NAG Library Function Document

nag_zgbsvx (f07bpc)

1 Purpose

nag_zgbsvx (f07bpc) uses the LU factorization to compute the solution to a complex system of linear equations

AX = B, $A^{\mathrm{T}}X = B$ or $A^{\mathrm{H}}X = B$,

where A is an n by n band matrix with k_l subdiagonals and k_u superdiagonals, and X and B are n by r matrices. Error bounds on the solution and a condition estimate are also provided.

2 Specification #include <nag.h>

```
#include <nagf07.h>
void nag_zgbsvx (Nag_OrderType order, Nag_FactoredFormType fact,
    Nag_TransType trans, Integer n, Integer kl, Integer ku, Integer nrhs,
    Complex ab[], Integer pdab, Complex afb[], Integer pdafb,
    Integer ipiv[], Nag_EquilibrationType *equed, double r[], double c[],
    Complex b[], Integer pdb, Complex x[], Integer pdx, double *rcond,
    double ferr[], double berr[], double *recip_growth_factor,
    NagError *fail)
```

3 Description

nag zgbsvx (f07bpc) performs the following steps:

1. Equilibration

The linear system to be solved may be badly scaled. However, the system can be equilibrated as a first stage by setting **fact** = Nag_EquilibrateAndFactor. In this case, real scaling factors are computed and these factors then determine whether the system is to be equilibrated. Equilibrated forms of the systems AX = B, $A^TX = B$ and $A^HX = B$ are

$$(D_R A D_C) \left(D_C^{-1} X \right) = D_R B,$$

$$\left(D_R A D_C\right)^{\mathsf{T}} \left(D_R^{-1} X\right) = D_C B,$$

and

$$(D_R A D_C)^{\mathrm{H}} (D_R^{-1} X) = D_C B,$$

respectively, where D_R and D_C are diagonal matrices, with positive diagonal elements, formed from the computed scaling factors.

When equilibration is used, A will be overwritten by D_RAD_C and B will be overwritten by D_RB (or D_CB when the solution of $A^TX = B$ or $A^HX = B$ is sought).

2. Factorization

The matrix A, or its scaled form, is copied and factored using the LU decomposition

$$A = PLU_{i}$$

where P is a permutation matrix, L is a unit lower triangular matrix, and U is upper triangular.

This stage can be by-passed when a factored matrix (with scaled matrices and scaling factors) are supplied; for example, as provided by a previous call to nag_zgbsvx (f07bpc) with the same matrix A.

3. Condition Number Estimation

The LU factorization of A determines whether a solution to the linear system exists. If some diagonal element of U is zero, then U is exactly singular, no solution exists and the function returns with a failure. Otherwise the factorized form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than *machine precision* then a warning code is returned on final exit.

4. Solution

The (equilibrated) system is solved for X ($D_C^{-1}X$ or $D_R^{-1}X$) using the factored form of A (D_RAD_C).

5. Iterative Refinement

Iterative refinement is applied to improve the computed solution matrix and to calculate error bounds and backward error estimates for the computed solution.

6. Construct Solution Matrix X

If equilibration was used, the matrix X is premultiplied by D_C (if **trans** = Nag_NoTrans) or D_R (if **trans** = Nag_Trans or Nag_ConjTrans) so that it solves the original system before equilibration.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) *LAPACK Users' Guide* (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: **order** – Nag_OrderType

On entry: the **order** argument specifies the two-dimensional storage scheme being used, i.e., rowmajor ordering or column-major ordering. C language defined storage is specified by **order** = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

Constraint: **order** = Nag_RowMajor or Nag_ColMajor.

2: **fact** – Nag_FactoredFormType

On entry: specifies whether or not the factorized form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factorized.

fact = Nag_Factored

afb and **ipiv** contain the factorized form of A. If **equed** \neq Nag_NoEquilibration, the matrix A has been equilibrated with scaling factors given by **r** and **c**. **ab**, **afb** and **ipiv** are not modified.

fact = Nag_NotFactored

The matrix A will be copied to **afb** and factorized.

fact = Nag_EquilibrateAndFactor

The matrix A will be equilibrated if necessary, then copied to **afb** and factorized.

Constraint: **fact** = Nag_Factored, Nag_NotFactored or Nag_EquilibrateAndFactor.

Input

Input

3:	trans – Nag_TransType	Input					
	On entry: specifies the form of the system of equations.						
	trans = Nag_NoTrans AX = B (No transpose).						
	trans = Nag_Trans $A^{T}X = B$ (Transpose).						
	trans = Nag_ConjTrans $A^{H}X = B$ (Conjugate transpose).						
	Constraint: trans = Nag_NoTrans, Nag_Trans or Nag_ConjTrans.						
4:	n – Integer	Input					
	On entry: n, the number of linear equations, i.e., the order of the matrix A.						
	Constraint: $\mathbf{n} \ge 0$.						
5:	kl – Integer	Input					
	On entry: k_{i} the number of subdiagonals within the band of the matrix A.						
	Constraint: $\mathbf{k} \mathbf{l} > 0$.						
6:	ku – Integer	Input					
	On entry: k_u , the number of superdiagonals within the band of the matrix A.						
	Constraint: $\mathbf{ku} \ge 0$.						
7:	nrhs – Integer	Input					
	On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.						
	Constraint: $\mathbf{nrhs} \geq 0$.						
8.	ab[dim] – Complex	Output					
0.	Note: the dimension dim of the array ab must be at least max $(1 \text{ ndab} \times n)$	omput					
	On entry: the n by n coefficient matrix A						
	This is stored as a notional two-dimensional array with row elements or column elements	stored					
	contiguously. The storage of elements A_{ij} , for row $i = 1,, n$ and column $j = \max(1, i - k_l),, \min(n, i + k_u)$, depends on the order argument as follows:						
	if order = Nag_ColMajor, A_{ij} is stored as $\mathbf{ab}[(j-1) \times \mathbf{pdab} + \mathbf{ku} + i - j]$;						
	if order = Nag_RowMajor, A_{ij} is stored as $ab[(i-1) \times pdab + kl + j - i]$.						
	See Section 9 for further details.						
	If fact = Nag_Factored and equed \neq Nag_NoEquilibration, A must have been equilibrated by the scaling factors in r and/or c .						
	<i>On exit</i> : if $fact = Nag_Factored or Nag_NotFactored, or if fact = Nag_EquilibrateAndFactor and equed = Nag_NoEquilibration, ab is not modified.$						
	If equed \neq Nag_NoEquilibration then, if no constraints are violated, A is scaled as follow	's:					
	if equed = Nag_RowEquilibration, $A = D_r A$;						

if **equed** = Nag_ColumnEquilibration, $A = AD_c$;

if equed = Nag_RowAndColumnEquilibration, $A = D_r A D_c$.

9: pdab – Integer

On entry: the stride separating row or column elements (depending on the value of **order**) of the matrix A in the array **ab**.

Constraint: $pdab \ge kl + ku + 1$.

10: $\mathbf{afb}[dim] - \text{Complex}$

Note: the dimension, *dim*, of the array **afb** must be at least $max(1, pdafb \times n)$.

On entry: if fact = Nag_NotFactored or Nag_EquilibrateAndFactor, afb need not be set.

If **fact** = Nag_Factored, details of the LU factorization of the n by n band matrix A, as computed by nag_zgbtrf (f07brc).

The elements, u_{ij} , of the upper triangular band factor U with $k_l + k_u$ super-diagonals, and the multipliers, l_{ij} , used to form the lower triangular factor L are stored. The elements u_{ij} , for i = 1, ..., n and $j = i, ..., \min(n, i + k_l + k_u)$, and l_{ij} , for i = 1, ..., n and $j = \max(1, i - k_l), ..., i$, are stored where A_{ij} is stored on entry.

If equed \neq Nag_NoEquilibration, afb is the factorized form of the equilibrated matrix A.

On exit: if fact = Nag.Factored, afb is unchanged from entry.

Otherwise, if no constraints are violated, then if **fact** = Nag_NotFactored, **afb** returns details of the LU factorization of the band matrix A, and if **fact** = Nag_EquilibrateAndFactor, **afb** returns details of the LU factorization of the equilibrated band matrix A (see the description of **ab** for the form of the equilibrated matrix).

11: **pdafb** – Integer

On entry: the stride separating row or column elements (depending on the value of **order**) of the matrix A in the array **afb**.

Constraint: $pdafb \ge 2 \times kl + ku + 1$.

12: ipiv[dim] - Integer

Note: the dimension, *dim*, of the array ipiv must be at least $max(1, \mathbf{n})$.

On entry: if fact = Nag_NotFactored or Nag_EquilibrateAndFactor, ipiv need not be set.

If fact = Nag_Factored, ipiv contains the pivot indices from the factorization A = LU, as computed by nag_dgbtrf (f07bdc); row *i* of the matrix was interchanged with row ipiv[i-1].

On exit: if fact = Nag_Factored, ipiv is unchanged from entry.

Otherwise, if no constraints are violated, **ipiv** contains the pivot indices that define the permutation matrix P; at the *i*th step row *i* of the matrix was interchanged with row **ipiv**[i-1]. **ipiv**[i-1] = i indicates a row interchange was not required.

If fact = Nag_NotFactored, the pivot indices are those corresponding to the factorization A = LU of the original matrix A.

If fact = Nag_EquilibrateAndFactor, the pivot indices are those corresponding to the factorization of A = LU of the equilibrated matrix A.

13: equed – Nag_EquilibrationType *

On entry: if fact = Nag_NotFactored or Nag_EquilibrateAndFactor, equed need not be set.

If $fact = Nag_Factored$, equed must specify the form of the equilibration that was performed as follows:

if **equed** = Nag_NoEquilibration, no equilibration;

if equed = Nag_RowEquilibration, row equilibration, i.e., A has been premultiplied by D_R ;

Input/Output

Input

Input/Output

Input

Input/Output

if **equed** = Nag_ColumnEquilibration, column equilibration, i.e., A has been postmultiplied by D_C ;

if equed = Nag_RowAndColumnEquilibration, both row and column equilibration, i.e., A has been replaced by D_RAD_C .

On exit: if fact = Nag_Factored, equed is unchanged from entry.

Otherwise, if no constraints are violated, equed specifies the form of equilibration that was performed as specified above.

Constraint: if **fact** = Nag_Factored, **equed** = Nag_NoEquilibration, Nag_RowEquilibration, Nag_ColumnEquilibration or Nag_RowAndColumnEquilibration.

14: $\mathbf{r}[dim] - double$

Input/Output

Note: the dimension, *dim*, of the array \mathbf{r} must be at least max $(1, \mathbf{n})$.

On entry: if $fact = Nag_NotFactored or Nag_EquilibrateAndFactor, r need not be set.$

I f fact = Nag_Factored a n d equed = Nag_RowEquilibration o r Nag_RowAndColumnEquilibration, r must contain the row scale factors for A, D_R ; each element of r must be positive.

On exit: if fact = Nag_Factored, \mathbf{r} is unchanged from entry.

Otherwise, if no constraints are violated and equed = Nag_RowEquilibration or Nag_RowAndColumnEquilibration, **r** contains the row scale factors for A, D_R , such that A is multiplied on the left by D_R ; each element of **r** is positive.

15: $\mathbf{c}[dim] - double$

Note: the dimension, *dim*, of the array **c** must be at least $max(1, \mathbf{n})$.

On entry: if fact = Nag_NotFactored or Nag_EquilibrateAndFactor, c need not be set.

I f fact = Nag_Factored or equed = Nag_ColumnEquilibration or Nag_RowAndColumnEquilibration, c must contain the column scale factors for A, D_C ; each element of c must be positive.

On exit: if fact = Nag.Factored, c is unchanged from entry.

Otherwise, if no constraints are violated and equed = Nag_ColumnEquilibration or Nag_RowAndColumnEquilibration, c contains the row scale factors for A, D_C ; each element of c is positive.

16: $\mathbf{b}[dim]$ – Complex

Note: the dimension, *dim*, of the array **b** must be at least

 $max(1, pdb \times nrhs)$ when order = Nag_ColMajor; $max(1, n \times pdb)$ when order = Nag_RowMajor.

The (i, j)th element of the matrix B is stored in

 $\mathbf{b}[(j-1) \times \mathbf{pdb} + i - 1]$ when order = Nag_ColMajor;

 $\mathbf{b}[(i-1) \times \mathbf{pdb} + j - 1]$ when $\mathbf{order} = \text{Nag}_{RowMajor}$.

On entry: the n by r right-hand side matrix B.

On exit: if $equed = Nag_NoEquilibration$, **b** is not modified.

I f trans = Nag_NoTrans a n d equed = Nag_RowEquilibration o r Nag_RowAndColumnEquilibration, b is overwritten by $D_R B$.

If trans = Nag_Trans or Nag_ConjTrans and equed = Nag_ColumnEquilibration or Nag_RowAndColumnEquilibration, **b** is overwritten by D_CB .

Input/Output

Input/Output

17: **pdb** – Integer

On entry: the stride separating row or column elements (depending on the value of **order**) in the array **b**.

Constraints:

if order = Nag_ColMajor, $pdb \ge max(1, n)$; if order = Nag_RowMajor, $pdb \ge max(1, nrhs)$.

18: $\mathbf{x}[dim]$ – Complex

Note: the dimension, dim, of the array x must be at least

 $max(1, pdx \times nrhs)$ when $order = Nag_ColMajor$; $max(1, n \times pdx)$ when $order = Nag_RowMajor$.

The (i, j)th element of the matrix X is stored in

 $\mathbf{x}[(j-1) \times \mathbf{pdx} + i - 1]$ when $\mathbf{order} = \text{Nag}$ -ColMajor; $\mathbf{x}[(i-1) \times \mathbf{pdx} + j - 1]$ when $\mathbf{order} = \text{Nag}$ -RowMajor.

On exit: if fail.code = NE_NOERROR or NE_SINGULAR_WP, the *n* by *r* solution matrix X to the original system of equations. Note that the arrays A and B are modified on exit if equed \neq Nag_NoEquilibration, and the solution to the equilibrated system is $D_C^{-1}X$ if trans = Nag_NoTrans a n d equed = Nag_ColumnEquilibration or r Nag_RowAndColumnEquilibration, or $D_R^{-1}X$ if trans = Nag_Trans or Nag_ConjTrans and equed = Nag_RowEquilibration or Nag_RowAndColumnEquilibration or Nag_RowAndColumnEquilibration.

19: **pdx** – Integer

On entry: the stride separating row or column elements (depending on the value of **order**) in the array \mathbf{x} .

Constraints:

if order = Nag_ColMajor, $pdx \ge max(1, n)$; if order = Nag_RowMajor, $pdx \ge max(1, nrhs)$.

20: rcond – double *

On exit: if no constraints are violated, an estimate of the reciprocal condition number of the matrix A (after equilibration if that is performed), computed as $\mathbf{rcond} = 1.0/(||A||_1 ||A^{-1}||_1)$.

21: ferr[nrhs] - double

On exit: if fail.code = NE_NOERROR or NE_SINGULAR_WP, an estimate of the forward error bound for each computed solution vector, such that $\|\hat{x}_j - x_j\|_{\infty} / \|x_j\|_{\infty} \leq \text{ferr}[j-1]$ where \hat{x}_j is the *j*th column of the computed solution returned in the array **x** and x_j is the corresponding column of the exact solution X. The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.

22: **berr**[**nrhs**] – double

On exit: if fail.code = NE_NOERROR or NE_SINGULAR_WP, an estimate of the componentwise relative backward error of each computed solution vector \hat{x}_j (i.e., the smallest relative change in any element of A or B that makes \hat{x}_j an exact solution).

23: recip_growth_factor – double *

On exit: if fail.code = NE_NOERROR, the reciprocal pivot growth factor ||A||/||U||, where ||.|| denotes the maximum absolute element norm. If recip_growth_factor $\ll 1$, the stability of the LU factorization of (equilibrated) A could be poor. This also means that the solution x, condition estimate rcond, and forward error bound ferr could be unreliable. If the factorization fails with

Output

Input

Output

Output

Output

Output

Input

24: fail – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed. See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument $\langle value \rangle$ had an illegal value.

NE_INT

On entry, $\mathbf{kl} = \langle value \rangle$. Constraint: $\mathbf{kl} \ge 0$.

On entry, $\mathbf{ku} = \langle value \rangle$. Constraint: $\mathbf{ku} \ge 0$.

On entry, $\mathbf{n} = \langle value \rangle$. Constraint: $\mathbf{n} \ge 0$.

On entry, $\mathbf{nrhs} = \langle value \rangle$. Constraint: $\mathbf{nrhs} \ge 0$.

On entry, $\mathbf{pdab} = \langle value \rangle$. Constraint: $\mathbf{pdab} > 0$.

On entry, $\mathbf{pdafb} = \langle value \rangle$. Constraint: $\mathbf{pdafb} > 0$.

On entry, $\mathbf{pdb} = \langle value \rangle$. Constraint: $\mathbf{pdb} > 0$.

On entry, $\mathbf{pdx} = \langle value \rangle$. Constraint: $\mathbf{pdx} > 0$.

NE_INT_2

On entry, $\mathbf{pdb} = \langle value \rangle$ and $\mathbf{n} = \langle value \rangle$. Constraint: $\mathbf{pdb} \geq \max(1, \mathbf{n})$.

On entry, $\mathbf{pdb} = \langle value \rangle$ and $\mathbf{nrhs} = \langle value \rangle$. Constraint: $\mathbf{pdb} \geq \max(1, \mathbf{nrhs})$.

On entry, $\mathbf{pdx} = \langle value \rangle$ and $\mathbf{n} = \langle value \rangle$. Constraint: $\mathbf{pdx} \ge \max(1, \mathbf{n})$.

On entry, $\mathbf{pdx} = \langle value \rangle$ and $\mathbf{nrhs} = \langle value \rangle$. Constraint: $\mathbf{pdx} \ge \max(1, \mathbf{nrhs})$.

NE_INT_3

On entry, $\mathbf{pdab} = \langle value \rangle$, $\mathbf{kl} = \langle value \rangle$ and $\mathbf{ku} = \langle value \rangle$. Constraint: $\mathbf{pdab} \ge \mathbf{kl} + \mathbf{ku} + 1$.

On entry, $\mathbf{pdafb} = \langle value \rangle$, $\mathbf{kl} = \langle value \rangle$ and $\mathbf{ku} = \langle value \rangle$. Constraint: $\mathbf{pdafb} \ge 2 \times \mathbf{kl} + \mathbf{ku} + 1$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG. See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly. See Section 3.6.5 in the Essential Introduction for further information.

NE_SINGULAR

Element $\langle value \rangle$ of the diagonal is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed. **rcond** = 0.0 is returned.

NE_SINGULAR_WP

U is nonsingular, but **rcond** is less than *machine precision*, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of **rcond** would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution \hat{x} is the exact solution of a perturbed system of equations $(A + E)\hat{x} = b$, where

$$|E| \le c(n)\epsilon P|L||U|,$$

c(n) is a modest linear function of n, and ϵ is the *machine precision*. See Section 9.3 of Higham (2002) for further details.

If x is the true solution, then the computed solution \hat{x} satisfies a forward error bound of the form

$$\frac{\|x - \hat{x}\|_{\infty}}{\|\hat{x}\|_{\infty}} \le w_c \operatorname{cond}(A, \hat{x}, b)$$

where $\operatorname{cond}(A, \hat{x}, b) = \||A^{-1}|(|A||\hat{x}| + |b|)\|_{\infty}/\|\hat{x}\|_{\infty} \leq \operatorname{cond}(A) = \||A^{-1}||A|\|_{\infty} \leq \kappa_{\infty}(A)$. If \hat{x} is the *j*th column of *X*, then w_c is returned in **berr**[j-1] and a bound on $\|x - \hat{x}\|_{\infty}/\|\hat{x}\|_{\infty}$ is returned in **ferr**[j-1]. See Section 4.4 of Anderson *et al.* (1999) for further details.

8 Parallelism and Performance

nag_zgbsvx (f07bpc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

nag_zgbsvx (f07bpc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

The band storage scheme for the array **ab** is illustrated by the following example, when n = 6, $k_l = 1$, and $k_u = 2$. Storage of the band matrix A in the array **ab**:

						order	$= Na_{2}$	g_Rov	vMajo	ľ
order = Nag_ColMajor						*	a_{11}	a_{12}	a_{13}	
*	*	a_{13}	a_{24}	a_{35}	a_{46}	a_{21}	a_{22}	a_{23}	a_{24}	
*	a_{12}	a_{23}	a_{34}	a_{45}	a_{56}	a_{32}	a_{33}	a_{34}	a_{35}	
a_{11}	a_{22}	a_{33}	a_{44}	a_{55}	a_{66}	a_{43}	a_{44}	a_{45}	a_{46}	
a_{21}	a_{32}	a_{43}	a_{54}	a_{65}	*	a_{54}	a_{55}	a_{56}	*	
						a_{65}	a_{66}	*	*	

The total number of floating-point operations required to solve the equations AX = B depends upon the pivoting required, but if $n \gg k_l + k_u$ then it is approximately bounded by $O(nk_l(k_l + k_u))$ for the factorization and $O(n(2k_l + k_u)r)$ for the solution following the factorization. The condition number estimation typically requires between four and five solves and never more than eleven solves, following the factorization. The solution is then refined, and the errors estimated, using iterative refinement; see nag zgbrfs (f07bvc) for information on the floating-point operations required.

In practice the condition number estimator is very reliable, but it can underestimate the true condition number; see Section 15.3 of Higham (2002) for further details.

The real analogue of this function is nag_dgbsvx (f07bbc).

10 Example

This example solves the equations

$$AX = B$$

where A is the band matrix

$$A = \begin{pmatrix} -1.65 + 2.26i & -2.05 - 0.85i & 0.97 - 2.84i & 0\\ 6.30i & -1.48 - 1.75i & -3.99 + 4.01i & 0.59 - 0.48i\\ 0 & -0.77 + 2.83i & -1.06 + 1.94i & 3.33 - 1.04i\\ 0 & 0 & 4.48 - 1.09i & -0.46 - 1.72i \end{pmatrix}$$

and

$$B = \begin{pmatrix} -1.06 + 21.50i & 12.85 + 2.84i \\ -22.72 - 53.90i & -70.22 + 21.57i \\ 28.24 - 38.60i & -20.73 - 1.23i \\ -34.56 + 16.73i & 26.01 + 31.97i \end{pmatrix}$$

Estimates for the backward errors, forward errors, condition number and pivot growth are also output, together with information on the equilibration of A.

10.1 Program Text

```
/* nag_zgbsvx (f07bpc) Example Program.
 *
 * Copyright 2014 Numerical Algorithms Group.
 *
 * Mark 23, 2011.
 */
#include <stdio.h>
#include <nag.h>
#include <nag.k>
#include <nag.stdlib.h>
#include <nag.stdlib.h>
#include <nagf07.h>
```

```
/* Scalars */
  double
                           growth_factor, rcond;
  Integer
                           exit_status = 0, i, j, kl, ku, n, nrhs, pdab, pdafb,
                           pdb, pdx;
  /* Arrays */
                           *ab = 0, *afb = 0, *b = 0, *x = 0;
*berr = 0, *c = 0, *ferr = 0, *r = 0;
  Complex
  double
                           *ipiv = 0;
  Integer
  /* Nag Types */
  NagError fail;
  Nag_OrderType
                           order;
  Nag_EquilibrationType equed;
#ifdef NAG_COLUMN_MAJOR
#define AB(I, J) ab[(J-1)*pdab + ku + I - J]
#define B(I, J) b[(J-1)*pdb + I - 1]
 order = Nag_ColMajor;
#else
#define AB(I, J) ab[(I-1)*pdab + kl + J - I]
#define B(I, J) b[(I-1)*pdb + J - 1]
 order = Nag_RowMajor;
#endif
 INIT_FAIL(fail);
  printf("nag_zqbsvx (f07bpc) Example Program Results\n\n");
/* Skip heading in data file */
#ifdef _WIN32
 scanf_s("%*[^\n]");
#else
  scanf("%*[^\n]");
#endif
#ifdef _WIN32
  scanf_s("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[^\n]", &n,
          &nrhs, &kl, &ku);
#else
 scanf("%"NAG IFMT"%"NAG IFMT"%"NAG IFMT"%*[^\n]", &n,
          &nrhs, &kl, &ku);
#endif
  if (n < 0 | | kl < 0 | | ku < 0 | | nrhs < 0)
      printf("Invalid n or kl or ku or nrhs\n");
      exit_status = 1;
      goto END;
    }
  /* Allocate memory */
  if (!(ab = NAG_ALLOC((kl+ku+1) * n, Complex)) ||
     !(afb = NAG_ALLOC((2*kl+ku+1) * n, Complex)) ||
      !(b = NAG_ALLOC(n * nrhs, Complex)) ||
      !(x = NAG_ALLOC(n * nrhs, Complex)) ||
      !(berr = NAG_ALLOC(nrhs, double)) ||
      !(c = NAG_ALLOC(n, double)) ||
      !(ferr = NAG_ALLOC(nrhs, double)) ||
      !(r = NAG_ALLOC(n, double)) ||
      !(ipiv = NAG_ALLOC(n, Integer)))
    {
      printf("Allocation failure\n");
      exit_status = -1;
      goto END;
    3
  pdab = kl+ku+1;
  pdafb = 2*kl+ku+1;
#ifdef NAG_COLUMN_MAJOR
      pdb = n;
      pdx = n;
#else
```

```
pdb = nrhs;
     pdx = nrhs;
#endif
  /* Read the band matrix A and B from data file */
 for (i = 1; i <= n; ++i)
    for (j = MAX(i - kl, 1); j \le MIN(i + ku, n); ++j)
#ifdef _WIN32
     scanf_s(" ( %lf , %lf )", &AB(i, j).re, &AB(i, j).im);
#else
      scanf(" ( %lf , %lf )", &AB(i, j).re, &AB(i, j).im);
#endif
#ifdef _WIN32
 scanf_s("%*[^\n]");
#else
 scanf("%*[^\n]");
#endif
 for (i = 1; i <= n; ++i)
    for (j = 1; j <= nrhs; ++j)</pre>
#ifdef _WIN32
     scanf_s(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
#else
     scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
#endif
#ifdef _WIN32
 scanf_s("%*[^\n]");
#else
 scanf("%*[^\n]");
#endif
 /* Solve the equations AX = B for X using naq_zqbsvx (f07bpc). */
 nag_zgbsvx(order, Nag_EquilibrateAndFactor, Nag_NoTrans, n, kl, ku, nrhs, ab,
             pdab, afb, pdafb, ipiv, &equed, r, c, b, pdb, x, pdx, &rcond,
             ferr, berr, &growth_factor, &fail);
 if (fail.code != NE_NOERROR && fail.code != NE_SINGULAR)
    {
     printf("Error from nag_zgbsvx (f07bpc).\n%s\n", fail.message);
      exit_status = 1;
      goto END;
    }
  /* Print solution usbing nag_gen_complx_mat_print_comp (x04dbc). */
 fflush(stdout);
 nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
                                 nrhs, x, pdx, Nag_BracketForm, "%7.4f",
                                 "Solution(s)", Nag_IntegerLabels, 0,
                                 Nag_IntegerLabels, 0, 80, 0, 0, &fail);
  if (fail.code != NE_NOERROR)
    {
      printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",
             fail.message);
      exit_status = 1;
      goto END;
    }
  /* Print error bounds, condition number, the form of equilibration
   * and the pivot growth factor
  */
 printf("\nBackward errors (machine-dependent)\n");
 for (j = 1; j <= nrhs; ++j)</pre>
   printf("%11.1e%s", berr[j - 1], j%7 == 0?"\n":" ");
 printf("\n\nEstimated forward error bounds (machine-dependent)\n");
  for (j = 1; j <= nrhs; ++j)</pre>
   printf("%11.1e%s", ferr[j - 1], j%7 == 0?"\n":" ");
 printf("\nEstimate of reciprocal condition number\n%11.1e\n\n", rcond);
  if (equed == Nag_NoEquilibration)
    printf("A has not been equilibrated\n");
```

```
else if (equed == Nag_RowEquilibration)
   printf("A has been row scaled as diag(R)*A\n");
  else if (equed == Nag_ColumnEquilibration)
   printf("A has been column scaled as A*diag(C)\n");
  else if (equed == Nag_RowAndColumnEquilibration)
   printf("A has been row and column scaled as diag(R)*A*diag(C) n");
 printf("\nEstimate of reciprocal pivot growth factor\n%11.1e\n",
          growth_factor);
  if (fail.code == NE_SINGULAR)
   printf("Error from nag_zgbsvx (f07bpc).\n%s\n", fail.message);
END:
 NAG_FREE(ab);
 NAG_FREE(afb);
 NAG_FREE(b);
 NAG_FREE(x);
 NAG_FREE(berr);
 NAG_FREE(c);
 NAG FREE(ferr);
 NAG_FREE(r);
 NAG_FREE(ipiv);
 return exit_status;
}
#undef AB
#undef B
```

10.2 Program Data

10.3 Program Results

nag_zgbsvx (f07bpc) Example Program Results

```
Solution(s)
                    1
                                        2
 1 (-3.0000, 2.0000)
                      ( 1.0000, 6.0000)
(-7.0000,-4.0000)
   ( 1.0000, -7.0000)
 2
 3 (-5.0000, 4.0000) ( 3.0000, 5.0000)
 4 (6.0000,-8.0000) (-8.0000, 2.0000)
Backward errors (machine-dependent)
    1.8e-17 6.7e-17
Estimated forward error bounds (machine-dependent)
    3.5e-14 4.3e-14
Estimate of reciprocal condition number
    9.6e-03
A has not been equilibrated
Estimate of reciprocal pivot growth factor
    1.0e+00
```