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1 Scope of the Chapter

This chapter is concerned with the solution of the matrix equation AX ¼ B, where B may be a single
vector or a matrix of multiple right-hand sides. The matrix A may be real, complex, symmetric,
Hermitian, positive definite or banded. It may also be rectangular, in which case a least squares solution
is obtained.

Much of the functionality of this chapter has been superseded by functions from Chapters f07 and f08
(LAPACK routines) as those chapters have grown and have included driver and expert driver functions.

For a general introduction to sparse systems of equations, see the f11 Chapter Introduction, which
provides functions for large sparse systems.

2 Background to the Problems

A set of linear equations may be written in the form

Ax ¼ b

where the known matrix A, with real or complex coefficients, is of size m by n (m rows and n
columns), the known right-hand vector b has m components (m rows and one column), and the required
solution vector x has n components (n rows and one column). There may also be p vectors bi, for
i ¼ 1; 2; . . . ; p, on the right-hand side and the equations may then be written as

AX ¼ B;

the required matrix X having as its p columns the solutions of Axi ¼ bi, for i ¼ 1; 2; . . . ; p. Some
functions deal with the latter case, but for clarity only the case p ¼ 1 is discussed here.

The most common problem, the determination of the unique solution of Ax ¼ b, occurs when m ¼ n
and A is not singular, that is rank Að Þ ¼ n. This is discussed in Section 2.1 below. The next most
common problem, discussed in Section 2.2 below, is the determination of the least squares solution of
Ax ’ b required when m > n and rank Að Þ ¼ n, i.e., the determination of the vector x which minimizes
the norm of the residual vector r ¼ b�Ax. All other cases are rank deficient, and they are treated in
Section 2.3.

2.1 Unique Solution of Ax ¼ b

Most functions in this chapter solve this particular problem. The computation starts with the triangular
decomposition A ¼ PLU , where L and U are respectively lower and upper triangular matrices and P is
a permutation matrix, chosen so as to ensure that the decomposition is numerically stable. The solution
is then obtained by solving in succession the simpler equations

Ly ¼ PTb
Ux ¼ y

the first by forward-substitution and the second by back-substitution.

If A is real symmetric and positive definite, U ¼ LT, while if A is complex Hermitian and positive
definite, U ¼ LH; in both these cases P is the identity matrix (i.e., no permutations are necessary). In all
other cases either U or L has unit diagonal elements.

Due to rounding errors the computed ‘solution’ x0, say, is only an approximation to the true solution x.
This approximation will sometimes be satisfactory, agreeing with x to several figures, but if the problem
is ill-conditioned then x and x0 may have few or even no figures in common, and at this stage there is
no means of estimating the ‘accuracy’ of x0.

It must be emphasized that the ‘true’ solution x may not be meaningful, that is correct to all figures
quoted, if the elements of A and b are known with certainty only to say p figures, where p is less than
full precision.

One approach to assessing the accuracy of the solution is to compute or estimate the condition number
of A, defined as

� Að Þ ¼ Ak k: A�1
�� ��:
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Roughly speaking, errors or uncertainties in A or b may be amplified in the solution by a factor � Að Þ.
Thus, for example, if the data in A and b are only accurate to 5 digits and � Að Þ � 103, then the solution
cannot be guaranteed to have more than 2 correct digits. If � Að Þ � 105, the solution may have no
meaningful digits.

To be more precise, suppose that

Ax ¼ b and Aþ �Að Þ xþ �xð Þ ¼ bþ �b:

Here �A and �b represent perturbations to the matrices A and b which cause a perturbation �x in the
solution. We can define measures of the relative sizes of the perturbations in A, b and x as

�A ¼
�Ak k
Ak k ; �b ¼

�bk k
bk k and �x ¼

�xk k
xk k respectively:

Then

�x �
� Að Þ

1� � Að Þ�A
�A þ �bð Þ

provided that � Að Þ�A < 1. Often � Að Þ�A � 1 and then the bound effectively simplifies to

�x � � Að Þ �A þ �bð Þ:

Hence, if we know � Að Þ, �A and �b, we can compute a bound on the relative errors in the solution. Note
that �A, �b and �x are defined in terms of the norms of A, b and x. If A, b or x contains elements of
widely differing magnitude, then �A, �b and �x will be dominated by the errors in the larger elements,
and �x will give no information about the relative accuracy of smaller elements of x.

Another way to obtain useful information about the accuracy of a solution is to solve two sets of
equations, one with the given coefficients, which are assumed to be known with certainty to p figures,
and one with the coefficients rounded to (p� 1) figures, and to count the number of figures to which the
two solutions agree. In ill-conditioned problems this can be surprisingly small and even zero.

2.2 The Least Squares Solution of Ax ’ b, m > n, rank Að Þ ¼ n

The least squares solution is the vector x̂ which minimizes the sum of the squares of the residuals,

S ¼ b�Ax̂ð ÞT b�Ax̂ð Þ ¼ b�Ax̂k k2
2:

The solution is obtained in two steps.

(a) Householder transformations are used to reduce A to ‘simpler form’ via the equation QA ¼ R,
where R has the appearance

R̂

0

 !

with R̂ a nonsingular upper triangular n by n matrix and 0 a zero matrix of shape m� nð Þ by n.
Similar operations convert b to Qb ¼ c, where

c ¼ c1

c2

� �

with c1 having n rows and c2 having (m� n) rows.

(b) The required least squares solution is obtained by back-substitution in the equation

R̂x̂ ¼ c1:

Again due to rounding errors the computed x̂0 is only an approximation to the required x̂.
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2.3 Rank-deficient Cases

If, in the least squares problem just discussed, rank Að Þ < n, then a least squares solution exists but it is
not unique. In this situation it is usual to ask for the least squares solution ‘of minimal length’, i.e., the
vector x which minimizes xk k2, among all those x for which b�Axk k2 is a minimum.

This can be computed from the Singular Value Decomposition (SVD) of A, in which A is factorized as

A ¼ QDPT

where Q is an m by n matrix with orthonormal columns, P is an n by n orthogonal matrix and D is an
n by n diagonal matrix. The diagonal elements of D are called the ‘singular values’ of A; they are non-
negative and can be arranged in decreasing order of magnitude:

d1 � d2 � � � � � dn � 0:

The columns of Q and P are called respectively the left and right singular vectors of A. If the singular
values drþ1; . . . ; dn are zero or negligible, but dr is not negligible, then the rank of A is taken to be r
(see also Section 2.4) and the minimal length least squares solution of Ax ’ b is given by

x̂ ¼ DyQTb

where Dy is the diagonal matrix with diagonal elements d�1
1 ; d�1

2 ; . . . ; d�1
r ; 0; . . . ; 0.

The SVD may also be used to find solutions to the homogeneous system of equations Ax ¼ 0, where A
is m by n. Such solutions exist if and only if rank Að Þ < n, and are given by

x ¼
Xn
i¼rþ1

�ipi

where the �i are arbitrary numbers and the pi are the columns of P which correspond to negligible
elements of D.

The general solution to the rank-deficient least squares problem is given by x̂þ x, where x̂ is the
minimal length least squares solution and x is any solution of the homogeneous system of equations
Ax ¼ 0.

2.4 The Rank of a Matrix

In theory the rank is r if n� r elements of the diagonal matrix D of the singular value decomposition
are exactly zero. In practice, due to rounding and/or experimental errors, some of these elements have
very small values which usually can and should be treated as zero.

For example, the following 5 by 8 matrix has rank 3 in exact arithmetic:

22 14 �1 �3 9 9 2 4
10 7 13 �2 8 1 �6 5

2 10 �1 13 1 �7 6 0
3 0 �11 �2 �2 5 5 �2
7 8 3 4 4 �1 1 2

0
BBB@

1
CCCA:

On a computer with 7 decimal digits of precision the computed singular values were

3:5� 101; 2:0� 101; 2:0� 101; 1:3� 10�6; 5:5� 10�7

and the rank would be correctly taken to be 3.

It is not, however, always certain that small computed singular values are really zero. With the 7 by 7
Hilbert matrix, for example, where aij ¼ 1= iþ j� 1ð Þ, the singular values are

1:7; 2:7� 10�1; 2:1� 10�2; 1:0� 10�3; 2:9� 10�5; 4:9� 10�7; 3:5� 10�9:

Here there is no clear cut-off between small (i.e., negligible) singular values and larger ones. In fact, in
exact arithmetic, the matrix is known to have full rank and none of its singular values is zero. On a
computer with 7 decimal digits of precision, the matrix is effectively singular, but should its rank be
taken to be 6, or 5, or 4?
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It is therefore impossible to give an infallible rule, but generally the rank can be taken to be the number
of singular values which are neither zero nor very small compared with other singular values. For
example, if there is a sharp decrease in singular values from numbers of order unity to numbers of order
10�7, then the latter will almost certainly be zero in a machine in which 7 significant decimal figures is
the maximum accuracy. Similarly for a least squares problem in which the data is known to about four
significant figures and the largest singular value is of order unity then a singular value of order 10�4 or
less should almost certainly be regarded as zero.

It should be emphasized that rank determination and least squares solutions can be sensitive to the
scaling of the matrix. If at all possible the units of measurement should be chosen so that the elements of
the matrix have data errors of approximately equal magnitude.

2.5 Generalized Linear Least Squares Problems

The simple type of linear least squares problem described in Section 2.2 can be generalized in various
ways.

1. Linear least squares problems with equality constraints:

find x to minimize S ¼ c�Axk k2
2 subject to Bx ¼ d;

where A is m by n and B is p by n, with p � n � mþ p. The equations Bx ¼ d may be regarded
as a set of equality constraints on the problem of minimizing S. Alternatively the problem may be
regarded as solving an overdetermined system of equations

A
B

� �
x ¼ c

d

� �
;

where some of the equations (those involving B) are to be solved exactly, and the others (those
involving A) are to be solved in a least squares sense. The problem has a unique solution on the

assumptions that B has full row rank p and the matrix A
B

� �
has full column rank n. (For linear

least squares problems with inequality constraints, refer to Chapter e04.)

2. General Gauss–Markov linear model problems:

minimize yk k2 subject to d ¼ AxþBy;

where A is m by n and B is m by p, with n � m � nþ p. When B ¼ I, the problem reduces to an
ordinary linear least squares problem. When B is square and nonsingular, it is equivalent to a
weighted linear least squares problem:

find x to minimize B�1 d�Axð Þ
�� ��

2
:

The problem has a unique solution on the assumptions that A has full column rank n, and the
matrix A;Bð Þ has full row rank m.

2.6 Calculating the Inverse of a Matrix

The functions in this chapter can also be used to calculate the inverse of a square matrix A by solving
the equation

AX ¼ I

where I is the identity matrix. However, solving the equations AX ¼ B by calculation of the inverse of
the coefficient matrix A, i.e., by X ¼ A�1B, is definitely not recommended.

Similar remarks apply to the calculation of the pseudo-inverse of a singular or rectangular matrix.
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2.7 Estimating the 1-norm of a Matrix

The 1-norm of a matrix A is defined to be:

Ak k1 ¼ max
1�j�n

Xm
i¼1

aij
�� �� ð1Þ

Typically it is useful to calculate the condition number of a matrix with respect to the solution of linear
equations, or inversion. The higher the condition number the less accuracy might be expected from a
numerical computation. A condition number for the solution of linear equations is Ak k: A�1

�� ��. Since
this might be a relatively expensive computation it often suffices to estimate the norm of each matrix.

3 Recommendations on Choice and Use of Available Functions

See also Section 3 in the f07 Chapter Introduction for recommendations on the choice of available
functions from that chapter.

3.1 Black Box and General Purpose Functions

Most of the functions in this chapter are categorised either as Black Box functions or general purpose
functions.

Black Box functions solve the equations Axi ¼ bi, for i ¼ 1; 2; . . . ; p, in a single call with the matrix A
and the right-hand sides, bi, being supplied as data. These are the simplest functions to use and are
suitable when all the right-hand sides are known in advance and do not occupy too much storage.

General purpose functions, in general, require a previous call to a function in Chapters f01 or f07 to
factorize the matrix A. This factorization can then be used repeatedly to solve the equations for one or
more right-hand sides which may be generated in the course of the computation. The Black Box
functions simply call a factorization function and then a general purpose function to solve the equations.

3.2 Systems of Linear Equations

Most of the functions in this chapter solve linear equations Ax ¼ b when A is n by n and a unique
solution is expected (see Section 2.1). The matrix A may be ‘general’ real or complex, or may have
special structure or properties, e.g., it may be banded, tridiagonal, almost block-diagonal, sparse,
symmetric, Hermitian, positive definite (or various combinations of these). For some of the combinations
see Chapter f07. nag_real_cholesky_skyline_solve (f04mcc) (which needs to be preceded by a call to
nag_real_cholesky_skyline (f01mcc)) can be used for the solution of variable band-width (skyline)
positive definite systems.

It must be emphasized that it is a waste of computer time and space to use an inappropriate function, for
example one for the complex case when the equations are real. It is also unsatisfactory to use the special
functions for a positive definite matrix if this property is not known in advance.

A number of the Black Box functions in this chapter return estimates of the condition number and the
forward error, along with the solution of the equations. But for those functions that do not return a
condition estimate two functions are provided – nag_linsys_real_gen_norm_rcomm (f04ydc) for real
matrices, nag_linsys_complex_gen_norm_rcomm (f04zdc) for complex matrices – which can return a
cheap but reliable estimate of A�1

�� ��, and hence an estimate of the condition number � Að Þ (see
Section 2.1). These functions can also be used in conjunction with most of the linear equation solving
functions in Chapter f11: further advice is given in the function documents.

Other functions for solving linear equation systems, computing inverse matrices, and estimating
condition numbers can be found in Chapter f07, which contains LAPACK software.

3.3 Linear Least Squares Problems

The majority of the functions for solving linear least squares problems are to be found in Chapter f08.

Functions for solving linear least squares problems using the QR factorization or the SVD can be found
in Chapters f01, f02 and f08. When m � n and a unique solution is expected, the QR factorization can

Introduction – f04 NAG Library Manual

f04.6 Mark 25



be used, otherwise the QR factorization with pivoting, or the SVD should be used. For m	 n, the SVD
is not significantly more expensive than the QR factorization. See Chapter f08 for further discussion.

Problems with linear equality constraints can be solved by nag_dgglse (f08zac) (for real data) or by
nag_zgglse (f08znc) (for complex data), provided that the problems are of full rank. Problems with linear
inequality constraints can be solved by nag_opt_lin_lsq (e04ncc) in Chapter e04.

General Gauss–Markov linear model problems, as formulated in Section 2.5, can be solved by
nag_dggglm (f08zbc) (for real data) or by nag_zggglm (f08zpc) (for complex data).

3.4 Sparse Matrix Functions

Functions specifically for sparse matrices are appropriate only when the number of nonzero elements is
very small, less than, say, 10% of the n2 elements of A, and the matrix does not have a relatively small
band width.

Chapter f11 contains functions for both the direct and iterative solution of sparse linear systems.

4 Decision Trees

The name of the function (if any) that should be used to factorize the matrix A is given in brackets after
the name of the function for solving the equations.

Tree 1: Black Box functions for unique solution of Ax ¼ b (Real matrix)

Is A symmetric?
yes

Is A positive definite?
yes

Is A a band matrix?
yes

Is A tridiagonal?
yes

f07jac, f07jbc or
f04bgc (see Note 1)

no

f07hac, f07hbc or
f04bfc (see Note 1)

no

Is one triangle of A
stored as a linear
array?

yes
f07gac, f07gbc or

f04bec (see Note 1)

no

f07fac, f07fbc or
f04bdc (see Note 1)

no

Is one triangle of A
stored as a linear
array?

yes
f07pac, f07pbc or

f04bjc (see Note 1)

no

f07mac, f07mbc or
f04bhc (see Note 1)

no

Is A a band matrix?
yes

Is A tridiagonal?
yes

f07cac, f07cbc or
f04bcc (see Note 1)

no

f07bac, f07bbc or
f04bbc (see Note 1)

no

f07aac, f07abc or
f04bac
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Tree 2: Black Box functions for unique solution of Ax ¼ b (Complex matrix)

Is A Hermitian?
yes

Is A positive definite?
yes

Is A a band matrix?
yes

Is A tridiagonal?
yes

f07jnc, f07jpc or
f04cgc (see Note 1)

no

f07hnc, f07hpc or
f04cfc (see Note 1)

no

Is one triangle of A
stored as a linear
array?

yes
f07gnc, f07gpc or

f04cec (see Note 1)

no

f07fnc, f07fpc or
f04cdc (see Note 1)

no

Is one triangle of A
stored as a linear
array?

yes
f07pnc, f07ppc or

f04cjc (see Note 1)

no

f07mnc, f07mpc or
f04chc (see Note 1)

no

Is A symmetric?
yes

Is one triangle of A
stored as a linear
array?

yes
f07qnc, f07qpc or

f04djc (see Note 1)

no

f07nnc, f07npc or
f04dhc (see Note 1)

no

Is A a band matrix?
yes

Is A tridiagonal?
yes

f07cnc, f07cpc or
f04ccc (see Note 1)

no

f07bnc, f07bpc or
f04cbc (see Note 1)

no

f07fnc, f07fpc or
f04cac (see Note 1)
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Tree 3: General purpose functions for unique solution of Ax ¼ b (Real matrix)

Is A a sparse matrix
and not banded? yes

Chapter f11

no

Is A symmetric?
yes

Is A positive definite?
yes

Is A band matrix?
yes

Is A tridiagonal?
yes

f07jec (f07jdc)

no

Variable band width?
yes

f04mcc (f01mcc)

no

f07hec (f07hdc)

no

Is one triangle of A
stored as a linear
array?

yes
f07gec (f07gdc)

no

f07fec (f07fdc)

no

Is one triangle of A
stored as a linear
array?

yes
f07pec (f07pdc)

no

f07mec (f07mdc)

no

Is A triangular?
yes

Is A a band matrix?
yes

f07vec

no

Is A stored as a linear
array? yes

f07uec

no

f07tec

no

Is A a band matrix?
yes

Is A tridiagonal?
yes

f07cec (f07cdc)

no

f07bec (f07bdc)

no

f07aec (f07adc)
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Tree 4: General purpose functions for unique solution of Ax ¼ b (Complex matrix)

Is A a sparse matrix
and not banded? yes

Chapter f11

no

Is A Hermitian?
yes

Is A positive definite?
yes

Is A a band matrix?
yes

Is A tridiagonal?
yes

f07jsc (f07jrc)

no

f07hsc (f07hrc)

no

Is one triangle of A
stored as a linear
array?

yes
f07gsc (f07grc)

no

f07fsc (f07frc)

no

Is one triangle of A
stored as a linear
array?

yes
f07psc (f07prc)

no

f07msc (f07mrc)

no

Is A symmetric?
yes

Is one triangle of A
stored as a linear
array?

yes
f07qsc (f07qrc)

no

f07nsc (f07nrc)

no

Is A triangular?
yes

Is A a band matrix?
yes

f07vsc

no

Is A stored as a linear
array? yes

f07usc

no

f07tsc

no

Is A a band matrix?
yes

Is A tridiagonal?
yes

f07csc (f07crc)

no

f07bsc (f07brc)

no

f07asc (f07arc)

Note 1: also returns an estimate of the condition number and the forward error.

5 Functionality Index

Black Box functions, Ax ¼ b,
complex general band matrix ................................................. nag_complex_band_lin_solve (f04cbc)
complex general matrix ............................................................. nag_complex_gen_lin_solve (f04cac)
complex general tridiagonal matrix ...................................... nag_complex_tridiag_lin_solve (f04ccc)
complex Hermitian matrix,

packed matrix format ............................................................ nag_herm_packed_lin_solve (f04cjc)
standard matrix format ...................................................................... nag_herm_lin_solve (f04chc)

complex Hermitian positive definite band matrix ............ nag_herm_posdef_band_lin_solve (f04cfc)
complex Hermitian positive definite matrix,

packed matrix format ............................................... nag_herm_posdef_packed_lin_solve (f04cec)
standard matrix format ......................................................... nag_herm_posdef_lin_solve (f04cdc)
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complex Hermitian positive definite tridiagonal matrix
..... nag_herm_posdef_tridiag_lin_solve (f04cgc)

complex symmetric matrix,
packed matrix format .............................................. nag_complex_sym_packed_lin_solve (f04djc)
standard matrix format ........................................................ nag_complex_sym_lin_solve (f04dhc)

real general band matrix ................................................................ nag_real_band_lin_solve (f04bbc)
real general matrix,

multiple right-hand sides, standard precision ............................. nag_real_gen_lin_solve (f04bac)
real general tridiagonal matrix ..................................................... nag_real_tridiag_lin_solve (f04bcc)
real symmetric matrix,

packed matrix format ..................................................... nag_real_sym_packed_lin_solve (f04bjc)
standard matrix format ............................................................... nag_real_sym_lin_solve (f04bhc)

real symmetric positive definite band matrix ............ nag_real_sym_posdef_band_lin_solve (f04bfc)
real symmetric positive definite matrix,

multiple right-hand sides, standard precision ................ nag_real_sym_posdef_lin_solve (f04bdc)
packed matrix format ........................................ nag_real_sym_posdef_packed_lin_solve (f04bec)

real symmetric positive definite tridiagonal matrix
..... nag_real_sym_posdef_tridiag_lin_solve (f04bgc)

General Purpose functions, Ax ¼ b,
real band symmetric positive definite matrix, variable bandwidth

..... nag_real_cholesky_skyline_solve (f04mcc)

Service Functions,
complex rectangular matrix,

norm and condition number estimation ............. nag_linsys_complex_gen_norm_rcomm (f04zdc)
real rectangular matrix,

norm and condition number estimation .................... nag_linsys_real_gen_norm_rcomm (f04ydc)

6 Auxiliary Functions Associated with Library Function Arguments

None.

7 Functions Withdrawn or Scheduled for Withdrawal

The following lists all those functions that have been withdrawn since Mark 23 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Function

Mark of
Withdrawal Replacement Function(s)

nag_complex_lin_eqn_mult_rhs (f04adc) 25 nag_complex_gen_lin_solve (f04cac)
nag_real_cholesky_solve_mult_rhs (f04agc) 25 nag_dpotrs (f07fec)
nag_real_lu_solve_mult_rhs (f04ajc) 25 nag_dgetrs (f07aec)
nag_complex_lu_solve_mult_rhs (f04akc) 25 nag_zgetrs (f07asc)
nag_real_lin_eqn (f04arc) 25 nag_real_gen_lin_solve (f04bac)
nag_hermitian_lin_eqn_mult_rhs (f04awc) 25 nag_zpotrs (f07fsc)
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