
NAG Library Function Document

nag_real_sym_lin_solve (f04bhc)

1 Purpose

nag_real_sym_lin_solve (f04bhc) computes the solution to a real system of linear equations AX ¼ B,
where A is an n by n symmetric matrix and X and B are n by r matrices. An estimate of the condition
number of A and an error bound for the computed solution are also returned.

2 Specification

#include <nag.h>
#include <nagf04.h>

void nag_real_sym_lin_solve (Nag_OrderType order, Nag_UploType uplo,
Integer n, Integer nrhs, double a[], Integer pda, Integer ipiv[],
double b[], Integer pdb, double *rcond, double *errbnd, NagError *fail)

3 Description

The diagonal pivoting method is used to factor A as A ¼ UDUT, if uplo ¼ Nag Upper, or A ¼ LDLT,
if uplo ¼ Nag Lower, where U (or L) is a product of permutation and unit upper (lower) triangular
matrices, and D is symmetric and block diagonal with 1 by 1 and 2 by 2 diagonal blocks. The factored
form of A is then used to solve the system of equations AX ¼ B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: uplo – Nag_UploType Input

On entry: if uplo ¼ Nag Upper, the upper triangle of the matrix A is stored.

If uplo ¼ Nag Lower, the lower triangle of the matrix A is stored.

Constraint: uplo ¼ Nag Upper or Nag Lower.

3: n – Integer Input

On entry: the number of linear equations n, i.e., the order of the matrix A.

Constraint: n � 0.

f04 – Simultaneous Linear Equations f04bhc

Mark 25 f04bhc.1

http://www.netlib.org/lapack/lug

4: nrhs – Integer Input

On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: nrhs � 0.

5: a½dim� – double Input/Output

Note: the dimension, dim, of the array a must be at least max 1;pda� nð Þ.
The i; jð Þth element of the matrix A is stored in

a½ j� 1ð Þ � pdaþ i� 1� when order ¼ Nag ColMajor;
a½ i� 1ð Þ � pdaþ j� 1� when order ¼ Nag RowMajor.

On entry: the n by n symmetric matrix A.

If uplo ¼ Nag Upper, the leading n by n upper triangular part of the array a contains the upper
triangular part of the matrix A, and the strictly lower triangular part of a is not referenced.

If uplo ¼ Nag Lower, the leading n by n lower triangular part of the array a contains the lower
triangular part of the matrix A, and the strictly upper triangular part of a is not referenced.

On exit: if fail:code ¼ NE_NOERROR, the block diagonal matrix D and the multipliers used to
obtain the factor U or L from the factorization A ¼ UDUT or A ¼ LDLT as computed by
nag_dsytrf (f07mdc).

6: pda – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array a.

Constraint: pda � max 1;nð Þ.

7: ipiv½n� – Integer Output

On exit: if fail:code ¼ NE_NOERROR, details of the interchanges and the block structure of D,
as determined by nag_dsytrf (f07mdc).

ipiv½k� 1� > 0
Rows and columns k and ipiv½k� 1� were interchanged, and dkk is a 1 by 1 diagonal block.

uplo ¼ Nag Upper and ipiv½k� 1� ¼ ipiv½k� 2� < 0
Rows and columns k� 1 and �ipiv½k� 1� were interchanged and dk�1:k;k�1:k is a 2 by 2
diagonal block.

uplo ¼ Nag Lower and ipiv½k� 1� ¼ ipiv½k� < 0
Rows and columns kþ 1 and �ipiv½k� 1� were interchanged and dk:kþ1;k:kþ1 is a 2 by 2
diagonal block.

8: b½dim� – double Input/Output

Note: the dimension, dim, of the array b must be at least

max 1;pdb� nrhsð Þ when order ¼ Nag ColMajor;
max 1;n� pdbð Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix B is stored in

b½ j� 1ð Þ � pdbþ i� 1� when order ¼ Nag ColMajor;
b½ i� 1ð Þ � pdbþ j� 1� when order ¼ Nag RowMajor.

On entry: the n by r matrix of right-hand sides B.

On exit: if fail:code ¼ NE_NOERROR or NE_RCOND, the n by r solution matrix X.

f04bhc NAG Library Manual

f04bhc.2 Mark 25

9: pdb – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array b.

Constraints:

if order ¼ Nag ColMajor, pdb � max 1; nð Þ;
if order ¼ Nag RowMajor, pdb � max 1; nrhsð Þ.

10: rcond – double * Output

On exit: if no constraints are violated, an estimate of the reciprocal of the condition number of the

matrix A, computed as rcond ¼ 1= Ak k1 A�1
�� ��

1

� �
.

11: errbnd – double * Output

On exit: if fail:code ¼ NE_NOERROR or NE_RCOND, an estimate of the forward error bound
for a computed solution x̂, such that x̂� xk k1= xk k1 � errbnd, where x̂ is a column of the
computed solution returned in the array b and x is the corresponding column of the exact solution
X. If rcond is less than machine precision, then errbnd is returned as unity.

12: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, n ¼ valueh i.
Constraint: n � 0.

On entry, nrhs ¼ valueh i.
Constraint: nrhs � 0.

On entry, pda ¼ valueh i.
Constraint: pda > 0.

On entry, pdb ¼ valueh i.
Constraint: pdb > 0.

NE_INT_2

On entry, pda ¼ valueh i and n ¼ valueh i.
Constraint: pda � max 1; nð Þ.
On entry, pdb ¼ valueh i and n ¼ valueh i.
Constraint: pdb � max 1;nð Þ.
On entry, pdb ¼ valueh i and nrhs ¼ valueh i.
Constraint: pdb � max 1;nrhsð Þ.

f04 – Simultaneous Linear Equations f04bhc

Mark 25 f04bhc.3

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_RCOND

A solution has been computed, but rcond is less than machine precision so that the matrix A is
numerically singular.

NE_SINGULAR

Diagonal block valueh i of the block diagonal matrix is zero. The factorization has been
completed, but the solution could not be computed.

7 Accuracy

The computed solution for a single right-hand side, x̂, satisfies an equation of the form

Aþ Eð Þx̂ ¼ b;

where

Ek k1 ¼ O �ð Þ Ak k1

and � is the machine precision. An approximate error bound for the computed solution is given by

x̂� xk k1

xk k1

� � Að Þ Ek k1

Ak k1

;

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. nag_real_sym_lin_solve (f04bhc) uses the approximation Ek k1 ¼ � Ak k1 to estimate errbnd.
See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

nag_real_sym_lin_solve (f04bhc) is not threaded by NAG in any implementation.

nag_real_sym_lin_solve (f04bhc) makes calls to BLAS and/or LAPACK routines, which may be
threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The Integer allocatable memory required is n, and the double allocatable memory required is
max 2� n; lworkð Þ, where lwork is the optimum workspace required by nag_dsysv (f07mac). If this
failure occurs it may be possible to solve the equations by calling the packed storage version of
nag_real_sym_lin_solve (f04bhc), nag_real_sym_packed_lin_solve (f04bjc), or by calling nag_dsysv
(f07mac) directly with less than the optimum workspace (see Chapter f07).

f04bhc NAG Library Manual

f04bhc.4 Mark 25

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
1
3n

3 þ 2n2r
� �

. The condition number estimation typically requires between four and five solves and
never more than eleven solves, following the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The complex analogues of nag_real_sym_lin_solve (f04bhc) are nag_herm_lin_solve (f04chc) for
complex Hermitian matrices, and nag_complex_sym_lin_solve (f04dhc) for complex symmetric matrices.

10 Example

This example solves the equations

AX ¼ B;

where A is the symmetric indefinite matrix

A ¼
�1:81 2:06 0:63 �1:15

2:06 1:15 1:87 4:20
0:63 1:87 �0:21 3:87
�1:15 4:20 3:87 2:07

0
B@

1
CA and B ¼

0:96 3:93
6:07 19:25
8:38 9:90
9:50 27:85

0
B@

1
CA:

An estimate of the condition number of A and an approximate error bound for the computed solutions
are also printed.

10.1 Program Text

/* nag_real_sym_lin_solve (f04bhc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 8, 2004.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf04.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
double errbnd, rcond;
Integer exit_status, i, j, n, nrhs, pda, pdb;

/* Arrays */
char nag_enum_arg[40];
double *a = 0, *b = 0;
Integer *ipiv = 0;

/* Nag Types */
NagError fail;
Nag_OrderType order;
Nag_UploType uplo;

#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J-1)*pda + I - 1]
#define B(I, J) b[(J-1)*pdb + I - 1]

order = Nag_ColMajor;
#else
#define A(I, J) a[(I-1)*pda + J - 1]
#define B(I, J) b[(I-1)*pdb + J - 1]

order = Nag_RowMajor;
#endif

exit_status = 0;

f04 – Simultaneous Linear Equations f04bhc

Mark 25 f04bhc.5

INIT_FAIL(fail);

printf("nag_real_sym_lin_solve (f04bhc) Example Program Results\n\n");

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

#ifdef _WIN32
scanf_s("%"NAG_IFMT"%"NAG_IFMT"%*[^\n] ", &n, &nrhs);

#else
scanf("%"NAG_IFMT"%"NAG_IFMT"%*[^\n] ", &n, &nrhs);

#endif
if (n > 0 && nrhs > 0)

{
/* Allocate memory */
if (!(a = NAG_ALLOC(n*n, double)) ||

!(b = NAG_ALLOC(n*nrhs, double)) ||
!(ipiv = NAG_ALLOC(n, Integer)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
#ifdef NAG_COLUMN_MAJOR

pda = n;
pdb = n;

#else
pda = n;
pdb = nrhs;

#endif
}

else
{

printf("%s\n", "n and/or nrhs too small");
exit_status = 1;
return exit_status;

}

#ifdef _WIN32
scanf_s("%39s%*[^\n] ", nag_enum_arg, _countof(nag_enum_arg));

#else
scanf("%39s%*[^\n] ", nag_enum_arg);

#endif
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/

uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg);

if (uplo == Nag_Upper)
{

/* Read the upper triangular part of A from data file */
for (i = 1; i <= n; ++i)

{
for (j = i; j <= n; ++j)

{
#ifdef _WIN32

scanf_s("%lf", &A(i, j));
#else

scanf("%lf", &A(i, j));
#endif

}
}

#ifdef _WIN32
scanf_s("%*[^\n] ");

#else
scanf("%*[^\n] ");

#endif

f04bhc NAG Library Manual

f04bhc.6 Mark 25

}
else

{
/* Read the lower triangular part of A from data file */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= i; ++j)

{
#ifdef _WIN32

scanf_s("%lf", &A(i, j));
#else

scanf("%lf", &A(i, j));
#endif

}
}

#ifdef _WIN32
scanf_s("%*[^\n] ");

#else
scanf("%*[^\n] ");

#endif
}

/* Read B from data file */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= nrhs; ++j)

{
#ifdef _WIN32

scanf_s("%lf", &B(i, j));
#else

scanf("%lf", &B(i, j));
#endif

}
}

#ifdef _WIN32
scanf_s("%*[^\n] ");

#else
scanf("%*[^\n] ");

#endif

/* Solve the equations AX = B for X */
/* nag_real_sym_lin_solve (f04bhc).
* Computes the solution and error-bound to a real symmetric
* system of linear equations
*/

nag_real_sym_lin_solve(order, uplo, n, nrhs, a, pda, ipiv, b, pdb,
&rcond, &errbnd, &fail);

if (fail.code == NE_NOERROR)
{

/* Print solution, estimate of condition number and approximate */
/* error bound */

/* nag_gen_real_mat_print (x04cac).
* Print real general matrix (easy-to-use)
*/

fflush(stdout);
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,

nrhs, b, pdb, "Solution", 0, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}
printf("\n%s\n%6s%10.1e\n", "Estimate of condition number", "",

1./rcond);
printf("\n\n");
printf("%s\n%6s%10.1e\n\n",

"Estimate of error bound for computed solutions", "", errbnd);
}

f04 – Simultaneous Linear Equations f04bhc

Mark 25 f04bhc.7

else if (fail.code == NE_RCOND)
{

/* Matrix A is numerically singular. Print estimate of */
/* reciprocal of condition number and solution */

printf("\n");
printf("%s\n%6s%10.1e\n\n\n",

"Estimate of reciprocal of condition number", "", rcond);
/* nag_gen_real_mat_print (x04cac), see above. */
fflush(stdout);
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,

nrhs, b, pdb, "Solution", 0, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}
}

else if (fail.code == NE_SINGULAR)
{

/* The upper triangular matrix U is exactly singular. Print */
/* details of factorization */

printf("\n");
/* nag_gen_real_mat_print (x04cac), see above. */
fflush(stdout);
nag_gen_real_mat_print(order, Nag_UpperMatrix, Nag_NonUnitDiag, n, n, a,

pda, "Details of factorization", 0, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

/* Print pivot indices */
printf("\n%s\n", "Pivot indices");
for (i = 1; i <= n; ++i)

{
printf("%11"NAG_IFMT"%s", ipiv[i-1], i%7 == 0 || i == n?"\n":" ");

}
printf("\n");

}
else

{
printf("Error from nag_real_sym_lin_solve (f04bhc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}
END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(ipiv);

return exit_status;
}

10.2 Program Data

nag_real_sym_lin_solve (f04bhc) Example Program Data

4 2 :Values of n and nrhs
Nag_Upper :Value of uplo

-1.81 2.06 0.63 -1.15
1.15 1.87 4.20

f04bhc NAG Library Manual

f04bhc.8 Mark 25

-0.21 3.87
2.07 :End of matrix A

0.96 3.93
6.07 19.25
8.38 9.90
9.50 27.85 :End of matrix B

10.3 Program Results

nag_real_sym_lin_solve (f04bhc) Example Program Results

Solution
1 2

1 -5.0000 2.0000
2 -2.0000 3.0000
3 1.0000 4.0000
4 4.0000 1.0000

Estimate of condition number
7.6e+01

Estimate of error bound for computed solutions
8.4e-15

f04 – Simultaneous Linear Equations f04bhc

Mark 25 f04bhc.9 (last)

	f04bhc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Anderson et al. (1999)
	Higham (2002)

	5 Arguments
	order
	uplo
	n
	nrhs
	a
	pda
	ipiv
	b
	pdb
	rcond
	errbnd
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NE_RCOND
	NE_SINGULAR

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

