
NAG Library Function Document

nag_zgbsvx (f07bpc)

1 Purpose

nag_zgbsvx (f07bpc) uses the LU factorization to compute the solution to a complex system of linear
equations

AX ¼ B; ATX ¼ B or AHX ¼ B;

where A is an n by n band matrix with kl subdiagonals and ku superdiagonals, and X and B are n by r
matrices. Error bounds on the solution and a condition estimate are also provided.

2 Specification

#include <nag.h>
#include <nagf07.h>

void nag_zgbsvx (Nag_OrderType order, Nag_FactoredFormType fact,
Nag_TransType trans, Integer n, Integer kl, Integer ku, Integer nrhs,
Complex ab[], Integer pdab, Complex afb[], Integer pdafb,
Integer ipiv[], Nag_EquilibrationType *equed, double r[], double c[],
Complex b[], Integer pdb, Complex x[], Integer pdx, double *rcond,
double ferr[], double berr[], double *recip_growth_factor,
NagError *fail)

3 Description

nag_zgbsvx (f07bpc) performs the following steps:

1. Equilibration

The linear system to be solved may be badly scaled. However, the system can be equilibrated as a
first stage by setting fact ¼ Nag EquilibrateAndFactor. In this case, real scaling factors are
computed and these factors then determine whether the system is to be equilibrated. Equilibrated
forms of the systems AX ¼ B, ATX ¼ B and AHX ¼ B are

DRADCð Þ D�1
C X

� �
¼ DRB;

DRADCð ÞT D�1
R X

� �
¼ DCB;

and

DRADCð ÞH D�1
R X

� �
¼ DCB;

respectively, where DR and DC are diagonal matrices, with positive diagonal elements, formed from
the computed scaling factors.

When equilibration is used, A will be overwritten by DRADC and B will be overwritten by DRB
(or DCB when the solution of ATX ¼ B or AHX ¼ B is sought).

2. Factorization

The matrix A, or its scaled form, is copied and factored using the LU decomposition

A ¼ PLU;

where P is a permutation matrix, L is a unit lower triangular matrix, and U is upper triangular.

f07 – Linear Equations (LAPACK) f07bpc

Mark 25 f07bpc.1



This stage can be by-passed when a factored matrix (with scaled matrices and scaling factors) are
supplied; for example, as provided by a previous call to nag_zgbsvx (f07bpc) with the same matrix
A.

3. Condition Number Estimation

The LU factorization of A determines whether a solution to the linear system exists. If some
diagonal element of U is zero, then U is exactly singular, no solution exists and the function returns
with a failure. Otherwise the factorized form of A is used to estimate the condition number of the
matrix A. If the reciprocal of the condition number is less than machine precision then a warning
code is returned on final exit.

4. Solution

The (equilibrated) system is solved for X (D�1
C X or D�1

R X) using the factored form of A
(DRADC).

5. Iterative Refinement

Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for the computed solution.

6. Construct Solution Matrix X

If equilibration was used, the matrix X is premultiplied by DC (if trans ¼ Nag NoTrans) or DR (if
trans ¼ Nag Trans or Nag ConjTrans) so that it solves the original system before equilibration.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: fact – Nag_FactoredFormType Input

On entry: specifies whether or not the factorized form of the matrix A is supplied on entry, and if
not, whether the matrix A should be equilibrated before it is factorized.

fact ¼ Nag Factored
afb and ipiv contain the factorized form of A. If equed 6¼ Nag NoEquilibration, the matrix
A has been equilibrated with scaling factors given by r and c. ab, afb and ipiv are not
modified.

fact ¼ Nag NotFactored
The matrix A will be copied to afb and factorized.

fact ¼ Nag EquilibrateAndFactor
The matrix A will be equilibrated if necessary, then copied to afb and factorized.

Constraint: fact ¼ Nag Factored, Nag NotFactored or Nag EquilibrateAndFactor.
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3: trans – Nag_TransType Input

On entry: specifies the form of the system of equations.

trans ¼ Nag NoTrans
AX ¼ B (No transpose).

trans ¼ Nag Trans
ATX ¼ B (Transpose).

trans ¼ Nag ConjTrans
AHX ¼ B (Conjugate transpose).

Constraint: trans ¼ Nag NoTrans, Nag Trans or Nag ConjTrans.

4: n – Integer Input

On entry: n, the number of linear equations, i.e., the order of the matrix A.

Constraint: n � 0.

5: kl – Integer Input

On entry: kl, the number of subdiagonals within the band of the matrix A.

Constraint: kl � 0.

6: ku – Integer Input

On entry: ku, the number of superdiagonals within the band of the matrix A.

Constraint: ku � 0.

7: nrhs – Integer Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: nrhs � 0.

8: ab½dim� – Complex Input/Output

Note: the dimension, dim, of the array ab must be at least max 1; pdab� nð Þ.
On entry: the n by n coefficient matrix A.

This is stored as a notional two-dimensional array with row elements or column elements stored
cont iguously. The storage of elements Aij, for row i ¼ 1; . . . ; n and column
j ¼ max 1; i� klð Þ; . . . ;min n; iþ kuð Þ, depends on the order argument as follows:

if order ¼ Nag ColMajor, Aij is stored as ab½ j� 1ð Þ � pdabþ kuþ i� j�;
if order ¼ Nag RowMajor, Aij is stored as ab½ i� 1ð Þ � pdabþ klþ j� i�.

See Section 9 for further details.

If fact ¼ Nag Factored and equed 6¼ Nag NoEquilibration, A must have been equilibrated by the
scaling factors in r and/or c.

On exit: if fact ¼ Nag Factored or Nag NotFactored, or if fact ¼ Nag EquilibrateAndFactor and
equed ¼ Nag NoEquilibration, ab is not modified.

If equed 6¼ Nag NoEquilibration then, if no constraints are violated, A is scaled as follows:

if equed ¼ Nag RowEquilibration, A ¼ DrA;

if equed ¼ Nag ColumnEquilibration, A ¼ ADc;

if equed ¼ Nag RowAndColumnEquilibration, A ¼ DrADc.
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9: pdab – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array ab.

Constraint: pdab � klþ kuþ 1.

10: afb½dim� – Complex Input/Output

Note: the dimension, dim, of the array afb must be at least max 1; pdafb� nð Þ.
On entry: if fact ¼ Nag NotFactored or Nag EquilibrateAndFactor, afb need not be set.

If fact ¼ Nag Factored, details of the LU factorization of the n by n band matrix A, as computed
by nag_zgbtrf (f07brc).

The elements, uij, of the upper triangular band factor U with kl þ ku super-diagonals, and the
multipliers, lij, used to form the lower triangular factor L are stored. The elements uij, for
i ¼ 1; . . . ; n a n d j ¼ i; . . . ;min n; iþ kl þ kuð Þ, a n d lij, f o r i ¼ 1; . . . ; n a n d
j ¼ max 1; i� klð Þ; . . . ; i, are stored where Aij is stored on entry.

If equed 6¼ Nag NoEquilibration, afb is the factorized form of the equilibrated matrix A.

On exit: if fact ¼ Nag Factored, afb is unchanged from entry.

Otherwise, if no constraints are violated, then if fact ¼ Nag NotFactored, afb returns details of the
LU factorization of the band matrix A, and if fact ¼ Nag EquilibrateAndFactor, afb returns
details of the LU factorization of the equilibrated band matrix A (see the description of ab for the
form of the equilibrated matrix).

11: pdafb – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array afb.

Constraint: pdafb � 2� klþ kuþ 1.

12: ipiv½dim� – Integer Input/Output

Note: the dimension, dim, of the array ipiv must be at least max 1; nð Þ.
On entry: if fact ¼ Nag NotFactored or Nag EquilibrateAndFactor, ipiv need not be set.

If fact ¼ Nag Factored, ipiv contains the pivot indices from the factorization A ¼ LU , as
computed by nag_dgbtrf (f07bdc); row i of the matrix was interchanged with row ipiv½i� 1�.
On exit: if fact ¼ Nag Factored, ipiv is unchanged from entry.

Otherwise, if no constraints are violated, ipiv contains the pivot indices that define the
permutation matrix P ; at the ith step row i of the matrix was interchanged with row ipiv½i� 1�.
ipiv½i� 1� ¼ i indicates a row interchange was not required.

If fact ¼ Nag NotFactored, the pivot indices are those corresponding to the factorization A ¼ LU
of the original matrix A.

If fact ¼ Nag EquilibrateAndFactor, the pivot indices are those corresponding to the factorization
of A ¼ LU of the equilibrated matrix A.

13: equed – Nag_EquilibrationType * Input/Output

On entry: if fact ¼ Nag NotFactored or Nag EquilibrateAndFactor, equed need not be set.

If fact ¼ Nag Factored, equed must specify the form of the equilibration that was performed as
follows:

if equed ¼ Nag NoEquilibration, no equilibration;

if equed ¼ Nag RowEquilibration, row equilibration, i.e., A has been premultiplied by DR;
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if equed ¼ Nag ColumnEquilibration, column equilibration, i.e., A has been postmultiplied
by DC ;

if equed ¼ Nag RowAndColumnEquilibration, both row and column equilibration, i.e., A
has been replaced by DRADC.

On exit: if fact ¼ Nag Factored, equed is unchanged from entry.

Otherwise, if no constraints are violated, equed specifies the form of equilibration that was
performed as specified above.

Constraint: if fact ¼ Nag Factored, equed ¼ Nag NoEquilibration, Nag RowEquilibration,
Nag ColumnEquilibration or Nag RowAndColumnEquilibration.

14: r½dim� – double Input/Output

Note: the dimension, dim, of the array r must be at least max 1; nð Þ.
On entry: if fact ¼ Nag NotFactored or Nag EquilibrateAndFactor, r need not be set.

I f fact ¼ Nag Factored a n d equed ¼ Nag RowEquilibration o r
Nag RowAndColumnEquilibration, r must contain the row scale factors for A, DR; each element
of r must be positive.

On exit: if fact ¼ Nag Factored, r is unchanged from entry.

Otherwise , i f no const ra ints are viola ted and equed ¼ Nag RowEquilibration or
Nag RowAndColumnEquilibration, r contains the row scale factors for A, DR, such that A is
multiplied on the left by DR; each element of r is positive.

15: c½dim� – double Input/Output

Note: the dimension, dim, of the array c must be at least max 1; nð Þ.
On entry: if fact ¼ Nag NotFactored or Nag EquilibrateAndFactor, c need not be set.

I f fact ¼ Nag Factored o r equed ¼ Nag ColumnEquilibration o r
Nag RowAndColumnEquilibration, c must contain the column scale factors for A, DC ; each
element of c must be positive.

On exit: if fact ¼ Nag Factored, c is unchanged from entry.

Otherwise, if no constraints are violated and equed ¼ Nag ColumnEquilibration or
Nag RowAndColumnEquilibration, c contains the row scale factors for A, DC ; each element of
c is positive.

16: b½dim� – Complex Input/Output

Note: the dimension, dim, of the array b must be at least

max 1;pdb� nrhsð Þ when order ¼ Nag ColMajor;
max 1;n� pdbð Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix B is stored in

b½ j� 1ð Þ � pdbþ i� 1� when order ¼ Nag ColMajor;
b½ i� 1ð Þ � pdbþ j� 1� when order ¼ Nag RowMajor.

On entry: the n by r right-hand side matrix B.

On exit: if equed ¼ Nag NoEquilibration, b is not modified.

I f trans ¼ Nag NoTrans a n d equed ¼ Nag RowEquilibration o r
Nag RowAndColumnEquilibration, b is overwritten by DRB.

I f trans ¼ Nag Trans o r Nag ConjTrans a n d equed ¼ Nag ColumnEquilibration o r
Nag RowAndColumnEquilibration, b is overwritten by DCB.
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17: pdb – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array b.

Constraints:

if order ¼ Nag ColMajor, pdb � max 1; nð Þ;
if order ¼ Nag RowMajor, pdb � max 1; nrhsð Þ.

18: x½dim� – Complex Output

Note: the dimension, dim, of the array x must be at least

max 1;pdx� nrhsð Þ when order ¼ Nag ColMajor;
max 1;n� pdxð Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix X is stored in

x½ j� 1ð Þ � pdxþ i� 1� when order ¼ Nag ColMajor;
x½ i� 1ð Þ � pdxþ j� 1� when order ¼ Nag RowMajor.

On exit: if fail:code ¼ NE_NOERROR or NE_SINGULAR_WP, the n by r solution matrix X to
the original system of equations. Note that the arrays A and B are modified on exit if
equed 6¼ Nag NoEquilibration, and the solution to the equilibrated system is D�1

C X if
trans ¼ Nag NoTrans a n d equed ¼ Nag ColumnEquilibration o r
Nag RowAndColumnEquilibration, or D�1

R X if trans ¼ Nag Trans or Nag ConjTrans and
equed ¼ Nag RowEquilibration or Nag RowAndColumnEquilibration.

19: pdx – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array x.

Constraints:

if order ¼ Nag ColMajor, pdx � max 1;nð Þ;
if order ¼ Nag RowMajor, pdx � max 1; nrhsð Þ.

20: rcond – double * Output

On exit: if no constraints are violated, an estimate of the reciprocal condition number of the matrix

A (after equilibration if that is performed), computed as rcond ¼ 1:0= Ak k1 A�1
�� ��

1

� �
.

21: ferr½nrhs� – double Output

On exit: if fail:code ¼ NE_NOERROR or NE_SINGULAR_WP, an estimate of the forward error
bound for each computed solution vector, such that x̂j � xj

�� ��
1= xj
�� ��

1 � ferr½j� 1� where x̂j is

the jth column of the computed solution returned in the array x and xj is the corresponding
column of the exact solution X. The estimate is as reliable as the estimate for rcond, and is
almost always a slight overestimate of the true error.

22: berr½nrhs� – double Output

On exit: if fail:code ¼ NE_NOERROR or NE_SINGULAR_WP, an estimate of the component-
wise relative backward error of each computed solution vector x̂j (i.e., the smallest relative change
in any element of A or B that makes x̂j an exact solution).

23: recip growth factor – double * Output

On exit: if fail:code ¼ NE_NOERROR, the reciprocal pivot growth factor Ak k= Uk k, where :k k
denotes the maximum absolute element norm. If recip growth factor� 1, the stability of the LU
factorization of (equilibrated) A could be poor. This also means that the solution x, condition
estimate rcond, and forward error bound ferr could be unreliable. If the factorization fails with
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fail:code ¼ NE_SINGULAR, then recip growth factor contains the reciprocal pivot growth
factor for the leading fail:errnum columns of A.

24: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, kl ¼ valueh i.
Constraint: kl � 0.

On entry, ku ¼ valueh i.
Constraint: ku � 0.

On entry, n ¼ valueh i.
Constraint: n � 0.

On entry, nrhs ¼ valueh i.
Constraint: nrhs � 0.

On entry, pdab ¼ valueh i.
Constraint: pdab > 0.

On entry, pdafb ¼ valueh i.
Constraint: pdafb > 0.

On entry, pdb ¼ valueh i.
Constraint: pdb > 0.

On entry, pdx ¼ valueh i.
Constraint: pdx > 0.

NE_INT_2

On entry, pdb ¼ valueh i and n ¼ valueh i.
Constraint: pdb � max 1;nð Þ.
On entry, pdb ¼ valueh i and nrhs ¼ valueh i.
Constraint: pdb � max 1;nrhsð Þ.
On entry, pdx ¼ valueh i and n ¼ valueh i.
Constraint: pdx � max 1; nð Þ.
On entry, pdx ¼ valueh i and nrhs ¼ valueh i.
Constraint: pdx � max 1; nrhsð Þ.

NE_INT_3

On entry, pdab ¼ valueh i, kl ¼ valueh i and ku ¼ valueh i.
Constraint: pdab � klþ kuþ 1.

On entry, pdafb ¼ valueh i, kl ¼ valueh i and ku ¼ valueh i.
Constraint: pdafb � 2� klþ kuþ 1.
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NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_SINGULAR

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor U is exactly singular, so the solution and error bounds could not be computed. rcond ¼ 0:0
is returned.

NE_SINGULAR_WP

U is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to
working precision. Nevertheless, the solution and error bounds are computed because there are a
number of situations where the computed solution can be more accurate than the value of rcond
would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution x̂ is the exact solution of a perturbed system of
equations Aþ Eð Þx̂ ¼ b, where

Ej j � c nð Þ�P Lj j Uj j;

c nð Þ is a modest linear function of n, and � is the machine precision. See Section 9.3 of Higham (2002)
for further details.

If x is the true solution, then the computed solution x̂ satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ

where cond A; x̂; bð Þ ¼ A�1
�� �� Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
�� �� Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in berr½j� 1� and a bound on x� x̂k k1= x̂k k1 is returned in
ferr½j� 1�. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

nag_zgbsvx (f07bpc) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

nag_zgbsvx (f07bpc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

The band storage scheme for the array ab is illustrated by the following example, when n ¼ 6, kl ¼ 1,
and ku ¼ 2. Storage of the band matrix A in the array ab:

order ¼ Nag ColMajor
� � a13 a24 a35 a46

� a12 a23 a34 a45 a56

a11 a22 a33 a44 a55 a66

a21 a32 a43 a54 a65 �

order ¼ Nag RowMajor
� a11 a12 a13

a21 a22 a23 a24

a32 a33 a34 a35

a43 a44 a45 a46

a54 a55 a56 �
a65 a66 � �

The total number of floating-point operations required to solve the equations AX ¼ B depends upon the
pivoting required, but if n	 kl þ ku then it is approximately bounded by O nkl kl þ kuð Þð Þ for the
factorization and O n 2kl þ kuð Þrð Þ for the solution following the factorization. The condition number
estimation typically requires between four and five solves and never more than eleven solves, following
the factorization. The solution is then refined, and the errors estimated, using iterative refinement; see
nag_zgbrfs (f07bvc) for information on the floating-point operations required.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The real analogue of this function is nag_dgbsvx (f07bbc).

10 Example

This example solves the equations

AX ¼ B;

where A is the band matrix

A ¼
�1:65þ 2:26i �2:05� 0:85i 0:97� 2:84i 0

6:30i �1:48� 1:75i �3:99þ 4:01i 0:59� 0:48i
0 �0:77þ 2:83i �1:06þ 1:94i 3:33� 1:04i
0 0 4:48� 1:09i �0:46� 1:72i

0
B@

1
CA

and

B ¼
�1:06þ 21:50i 12:85þ 2:84i
�22:72� 53:90i �70:22þ 21:57i

28:24� 38:60i �20:73� 1:23i
�34:56þ 16:73i 26:01þ 31:97i

0
B@

1
CA:

Estimates for the backward errors, forward errors, condition number and pivot growth are also output,
together with information on the equilibration of A.

10.1 Program Text

/* nag_zgbsvx (f07bpc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 23, 2011.
*/

#include <stdio.h>
#include <nag.h>
#include <nagx04.h>
#include <nag_stdlib.h>
#include <nagf07.h>

int main(void)
{
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/* Scalars */
double growth_factor, rcond;
Integer exit_status = 0, i, j, kl, ku, n, nrhs, pdab, pdafb,

pdb, pdx;

/* Arrays */
Complex *ab = 0, *afb = 0, *b = 0, *x = 0;
double *berr = 0, *c = 0, *ferr = 0, *r = 0;
Integer *ipiv = 0;

/* Nag Types */
NagError fail;
Nag_OrderType order;
Nag_EquilibrationType equed;

#ifdef NAG_COLUMN_MAJOR
#define AB(I, J) ab[(J-1)*pdab + ku + I - J]
#define B(I, J) b[(J-1)*pdb + I - 1]

order = Nag_ColMajor;
#else
#define AB(I, J) ab[(I-1)*pdab + kl + J - I]
#define B(I, J) b[(I-1)*pdb + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

printf("nag_zgbsvx (f07bpc) Example Program Results\n\n");

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

#ifdef _WIN32
scanf_s("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[^\n]", &n,

&nrhs, &kl, &ku);
#else

scanf("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[^\n]", &n,
&nrhs, &kl, &ku);

#endif

if (n < 0 || kl < 0 || ku < 0 || nrhs < 0)
{

printf("Invalid n or kl or ku or nrhs\n");
exit_status = 1;
goto END;

}
/* Allocate memory */
if (!(ab = NAG_ALLOC((kl+ku+1) * n, Complex)) ||

!(afb = NAG_ALLOC((2*kl+ku+1) * n, Complex)) ||
!(b = NAG_ALLOC(n * nrhs, Complex)) ||
!(x = NAG_ALLOC(n * nrhs, Complex)) ||
!(berr = NAG_ALLOC(nrhs, double)) ||
!(c = NAG_ALLOC(n, double)) ||
!(ferr = NAG_ALLOC(nrhs, double)) ||
!(r = NAG_ALLOC(n, double)) ||
!(ipiv = NAG_ALLOC(n, Integer)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
pdab = kl+ku+1;
pdafb = 2*kl+ku+1;

#ifdef NAG_COLUMN_MAJOR
pdb = n;
pdx = n;

#else
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pdb = nrhs;
pdx = nrhs;

#endif

/* Read the band matrix A and B from data file */
for (i = 1; i <= n; ++i)

for (j = MAX(i - kl, 1); j <= MIN(i + ku, n); ++j)
#ifdef _WIN32

scanf_s(" ( %lf , %lf )", &AB(i, j).re, &AB(i, j).im);
#else

scanf(" ( %lf , %lf )", &AB(i, j).re, &AB(i, j).im);
#endif
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

for (i = 1; i <= n; ++i)
for (j = 1; j <= nrhs; ++j)

#ifdef _WIN32
scanf_s(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);

#else
scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);

#endif
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

/* Solve the equations AX = B for X using nag_zgbsvx (f07bpc). */
nag_zgbsvx(order, Nag_EquilibrateAndFactor, Nag_NoTrans, n, kl, ku, nrhs, ab,

pdab, afb, pdafb, ipiv, &equed, r, c, b, pdb, x, pdx, &rcond,
ferr, berr, &growth_factor, &fail);

if (fail.code != NE_NOERROR && fail.code != NE_SINGULAR)
{

printf("Error from nag_zgbsvx (f07bpc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print solution usbing nag_gen_complx_mat_print_comp (x04dbc). */
fflush(stdout);
nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,

nrhs, x, pdx, Nag_BracketForm, "%7.4f",
"Solution(s)", Nag_IntegerLabels, 0,
Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

/* Print error bounds, condition number, the form of equilibration
* and the pivot growth factor
*/

printf("\nBackward errors (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)

printf("%11.1e%s", berr[j - 1], j%7 == 0?"\n":" ");

printf("\n\nEstimated forward error bounds (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)

printf("%11.1e%s", ferr[j - 1], j%7 == 0?"\n":" ");

printf("\nEstimate of reciprocal condition number\n%11.1e\n\n", rcond);
if (equed == Nag_NoEquilibration)

printf("A has not been equilibrated\n");
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else if (equed == Nag_RowEquilibration)
printf("A has been row scaled as diag(R)*A\n");

else if (equed == Nag_ColumnEquilibration)
printf("A has been column scaled as A*diag(C)\n");

else if (equed == Nag_RowAndColumnEquilibration)
printf("A has been row and column scaled as diag(R)*A*diag(C)\n");

printf("\nEstimate of reciprocal pivot growth factor\n%11.1e\n",
growth_factor);

if (fail.code == NE_SINGULAR)
printf("Error from nag_zgbsvx (f07bpc).\n%s\n", fail.message);

END:
NAG_FREE(ab);
NAG_FREE(afb);
NAG_FREE(b);
NAG_FREE(x);
NAG_FREE(berr);
NAG_FREE(c);
NAG_FREE(ferr);
NAG_FREE(r);
NAG_FREE(ipiv);

return exit_status;
}

#undef AB
#undef B

10.2 Program Data

nag_zgbsvx (f07bpc) Example Program Data
4 2 1 2 : n, nrhs, kl and ku

(-1.65, 2.26) (-2.05,-0.85) ( 0.97,-2.84)
( 0.00, 6.30) (-1.48,-1.75) (-3.99, 4.01) ( 0.59,-0.48)

(-0.77, 2.83) (-1.06, 1.94) ( 3.33,-1.04)
( 4.48,-1.09) (-0.46,-1.72) : matrix A

( -1.06, 21.50) ( 12.85, 2.84)
(-22.72,-53.90) (-70.22, 21.57)
( 28.24,-38.60) (-20.73, -1.23)
(-34.56, 16.73) ( 26.01, 31.97) : matrix B

10.3 Program Results

nag_zgbsvx (f07bpc) Example Program Results

Solution(s)
1 2

1 (-3.0000, 2.0000) ( 1.0000, 6.0000)
2 ( 1.0000,-7.0000) (-7.0000,-4.0000)
3 (-5.0000, 4.0000) ( 3.0000, 5.0000)
4 ( 6.0000,-8.0000) (-8.0000, 2.0000)

Backward errors (machine-dependent)
1.8e-17 6.7e-17

Estimated forward error bounds (machine-dependent)
3.5e-14 4.3e-14

Estimate of reciprocal condition number
9.6e-03

A has not been equilibrated

Estimate of reciprocal pivot growth factor
1.0e+00
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