitian positive definite band matrix

$$
A=\left(\begin{array}{llll}
9.39 & 1.08-1.73 i & 0 & 0 \\
1.08+1.73 i & 1.69 & -0.04+0.29 i & 0 \\
0 & -0.04-0.29 i & 2.65 & -0.33+2.24 i \\
0 & 0 & -0.33-2.24 i & 2.17
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{rr}
-12.42+68.42 i & 54.30-56.56 i \\
-9.93+0.88 i & 18.32+4.76 i \\
-27.30-0.01 i & -4.40+9.97 i \\
5.31+23.63 i & 9.43+1.41 i
\end{array}\right)
$$

Error estimates for the solutions, information on equilibration and an estimate of the reciprocal of the condition number of the scaled matrix A are also output.

10.1 Program Text

```
/* nag_zpbsvx (f07hpc) Example Program.
    * Copyright 2014 Numerical Algorithms Group.
    *
    * Mark 23, 2011.
    */
#include <stdio.h>
#include <nag.h>
#include <nagx04.h>
```

```
#include <nag_stdlib.h>
#include <nagf07.h>
int main(void)
{
    /* Scalars */
    double rcond;
    Integer exit_status = 0, i, j, kd, n, nrhs, pdab, pdafb, pdb,
                                    pdx;
    /* Arrays */
    Complex
    double
    char
    /* Nag Types */
    NagError fail;
    Nag_UploType uplo;
    Nag_OrderType order;
    Nag_EquilibrationType equed;
#ifdef NAG_COLUMN_MAJOR
#define AB_UPPER(\overline{I}, J) ab[(J-1)*pdab + kd + I - J]
#define AB_LOWER(I, J) ab[(J-1)*pdab + I - J]
#define B(I, J) b[(J-1)*pdb + I - 1]
    order = Nag_ColMajor;
#else
#define AB_UPPER(I, J) ab[(I-1)*pdab + J - I]
#define AB_LOWER(I, J) ab[(I-1)*pdab + kd + J - I]
#define B(I, J) b[(I-1)*pdb + J - 1]
    order = Nag_RowMajor;
#endif
    INIT_FAIL(fail);
    printf("nag_zpbsvx (f07hpc) Example Program Results\n\n");
    /* Skip heading in data file */
#ifdef _WIN32
    scanf_s("%*[^\n]");
#else
    scanf("%*[^\n]");
#endif
#ifdef _WIN32
    scanf_s("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[^\n]", &n, &kd, &nrhs);
#else
    scanf("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[^\n]", &n, &kd, &nrhs);
#endif
    if (n<0 || kd<0 || nrhs < 0)
            {
                printf("%s\n", "Invalid n or kd or nrhs");
                exit_status = 1;
                goto END;
            }
#ifdef _WIN32
    scanf_s(" %39s%*[^\n]", nag_enum_arg, _countof(nag_enum_arg));
#else
    scanf(" %39s%*[^\n]", nag_enum_arg);
#endif
    /* nag_enum_name_to_value (x04nac).
        * Converts NAG enum member name to value
        */
    uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg);
    /* Allocate memory */
    if (!(ab = NAG_ALLOC((kd+1) * n, Complex)) ||
        !(afb = NAG_ALLOC((kd+1) * n, Complex)) ||
        !(b = NAG_ALLOC(n * nrhs, Complex)) ||
        !(x = NAG_ALLOC(n * nrhs, Complex)) ||
        !(berr = NAG_ALLOC(nrhs, double)) ||
        !(ferr = NAG_ALLOC(nrhs, double)) ||
        !(s = NAG_ALLOC(n, double)))
```

```
            {
            printf("Allocation failure\n");
            exit_status = -1;
            goto END;
        }
    pdab = kd+1;
    pdafb = kd+1;
#ifdef NAG_COLUMN_MAJOR
    pdb = n;
    pdx = n;
#else
    pdb = nrhs;
    pdx = nrhs;
#endif
```

```
    /* Read the upper or lower triangular part of the band matrix A */
    /* from data file */
    if (uplo == Nag_Upper)
        for (i = 1; i <= n; ++i)
            for (j = i; j <= MIN(n, i + kd); ++j)
#ifdef _WIN32
            scanf_s(" ( %lf , %lf )", &AB_UPPER(i, j).re, &AB_UPPER(i, j).im);
#else
            scanf(" ( %lf , %lf )", &AB_UPPER(i, j).re, &AB_UPPER(i, j).im);
#endif
    else
        for (i = 1; i <= n; ++i)
            for (j = MAX(1, i - kd); j <= i; ++j)
#ifdef _WIN32
                        scanf_s(" ( %lf , %lf )", &AB_LOWER(i, j).re, &AB_LOWER(i, j).im);
#else
                        scanf(" ( %lf , %lf )", &AB_LOWER(i, j).re, &AB_LOWER(i, j).im);
#endif
#ifdef _WIN32
    scanf_s("%*[^\n]");
#else
    scanf("%*[^\n]");
#endif
    /* Read B from data file */
    for (i = 1; i <= n; ++i)
        for (j = 1; j <= nrhs; ++j)
#ifdef _WIN32
        scanf_s(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
#else
        scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
#endif
#ifdef _WIN32
    scanf_s("%*[^\n]");
#else
    scanf("%*[^\n]");
#endif
```

 /* Solve the equations \(A X=B\) for \(X\) using nag_zpbsvx (f07hpc). */
 nag_zpbsvx (order, Nag_EquilibrateAndFactor, uplo, n, kd, nrhs, ab, pdab,
 afb, pdafb, \&equed, \(s, b, p d b, x, p d x, \& r c o n d, f e r r, b e r r, ~ \& f a i l) ;\)
 if (fail.code != NE_NOERROR \&\& fail.code != NE_SINGULAR)
 \{
 printf("Error from nag_zpbsvx (f07hpc).\n\%s\n", fail.message);
 exit_status = 1;
 goto END;
 \}
 /* Print solution using nag_gen_complx_mat_print_comp (x04dbc). */
 fflush(stdout);
 nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
 nrhs, \(x, ~ p d x, ~ N a g _B r a c k e t F o r m, ~ " \% 7.4 f "\),
 "Solution(s)", Nag_IntegerLabels, 0,
 Nag_IntegerLabels, 0, 80, 0, 0, \&fail);
 if (fail.code ! = NE_NOERROR)
 \{
    ```
            printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",
                        fail.message);
        exit_status = 1;
        goto END;
        }
```

```
/* Print error bounds, condition number and the form of equilibration */
```

/* Print error bounds, condition number and the form of equilibration */
printf("\nBackward errors (machine-dependent)\n");
printf("\nBackward errors (machine-dependent)\n");
for (j = 0; j < nrhs; ++j) printf("%11.le%s", berr[j], j%7 == 6?"\n":" ");
for (j = 0; j < nrhs; ++j) printf("%11.le%s", berr[j], j%7 == 6?"\n":" ");
printf("\n\nEstimated forward error bounds (machine-dependent)\n");
printf("\n\nEstimated forward error bounds (machine-dependent)\n");
for (j = 0; j < nrhs; ++j) printf("%11.1e%s", ferr[j], j%7 == 6?"\n":" ");
for (j = 0; j < nrhs; ++j) printf("%11.1e%s", ferr[j], j%7 == 6?"\n":" ");
printf("\n\nEstimate of reciprocal condition number\n%11.le\n\n", rcond);
printf("\n\nEstimate of reciprocal condition number\n%11.le\n\n", rcond);
if (equed == Nag_NoEquilibration)
if (equed == Nag_NoEquilibration)
printf("A has not been equilibrated\n");
printf("A has not been equilibrated\n");
else if (equed == Nag_RowAndColumnEquilibration)
else if (equed == Nag_RowAndColumnEquilibration)
printf("A has been row and column scaled as diag(S)*A*diag(S)\n");
printf("A has been row and column scaled as diag(S)*A*diag(S)\n");
if (fail.code == NE_SINGULAR)
if (fail.code == NE_SINGULAR)
{
{
printf("Error from nag_zpbsvx (f07hpc).\n%s\n", fail.message);
printf("Error from nag_zpbsvx (f07hpc).\n%s\n", fail.message);
exit_status = 1;
exit_status = 1;
}
}
END:
END:
NAG_FREE(ab);
NAG_FREE(ab);
NAG_FREE(afb);
NAG_FREE(afb);
NAG_FREE(b);
NAG_FREE(b);
NAG_FREE(x);
NAG_FREE(x);
NAG_FREE(berr);
NAG_FREE(berr);
NAG_FREE(ferr);
NAG_FREE(ferr);
NAG_FREE(s);
NAG_FREE(s);
return exit_status;
return exit_status;
}
\#undef AB_UPPER
\#undef AB_LOWER
\#undef B

```

\subsection*{10.2 Program Data}
```

nag_zpbsvx (f07hpc) Example Program Data
4 1 2 : n kd nrhs
Nag_Upper : uplo
(9.39,0.00) (1.08, -1.73)
(1.69, 0.00) (-0.04, 0.29)
(2.65,0.00) (-0.33, 2.24)
(2.17, 0.00) : matrix A
(-12.42,68.42) (54.30,-56.56)
(-9.93, 0.88) (18.32, 4.76)
(-27.30,-0.01) (-4.40, 9.97)
(5.31,23.63) (9.43, 1.41) : matrix B

```

\subsection*{10.3 Program Results}
nag_zpbsvx (f07hpc) Example Program Results
```

Solution(s)

```
\begin{tabular}{rrr}
1 & 2 \\
1 & \((-1.0000,8.0000)\) & \((5.0000,-6.0000)\) \\
2 & \((2.0000,-3.0000)\) & \((2.0000,3.0000)\) \\
3 & \((-4.0000,-5.0000)\) & \((-8.0000,4.0000)\) \\
4 & \((7.0000,6.0000)\) & \((-1.0000,-7.0000)\)
\end{tabular}
```

Backward errors (machine-dependent)
8.2e-17 5.4e-17
Estimated forward error bounds (machine-dependent)
3.6e-14 3.0e-14

```
```

