
NAG Library Function Document

nag_glopt_nlp_multistart_sqp (e05ucc)

1 Purpose

nag_glopt_nlp_multistart_sqp (e05ucc) is designed to find the global minimum of an arbitrary smooth
function subject to constraints (which may include simple bounds on the variables, linear constraints and
smooth nonlinear constraints) by generating a number of different starting points and performing a local
search from each using sequential quadratic programming.

2 Specification

#include <nag.h>
#include <nage05.h>

void nag_glopt_nlp_multistart_sqp (Integer n, Integer nclin, Integer ncnln,
const double a[], Integer tda, const double bl[], const double bu[],

void (*confun)(Integer *mode, Integer ncnln, Integer n, Integer tdcjsl,
const Integer needc[], const double x[], double c[], double cjsl[],
Integer nstate, Nag_Comm *comm),

void (*objfun)(Integer *mode, Integer n, const double x[], double *objf,
double objgrd[], Integer nstate, Nag_Comm *comm),

Integer npts, double x[], Integer ldx,

void (*start)(Integer npts, double quas[], Integer n,
Nag_Boolean repeat, const double bl[], const double bu[],
Nag_Comm *comm, Integer *mode),

Nag_Boolean repeat, Integer nb, double objf[], double objgrd[],
Integer ldobjgrd, Integer iter[], double c[], Integer ldc,
double cjac[], Integer ldcjac, Integer sdcjac, double r[], Integer ldr,
Integer sdr, double clamda[], Integer ldclamda, Integer istate[],
Integer ldistate, Integer iopts[], double opts[], Nag_Comm *comm,
Integer info[], NagError *fail)

Before calling nag_glopt_nlp_multistart_sqp (e05ucc), the optional argument arrays iopts and opts
MUST be initialized for use with nag_glopt_nlp_multistart_sqp (e05ucc) by calling nag_glopt_opt_set
(e05zkc) with optstr set to ‘Initialize = e05ucc’. Optional arguments may be specified by calling
nag_glopt_opt_set (e05zkc) before the call to nag_glopt_nlp_multistart_sqp (e05ucc).

The declared lenths of iopts and opts must be at least 740 and 485 respectively.

3 Description

The problem is assumed to be stated in the following form:

minimize
x2Rn

F xð Þ subject to l �
x
ALx
c xð Þ

0
@

1
A � u; ð1Þ

where F xð Þ (the objective function) is a nonlinear function, AL is an nL by n linear constraint matrix,
and c xð Þ is an nN element vector of nonlinear constraint functions. (The matrix AL and the vector c xð Þ
may be empty.) The objective function and the constraint functions are assumed to be smooth, i.e., at
least twice-continuously differentiable. (This function will usually solve (1) if there are only isolated
discontinuities away from the solution.)

nag_glopt_nlp_multistart_sqp (e05ucc) solves a user-specified number of local optimization problems
with different starting points. You may specify the starting points via the function start. If a random
number generator is used to generate the starting points then the argument repeat allows you to specify
whether a repeatable set of points are generated or whether different starting points are generated on
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different calls. The resulting local minima are ordered and the best nb results returned in order of
ascending values of the resulting objective function values at the minima. Thus the value returned in
position 1 will be the best result obtained. If a sufficient number of different points are chosen then this
is likely to be be the global minimum. Please note that the default version of start uses a random
number generator to generate the starting points.

4 References
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5 Arguments

1: n – Integer Input

On entry: n, the number of variables.

Constraint: n > 0.

2: nclin – Integer Input

On entry: nL, the number of general linear constraints.

Constraint: nclin � 0.

3: ncnln – Integer Input

On entry: nN , the number of nonlinear constraints.

Constraint: ncnln � 0.

4: a½dim� – const double Input

Note: the dimension, dim, of the array a must be at least nclin� tda.
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On entry: the matrix AL of general linear constraints in (1). That is, A½ i � 1ð Þ � tdaþ j � 1� must
contain the jth coefficient of the ith general linear constraint, for j ¼ 1; 2; . . . ;n and
i ¼ 1; 2; . . . ; nclin. If nclin ¼ 0 then a may be specified as NULL.

5: tda – Integer Input

On entry: the stride separating matrix column elements in the array a.

Constraints:

if nclin > 0, tda � n.

6: bl½nþ nclinþ ncnln� – const double Input
7: bu½nþ nclinþ ncnln� – const double Input

On entry: bl must contain the lower bounds and bu the upper bounds for all the constraints in the
following order. The first n elements of each array must contain the bounds on the variables, the
next nL elements the bounds for the general linear constraints (if any) and the next nN elements
the bounds for the general nonlinear constraints (if any). To specify a nonexistent lower bound
(i.e., lj ¼ �1), set bl½j� 1� � �bigbnd, and to specify a nonexistent upper bound (i.e.,

uj ¼ þ1), set bu½j� 1� � bigbnd; the default value of bigbnd is 1020, but this may be changed
by the optional argument Infinite Bound Size. To specify the jth constraint as an equality, set
bl½j� 1� ¼ bu½j� 1� ¼ �, say, where �j j < bigbnd.

Constraints:

bl½j � 1� � bu½j � 1�, for j ¼ 1; 2; . . . ; nþ nclinþ ncnln;
if bl½j� 1� ¼ bu½j� 1� ¼ �, �j j < bigbnd.

8: confun – function, supplied by the user External Function

confun must calculate the vector c xð Þ of nonlinear constraint functions and (optionally) its

Jacobian ( ¼ @c

@x
) for a specified n-element vector x. If there are no nonlinear constraints (i.e.,

ncnln ¼ 0), confun will never be called by nag_glopt_nlp_multistart_sqp (e05ucc) and the NAG
defined null void function pointer, NULLFN, may be supplied in the call instead. If there are
nonlinear constraints, the first call to confun will occur before the first call to objfun.

The specification of confun is:

void confun (Integer *mode, Integer ncnln, Integer n, Integer tdcjsl,
const Integer needc[], const double x[], double c[],
double cjsl[], Integer nstate, Nag_Comm *comm)

1: mode – Integer * Input/Output

On entry: indicates which values must be assigned during each call of confun. Only the
following values need be assigned, for each value of i such that needc½i� 1� > 0:

mode ¼ 0
c½i� 1�.

mode ¼ 1
All available elements in CJSL i; jð Þ, for j ¼ 1; 2; . . . ; n (see cjsl for the definition
of CJSL).

mode ¼ 2
c½i� 1� and all available elements in CJSL i; jð Þ, for j ¼ 1; 2; . . . ;n (see cjsl for
the definition of CJSL).

On exit: may be set to a negative value if you wish to abandon the solution to the current
local minimization problem. In this case nag_glopt_nlp_multistart_sqp (e05ucc) will
move to the next local minimization problem.
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2: ncnln – Integer Input

On entry: nN , the number of nonlinear constraints.

3: n – Integer Input

On entry: n, the number of variables.

4: tdcjsl – Integer Input

On entry: the stride separating matrix column elements in the array cjsl.

5: needc½ncnln� – const Integer Input

On entry: the indices of the elements of c and/or cjsl that must be evaluated by confun.
If needc½i� 1� > 0, c½i� 1� and/or the available elements of CJSL i; jð Þ, for
j ¼ 1; 2; . . . ; n (see argument mode) must be evaluated at x. See cjsl for the definition
of CJSL.

6: x½n� – const double Input

On entry: x, the vector of variables at which the constraint functions and/or the available
elements of the constraint Jacobian are to be evaluated.

7: c½ncnln� – double Output

On exit: if needc½k� 1� > 0 and mode ¼ 0 or 2, c½k� 1� must contain the value of
ck xð Þ. The remaining elements of c, corresponding to the non-positive elements of
needc, need not be set.

8: cjsl½ncnln� tdcjsl� – double Input/Output

Note: where CJSL k; jð Þ appears in this document, it refers to the array element
cjsl½ k� 1ð Þ � nþ j� 1�.
cjsl may be regarded as a two-dimensional ‘slice’ in row order of the three-dimensional
matrix CJAC stored in the array cjac of nag_glopt_nlp_multistart_sqp (e05ucc).

On entry: unless Derivative Level ¼ 2 or 3, the elements of cjsl are set to special values
which enable nag_glopt_nlp_multistart_sqp (e05ucc) to detect whether they are changed
by confun.

On exit: if needc½k� 1� > 0 and mode ¼ 1 or 2, CJSL k; jð Þ, for j ¼ 1; 2; . . . ; n, must
contain the available elements of the vector rck given by

rck ¼
@ck
@x1

;
@ck
@x2

; . . . ;
@ck
@xn

� �T

;

where
@ck
@xj

is the partial derivative of the kth constraint with respect to the jth variable,

evaluated at the point x. See also the argument nstate. The remaining CJSL k; jð Þ, for
j ¼ 1; 2; . . . ; n, corresponding to non-positive elements of needc, need not be set.

If all elements of the constraint Jacobian are known (i.e., Derivative Level ¼ 2 or 3),
any constant elements may be assigned to cjsl one time only at the start of each local
optimization. An element of cjsl that is not subsequently assigned in confun will retain
its initial value throughout the local optimization. Constant elements may be loaded into
cjsl during the first call to confun for the local optimization (signalled by the value
nstate ¼ 1). The ability to preload constants is useful when many Jacobian elements are
identically zero, in which case cjsl may be initialized to zero and nonzero elements may
be reset by confun.

Note that constant nonzero elements do affect the values of the constraints. Thus, if
CJSL k; jð Þ is set to a constant value, it need not be reset in subsequent calls to confun,
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but the value CJSL k; jð Þ � x½j� 1� must nonetheless be added to c½k� 1�. For example,
if CJSL 1; 1ð Þ ¼ 2 and CJSL 1; 2ð Þ ¼ �5 then the term 2� x½0� � 5� x½1� must be
included in the definition of c½0�.
It must be emphasized that, if Derivative Level ¼ 0 or 1, unassigned elements of cjsl
are not treated as constant; they are estimated by finite differences, at nontrivial expense.
If you do not supply a value for the optional argument Difference Interval, an interval
for each element of x is computed automatically at the start of each local optimization.
The automatic procedure can usually identify constant elements of cjsl, which are then
computed once only by finite differences.

9: nstate – Integer Input

On entry: if nstate ¼ 1 then nag_glopt_nlp_multistart_sqp (e05ucc) is calling confun for
the first time on the current local optimization problem. This argument setting allows
you to save computation time if certain data must be calculated only once.

10: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to confun.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_glopt_nlp_multistart_sqp
(e05ucc) you may allocate memory and initialize these pointers with various
quantities for use by confun when called from nag_glopt_nlp_multistart_sqp
(e05ucc) (see Section 3.2.1.1 in the Essential Introduction).

confun should be tested separately before being used in conjunct ion with
nag_glopt_nlp_multistart_sqp (e05ucc). See also the description of the optional argument Verify.

9: objfun – function, supplied by the user External Function

objfun must calculate the objective function F xð Þ and (optionally) its gradient g xð Þ ¼ @F
@x

for a

specified n-vector x.

The specification of objfun is:

void objfun (Integer *mode, Integer n, const double x[], double *objf,
double objgrd[], Integer nstate, Nag_Comm *comm)

1: mode – Integer * Input/Output

On entry: indicates which values must be assigned during each call of objfun. Only the
following values need be assigned:

mode ¼ 0
objf.

mode ¼ 1
All available elements of objgrd.

mode ¼ 2
objf and all available elements of objgrd.

On exit: may be set to a negative value if you wish to abandon the solution to the current
local minimization problem. In this case nag_glopt_nlp_multistart_sqp (e05ucc) will
move to the next local minimization problem.
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2: n – Integer Input

On entry: n, the number of variables.

3: x½n� – const double Input

On entry: x, the vector of variables at which the objective function and/or all available
elements of its gradient are to be evaluated.

4: objf – double * Output

On exit: if mode ¼ 0 or 2, objf must be set to the value of the objective function at x.

5: objgrd½n� – double Input/Output

On entry: the elements of objgrd are set to special values which enable
nag_glopt_nlp_multistart_sqp (e05ucc) to detect whether they are changed by objfun.

On exit: if mode ¼ 1 or 2, objgrd must return the available elements of the gradient
evaluated at x.

6: nstate – Integer Input

On entry: if nstate ¼ 1 then nag_glopt_nlp_multistart_sqp (e05ucc) is calling objfun for
the first time on the current local optimization problem. This argument setting allows
you to save computation time if certain data must be calculated only once.

7: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to objfun.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_glopt_nlp_multistart_sqp
(e05ucc) you may allocate memory and initialize these pointers with various
quantities for use by objfun when called from nag_glopt_nlp_multistart_sqp
(e05ucc) (see Section 3.2.1.1 in the Essential Introduction).

objfun should be tested separate ly before being used in conjunct ion with
nag_glopt_nlp_multistart_sqp (e05ucc). See also the description of the optional argument Verify.

10: npts – Integer Input

On entry: the number of different starting points to be generated and used. The more points used,
the more likely that the best returned solution will be a global minimum.

Constraint: 1 � nb � npts.

11: x½ldx� nb� – double Output

Note: where X j; ið Þ appears in this document, it refers to the array element
x½ i� 1ð Þ � ldxþ j� 1�.
On exit: X j; ið Þ contains the final estimate of the ith solution, for j ¼ 1; 2; . . . ;n.

12: ldx – Integer Input

On entry: the first dimension of X as stored in the array x.

Constraint: ldx � n.
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13: start – function, supplied by the user External Function

start must calculate the npts starting points to be used by the local optimizer. If you do not wish
to write a function specific to your problem then you can specify the NAG defined null void
function pointer, NULLFN, in the call. In this case, a default function uses the NAG quasi-
random number generators to distribute starting points uniformly across the domain. It is affected
by the value of repeat.

The specification of start is:

void start (Integer npts, double quas[], Integer n,
Nag_Boolean repeat, const double bl[], const double bu[],
Nag_Comm *comm, Integer *mode)

1: npts – Integer Input

On entry: indicates the number of starting points.

2: quas½n� npts� – double Input/Output

On entry: all elements of quas will have been set to zero, so only nonzero values need
be set subsequently.

On exit: must contain the starting points for the npts local minimizations, i.e.,
quas½ j� 1ð Þ � nptsþ i� 1� must contain the jth component of the ith starting point.

3: n – Integer Input

On entry: the number of variables.

4: repeat – Nag_Boolean Input

On entry: specifies whether a repeatable or non-repeatable sequence of points are to be
generated.

5: bl½n� – const double Input

On entry: the lower bounds on the variables. These may be used to ensure that the
starting points generated in some sense ‘cover’ the region, but there is no requirement
that a starting point be feasible.

6: bu½n� – const double Input

On entry: the upper bounds on the variables. (See bl.)

7: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to start.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_glopt_nlp_multistart_sqp
(e05ucc) you may allocate memory and initialize these pointers with various
quantities for use by start when called from nag_glopt_nlp_multistart_sqp
(e05ucc) (see Section 3.2.1.1 in the Essential Introduction).

8: mode – Integer * Input/Output

On entry: mode will contain 0.

On exit: if you set mode to a negative value then nag_glopt_nlp_multistart_sqp (e05ucc)
will terminate immediately with fail:code ¼ NE_USER_STOP. Provided fail is not
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NAGERR_DEFAULT on entry to nag_glopt_nlp_multistart_sqp (e05ucc), fail:errnum will
contain this value of mode.

14: repeat – Nag_Boolean Input

On entry: is passed as an argument to start and may be used to initialize a random number
generator to a repeatable, or non-repeatable, sequence.

15: nb – Integer Input

On entry: the number of solutions to be returned. The function saves up to nb local minima
ordered by increasing value of the final objective function. If the defining criterion for ‘best
solution’ is only that the value of the objective function is as small as possible then nb should be
set to 1. However, if you want to look at other solutions that may have desirable properties then
setting nb > 1 will produce nb local minima, ordered by increasing value of their objective
functions at the minima.

Constraint: 1 � nb � npts.

16: objf ½nb� – double Output

On exit: objf ½i� 1� contains the value of the objective function at the final iterate for the ith
solution.

17: objgrd½ldobjgrd� nb� – double Output

Note: where OBJGRD j; ið Þ appears in this document, it refers to the array element
objgrd½ i� 1ð Þ � ldobjgrdþ j� 1�.
On exit: OBJGRD j; ið Þ contains the gradient of the objective function for the ith solution at the
final iterate (or its finite difference approximation), for j ¼ 1; 2; . . . ; n.

18: ldobjgrd – Integer Input

On entry: the first dimension of OBJGRD as stored in the array objgrd.

Constraint: ldobjgrd � n.

19: iter½nb� – Integer Output

On exit: iter½i� 1� contains the number of major iterations performed to obtain the ith solution. If
less than nb solutions are returned then iter½nb� 1� contains the number of starting points that
have resulted in a converged solution. If this is close to npts then this might be indicative that
fewer than nb local minima exist.

20: c½ldc� nb� – double Output

Note: where C j; ið Þ appears in this document, it refers to the array element
c½ i� 1ð Þ � ldcþ j� 1�.
On exit: if ncnln > 0, C j; ið Þ contains the value of the jth nonlinear constraint function cj at the
final iterate, for the ith solution, for j ¼ 1; 2; . . . ;ncnln.

If ncnln ¼ 0, the array c is not referenced and may be specified as NULL.

21: ldc – Integer Input

On entry: the first dimension of C as stored in the array c.

Constraint: ldc � ncnln.

22: cjac½dim� – double Output

Note: the dimension, dim, of the array cjac must be at least ldcjac� sdcjac� nb.
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Where CJAC k; j; ið Þ appears in this document, it refers to the array element
cjac½ i� 1ð Þ � ldcjac� sdcjacþ j� 1ð Þ � ldcjacþ k� 1�.
On exit: if ncnln > 0, cjac contains the Jacobian matrices of the nonlinear constraint functions at
the final iterate for each of the returned solutions, i.e., CJAC k; j; ið Þ contains the partial derivative
of the kth constraint function with respect to the jth variable, for k ¼ 1; 2; . . . ; ncnln and
j ¼ 1; 2; . . . ; n, for the ith solution. (See the discussion of argument cjsl under confun.)

If ncnln ¼ 0, the array cjac is not referenced and may be specified as NULL.

23: ldcjac – Integer Input

On entry: the first dimension of the matrix CJAC as stored in the array cjac.

Constraint: ldcjac � ncnln.

24: sdcjac – Integer Input

On entry: the second dimension of the matrix CJAC as stored in the array cjac.

Constraint: if ncnln > 0, sdcjac � n.

25: r½dim� – double Output

Note: the dimension, dim, of the array r must be at least ldr� sdr� nb.

T h e e l e m e n t R i; j; kð Þ i s s t o r e d i n t h e a r r a y e l e m e n t
r½ k� 1ð Þ � ldr� sdrþ j� 1ð Þ � ldrþ i� 1�.
On exit: for each of the nb solutions r will contain a form of the Hessian; for the ith returned
solution R ldr; sdr; ið Þ contains the Hessian that would be returned from the local minimizer. If
Hessian ¼ NO, the default, each R ldr; sdr; ið Þ contains the upper triangular Cholesky factor R of
QTHQ, an estimate of the transformed and reordered Hessian of the Lagrangian at x. If
Hessian ¼ YES, R ldr; sdr; ið Þ contains the upper triangular Cholesky factor R of H, the
approximate (untransformed) Hessian of the Lagrangian, with the variables in the natural order.

26: ldr – Integer Input

On entry: the first dimension of the matrix R as stored in the array r.

Constraint: ldr � n.

27: sdr – Integer Input

On entry: the second dimension of the matrix R as stored in the array r.

Constraint: sdr � n.

28: clamda½ldclamda� nb� – double Output

Note: where CLAMDA j; ið Þ appears in this document, it refers to the array element
clamda½ i� 1ð Þ � ldclamdaþ j� 1�.
On exit: the values of the QP multipliers from the last QP subproblem solved for the ith solution.
CLAMDA j; ið Þ should be non-negat ive if ISTATE j; ið Þ ¼ 1 and non-posi t ive if
ISTATE j; ið Þ ¼ 2.

29: ldclamda – Integer Input

On entry: the first dimension of CLAMDA as stored in the array clamda.

Constraint: ldclamda � nþ nclinþ ncnln.

30: istate½ldistate� nb� – Integer Output

Note: where ISTATE j; ið Þ appears in this document, it refers to the array element
istate½ i� 1ð Þ � ldistateþ j� 1�.
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On exit: ISTATE j; ið Þ contains the status of the constraints in the QP working set for the ith
solution. The significance of each possible value of ISTATE j; ið Þ is as follows:

ISTATE j; ið Þ Meaning

0 The constraint is satisfied to within the feasibility tolerance, but is not in the QP
working set.

1 This inequality constraint is included in the QP working set at its lower bound.

2 This inequality constraint is included in the QP working set at its upper bound.

3 This constraint is included in the QP working set as an equality. This value of
istate can occur only when bl½j� 1� ¼ bu½j� 1�.

31: ldistate – Integer Input

On entry: the first dimension of ISTATE as stored in the array istate.

Constraint: ldistate � nþ nclinþ ncnln.

32: iopts½740� – Integer Communication Array
33: opts½485� – double Communication Array

The arrays iopts and opts MUST NOT be altered between calls to any of the functions
nag_glopt_nlp_multistart_sqp (e05ucc) and nag_glopt_opt_set (e05zkc).

34: comm – Nag_Comm *

The NAG communication argument (see Section 3.2.1.1 in the Essential Introduction).

35: info½nb� – Integer Output

On exit: info½i� 1� contains one of 0, 1 or 6.

info½i� 1� ¼ 1
The final iterate x satisfies the first-order Kuhn–Tucker conditions (see Section 11.1) to the
accuracy requested, but the sequence of iterates has not yet converged. The local optimizer
was terminated because no further improvement could be made in the merit function (see
Section 9.1).

info½i� 1� ¼ 6
x does not satisfy the first-order Kuhn–Tucker conditions (see Section 11.1) and no
improved point for the merit function (see Section 9.1) could be found during the final
linesearch.

This sometimes occurs because an overly stringent accuracy has been requested, i.e., the value of
the optional argument Optimality Tolerance (default value ¼ �0:8

R , where �R is the value of the
optional argument Function Precision (default value ¼ �0:9, where � is the machine precision)) is
too small.

As usual 0 denotes success.

If fail:code ¼ NW_SOME_SOLUTIONS on exit, then not all nb solutions have been found, and
info½nb� 1� contains the number of solutions actually found.

36: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).
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6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_BOUND

On entry, bl½i� 1� > bu½i� 1�: i ¼ valueh i.
Constraint: bl½i� 1� � bu½i� 1�, for all i.

NE_DERIV_ERRORS

User-supplied derivatives probably wrong.

The user-supplied derivatives of the objective function and/or nonlinear constraints appear to be
incorrect.

Large errors were found in the derivatives of the objective function and/or nonlinear constraints.
This value of fail.code will occur if the verification process indicated that at least one gradient or
Jacobian element had no correct figures. You should refer to or enable the printed output to
determine which elements are suspected to be in error.

As a first-step, you should check that the code for the objective and constraint values is correct –
for example, by computing the function at a point where the correct value is known. However,
care should be taken that the chosen point fully tests the evaluation of the function. It is
remarkable how often the values x ¼ 0 or x ¼ 1 are used to test function evaluation procedures,
and how often the special properties of these numbers make the test meaningless.

Gradient checking will be ineffective if the objective function uses information computed by the
constraints, since they are not necessarily computed before each function evaluation.

Errors in programming the function may be quite subtle in that the function value is ‘almost’
correct. For example, the function may not be accurate to full precision because of the inaccurate
calculation of a subsidiary quantity, or the limited accuracy of data upon which the function
depends. A common error on machines where numerical calculations are usually performed in
double precision is to include even one single precision constant in the calculation of the function;
since some compilers do not convert such constants to double precision, half the correct figures
may be lost by such a seemingly trivial error.

NE_INITIALIZATION

Failed to initialize optional argument arrays.

NE_INT

On entry, n ¼ valueh i.
Constraint: n > 0.

On entry, nclin ¼ valueh i.
Constraint: nclin � 0.

On entry, ncnln ¼ valueh i.
Constraint: ncnln � 0.

NE_INT_2

On entry, ldc ¼ valueh i and ncnln ¼ valueh i.
Constraint: ldc � ncnln.
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On entry, ldcjac ¼ valueh i and ncnln ¼ valueh i.
Constraint: ldcjac � ncnln.

On entry, ldobjgrd ¼ valueh i and n ¼ valueh i.
Constraint: ldobjgrd � n.

On entry, ldr ¼ valueh i and n ¼ valueh i.
Constraint: ldr � n.

On entry, ldx ¼ valueh i and n ¼ valueh i.
Constraint: ldx � n.

On entry, nb ¼ valueh i and npts ¼ valueh i.
Constraint: 1 � nb � npts.

On entry, sdr ¼ valueh i and n ¼ valueh i.
Constraint: sdr � n.

NE_INT_3

On entry, ncnln > 0, sdcjac ¼ valueh i and n ¼ valueh i.
Constraint: if ncnln > 0, sdcjac � n.

On entry, tda ¼ valueh i, nclin ¼ valueh i and n ¼ valueh i.
Constraint: tda � n.

NE_INT_4

On entry, ldclamda ¼ valueh i, n ¼ valueh i, nclin ¼ valueh i and ncnln ¼ valueh i.
Constraint: ldclamda � nþ nclinþ ncnln.

On entry, ldistate ¼ valueh i, n ¼ valueh i, nclin ¼ valueh i and ncnln ¼ valueh i.
Constraint: ldistate � nþ nclinþ ncnln.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_LIN_NOT_FEASIBLE

No solution obtained. Linear constraints may be infeasible.

nag_glopt_nlp_multistart_sqp (e05ucc) has terminated without finding any solutions. The majority
of calls to the local optimizer have failed to find a feasible point for the linear constraints and
bounds, which means that either no feasible point exists for the given value of the optional
argument Linear Feasibility Tolerance (default value

ffiffi
�
p

, where � is the machine precision), or no
feasible point could be found in the number of iterations specified by the optional argument
Minor Iteration Limit. You should check that there are no constraint redundancies. If the data for
the constraints are accurate only to an absolute precision �, you should ensure that the value of the
optional argument Linear Feasibility Tolerance is greater than �. For example, if all elements of
AL are of order unity and are accurate to only three decimal places, Linear Feasibility Tolerance
should be at least 10�3.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_NO_SOLUTION

No solution obtained. Many potential solutions reach iteration limit.
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The Iteration Limit may be changed using nag_glopt_opt_set (e05zkc).

NE_NONLIN_NOT_FEASIBLE

nag_glopt_nlp_multistart_sqp (e05ucc) has failed to find any solutions. The majority of local
optimizations could not find a feasible point for the nonlinear constraints. The problem may have no
feasible solution. This behaviour will occur if there is no feasible point for the nonlinear constraints.
(However, there is no general test that can determine whether a feasible point exists for a set of
nonlinear constraints.)

NE_USER_STOP

User terminated computation from start procedure: mode ¼ valueh i.

NW_SOME_SOLUTIONS

Only valueh i solutions obtained.

Not all nb solutions have been found. info½nb� 1� contains the number actually found.

7 Accuracy

If fail:code ¼ NE_NOERROR on exit and the value of info½i� 1� ¼ 0, then the vector returned in the
array x for solution i is an estimate of the solution to an accuracy of approximately
Optimality Tolerance.

8 Parallelism and Performance

nag_glopt_nlp_multistart_sqp (e05ucc) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library. In these implementations, this function may make calls to the user-
supplied functions from within an OpenMP parallel region. Thus OpenMP pragmas within the user
functions can only be used if you are compiling the user-supplied function and linking the executable in
accordance with the instructions in the Users’ Note for your implementation. You must also ensure that
you use the NAG communication argument comm in a thread safe manner, which is best achieved by
only using it to supply read-only data to the user functions.

nag_glopt_nlp_multistart_sqp (e05ucc) makes calls to BLAS and/or LAPACK routines, which may be
threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

You should be wary of requesting much intermediate output from the local optimizer, since large
volumes may be produced if npts is large.

If NULLFN is supplied an actual argument from start then the default NAG function makes use of the
NAG quasi-random Sobol generator (nag_quasi_init (g05ylc) and nag_quasi_rand_uniform (g05ymc)). If
this is used as an argument for start, by specifying NULLFN in the calling sequence (see the description
of start) and repeat ¼ Nag FALSE then a randomly chosen value for iskip is used, otherwise iskip is
set to 100. If repeat is set to Nag_FALSE and the program is executed several times, each time
producing the same best answer, then there is increased probability that this answer is a global minimum.
However, if it is important that identical results be obtained on successive runs, then repeat should be
set to Nag_TRUE.
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9.1 Description of the Printed Output

This sect ion descr ibes the intermediate pr intout and final pr intout produced by
nag_glopt_nlp_multistart_sqp (e05ucc). The intermediate printout is a subset of the monitoring
information produced by the function at every iteration (see Section 13). You can control the level of
printed output (see the description of the optional arguments Major Print Level and
Minor Print Level). Note that the intermediate printout and final printout are produced only if
Major Print Level � 10 or Minor Print Level � 10.

The following line of summary output ( < 80 characters) is produced at every major iteration. In all
cases, the values of the quantities printed are those in effect on completion of the given iteration for each
starting point.

Maj is the major iteration count.

Mnr is the number of minor iterations required by the feasibility and optimality phases
of the QP subproblem. Generally, Mnr will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see Section 11). Note that Mnr may be greater than the optional argument
Minor Iteration Limit if some iterations are required for the feasibility phase.

Step is the step �k taken along the computed search direction. On reasonably well-
behaved local problems, the unit step (i.e., �k ¼ 1) will be taken as the solution is
approached.

Merit Function is the value of the augmented Lagrangian merit function (12) at the current iterate.
This function will decrease at each iteration unless it was necessary to increase the
penalty arguments (see Section 11.3). As the solution is approached, Merit
Function will converge to the value of the objective function at the solution.

If the QP subproblem does not have a feasible point (signified by I at the end of
the current output line) then the merit function is a large multiple of the constraint
violations, weighted by the penalty arguments. During a sequence of major
iterations with infeasible subproblems, the sequence of Merit Function values
will decrease monotonically until either a feasible subproblem is obtained or the
local optimizer terminates. Repeated failures will prevent a feasible point being
found for the nonlinear constraints.

If there are no nonlinear constraints present (i.e., ncnln ¼ 0) then this entry
contains Objective, the value of the objective function F xð Þ. The objective
function will decrease monotonically to its optimal value when there are no
nonlinear constraints.

Norm Gz is ZTgFRk k, the Euclidean norm of the projected gradient (see Section 11.2). Norm
Gz will be approximately zero in the neighbourhood of a solution.

Violtn is the Euclidean norm of the residuals of constraints that are violated or in the
predicted active set (not printed if ncnln is zero). Violtn will be approximately
zero in the neighbourhood of a solution.

Cond Hz is a lower bound on the condition number of the projected Hessian approximation
HZ (HZ ¼ ZTHFRZ ¼ RT

ZRZ; see (6)). The larger this number, the more difficult
the local problem.

M is printed if the quasi-Newton update has been modified to ensure that the Hessian
approximation is positive definite (see Section 11.4).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences have been used to compute the unspecified
objective and constraint gradients. If the value of Step is zero then the switch to
central differences was made because no lower point could be found in the
linesearch. (In this case, the QP subproblem is resolved with the central difference
gradient and Jacobian.) If the value of Step is nonzero then central differences
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were computed because Norm Gz and Violtn imply that x is close to a Kuhn–
Tucker point (see Section 11.1).

L is printed if the linesearch has produced a relative change in x greater than the
value defined by the optional argument Step Limit. If this output occurs
frequently during later iterations of the run, optional argument Step Limit should
be set to a larger value.

R is printed if the approximate Hessian has been refactorized. If the diagonal
condition estimator of R indicates that the approximate Hessian is badly
conditioned then the approximate Hessian is refactorized using column
interchanges. If necessary, R is modified so that its diagonal condition estimator
is bounded.

The final printout includes a listing of the status of every variable and constraint. The following
describes the printout for each variable. A full stop (.) is printed for any numerical value that is zero.

Varbl gives the name (V) and index j, for j ¼ 1; 2; . . . ; n, of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a
fixed variable, LL if on its lower bound, UL if on its upper bound, TF if
temporarily fixed at its current value). If Value lies outside the upper or lower
bounds by more than the Feasibility Tolerance, State will be ++ or --
respectively. (The latter situation can occur only when there is no feasible point
for the bounds and linear constraints.)

A key is sometimes printed before State.

A Alternative optimum possible. The variable is active at one of its bounds, but
its Lagrange multiplier is essentially zero. This means that if the variable
were allowed to start moving away from its bound then there would be no
change to the objective function. The values of the other free variables
might change, giving a genuine alternative solution. However, if there are
any degenerate variables (labelled D), the actual change might prove to be
zero, since one of them could encounter a bound immediately. In either case
the values of the Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of
its bounds.

I Infeasible. The variable is currently violating one of its bounds by more
than the Feasibility Tolerance.

Value is the value of the variable at the final iteration.

Lower Bound is the lower bound specified for the variable. None indicates that
bl½j� 1� � �bigbnd.

Upper Bound is the upper bound specified for the variable. None indicates that
bu½j� 1� � bigbnd.

Lagr Mult is the Lagrange multiplier for the associated bound. This will be zero if State is
FR unless bl½j� 1� � �bigbnd and bu½j� 1� � bigbnd, in which case the entry
will be blank. If x is optimal, the multiplier should be non-negative if State is LL
and non-positive if State is UL.

Slack is the difference between the variable Value and the nearer of its (finite) bounds
bl½j� 1� and bu½j� 1�. A blank entry indicates that the associated variable is not
bounded (i.e., bl½j� 1� � �bigbnd and bu½j� 1� � bigbnd).

The meaning of the printout for linear and nonlinear constraints is the same as that given above for
variables, with ‘variable’ replaced by ‘constraint’, bl½j� 1� and bu½j� 1� are replaced by bl½nþ j� 1�
and bu½nþ j� 1� respectively, and with the following changes in the heading:
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L Con gives the name (L) and index j, for j ¼ 1; 2; . . . ; nL, of the linear constraint.

N Con gives the name (N) and index (j � nL), for j ¼ nL þ 1; . . . ; nL þ nN, of the
nonlinear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Slack column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

10 Example

This example finds the global minimum of the two-dimensional Schwefel function:

minimize
x2R2

f ¼
X2

j¼1

xjsin
ffiffiffiffiffiffiffiffi
xj
�� ��q� �

subject to the constraints:

�10000 < 3:0x1 � 2:0x2 < 10:0;
�1:0 < x2

1 � x2
2 þ 3:0x1x2 < 500000:0;

�0:9 < cos x1=200ð Þ2 þ x2=100ð Þ
� �

< 0:9;

�500 � x1 � 500;
�500 � x2 � 500:

10.1 Program Text

/* nag_glopt_nlp_multistart_sqp (e05ucc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 25, 2014.
*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage05.h>
#include <nagf16.h>
#include <nagg05.h>
#include <nagx04.h>

#ifdef __cplusplus
extern "C" {
#endif

static void NAG_CALL schwefel_obj(Integer *mode, Integer n,
const double *x, double *objf,
double *objgrd, Integer nstate,
Nag_Comm *comm);

static void NAG_CALL schwefel_confun(Integer *mode, Integer ncnln,
Integer n, Integer tdcjsl,
const Integer *needc,
const double *x, double *c,
double *cjsl, Integer nstate,
Nag_Comm *comm);

static void NAG_CALL mystart(Integer npts, double quas[], Integer n,
Nag_Boolean repeat, const double bl[],
const double bu[], Nag_Comm *comm,
Integer *mode);

#ifdef __cplusplus
}
#endif

int main(void)
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{

Integer exit_status = 0;
Integer print_all_solutions = 0;
Integer liopts = 740, lopts = 485, n = 2, nclin = 1, ncnln = 2;

/* Scalars */
Integer i, ic, j, l, nb, npts, tda, ldcjac, sdcjac, ldr, sdr,

ldx, ldobjgrd, ldclamda, ldistate, ldc;

/* Arrays */
static double ruser[3] = {-1.0, -1.0, -1.0};
double *a=0, *bl=0, *bu=0, *c=0, *cjac=0, *clamda=0, *objf=0,

*objgrd=0, *r=0, *opts=0, *work=0, *x=0;
Integer *info=0, *istate=0, *iter=0, *iopts=0;
char nag_enum_arg[40];

/* Nag Types */
NagError fail;
Nag_Comm comm;
Nag_Boolean repeat;

INIT_FAIL(fail);

printf("nag_glopt_nlp_multistart_sqp (e05ucc) Example Program Results\n\n");

/* For communication with user-supplied functions: */
comm.user = ruser;

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

#ifdef _WIN32
scanf_s("%"NAG_IFMT"%"NAG_IFMT"%*[^\n]", &nb, &npts);

#else
scanf("%"NAG_IFMT"%"NAG_IFMT"%*[^\n]", &nb, &npts);

#endif

#ifdef _WIN32
scanf_s("%39s%*[^\n]", nag_enum_arg, _countof(nag_enum_arg));

#else
scanf("%39s%*[^\n]", nag_enum_arg);

#endif
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/

repeat = (Nag_Boolean) nag_enum_name_to_value(nag_enum_arg);

/* The minimum trailing dimension for a is tda = n (or 1). */
if (nclin>0)

{
tda = n;
if (!(a = NAG_ALLOC(nclin*tda, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
}

else
tda = 1;

#define A(I,J) a[(I-1)*tda + (J-1)]
#define X(I,J) x[(J-1)*ldx + (I-1)]
#define ISTATE(I,J) istate[(J-1)*ldistate + (I-1)]
#define CLAMDA(I,J) clamda[(J-1)*ldclamda + (I-1)]
#define C(I,J) c[(J-1)*ldc + (I-1)]
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ldx = n;
ldobjgrd = n;
ldc = ncnln;
ldcjac = ncnln;

if (ncnln>0)
{

sdcjac = n;
if (

!(c = NAG_ALLOC(ldc*nb, double)) ||
!(cjac = NAG_ALLOC(ldcjac*sdcjac*nb, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
}

else
sdcjac = 0;

ldr = n;
sdr = n;
ldclamda = n + nclin + ncnln;
ldistate = n + nclin + ncnln;

if (
!(bl = NAG_ALLOC(n + nclin + ncnln, double)) ||
!(bu = NAG_ALLOC(n + nclin + ncnln, double)) ||
!(clamda = NAG_ALLOC(ldclamda*nb, double)) ||
!(objf = NAG_ALLOC(nb, double)) ||
!(objgrd = NAG_ALLOC(ldobjgrd*nb, double)) ||
!(r = NAG_ALLOC(ldr*sdr*nb, double)) ||
!(opts = NAG_ALLOC(lopts, double)) ||
!(work = NAG_ALLOC(nclin, double)) ||
!(x = NAG_ALLOC(ldx*nb, double)) ||
!(info = NAG_ALLOC(nb, Integer)) ||
!(istate = NAG_ALLOC(ldistate*nb, Integer)) ||
!(iter = NAG_ALLOC(nb, Integer)) ||
!(iopts = NAG_ALLOC(liopts, Integer))
)

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

bl[0] = -500.0;
bl[1] = -500.0;
bl[2] = -10000.0;
bl[3] = -1.0;
bl[4] = -0.9;
bu[0] = 500.0;
bu[1] = 500.0;
bu[2] = 10.0;
bu[3] = 500000.0;
bu[4] = 0.9;
A(1, 1) = 3.0;
A(1, 2) = -2.0;

/* Initialize nag_glopt_nlp_multistart_sqp (e05ucc).
* nag_glopt_opt_set (e05zkc).
* Option setting routine for global optimization.
*/

nag_glopt_opt_set("Initialize = e05ucc", iopts, liopts, opts, lopts, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_glopt_opt_set (e05zkc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
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/* Solve the problem with repeatable random starting points using
* nag_glopt_nlp_multistart_sqp (e05ucc).
* Global optimization using multi-start, nonlinear constraints.
*/

nag_glopt_nlp_multistart_sqp(n, nclin, ncnln, a, tda, bl, bu,
schwefel_confun, schwefel_obj, npts, x, ldx,
mystart, repeat, nb, objf, objgrd, ldobjgrd,
iter, c, ldc, cjac, ldcjac, sdcjac, r, ldr, sdr,
clamda, ldclamda, istate, ldistate, iopts, opts,
&comm, info, &fail);

/* Check for error exits. */
switch (fail.code)

{
case NE_NOERROR:

l = nb;
break;

case NW_SOME_SOLUTIONS:
l = info[nb-1];
printf("Only %"NAG_IFMT" solutions found\n", l);
break;

default:
exit_status = 2;
printf("Error from nag_glopt_nlp_multistart_sqp (e05ucc)\n%s\n",

fail.message);
goto END;

}

for (i=1; i<=l; i++) {
printf("Solution number %"NAG_IFMT"\n\n", i);
printf("Local minimization exited with code %"NAG_IFMT"\n", info[i-1]);
printf("\nVarbl Istate Value Lagr Mult\n\n\n");

for (j=1; j<=n; j++)
printf("V %3"NAG_IFMT" %3"NAG_IFMT" %14.6g %12.4g\n", j, ISTATE(j,i),

X(j,i), CLAMDA(j,i));

if (nclin>0) {
printf("\nL Con Istate Value Lagr Mult\n\n");

/* nag_dgemv (f16pac) performs the matrix vector multiplication A*x
* (linear constraint values) and puts the result in
* the first nclin locations of work.
*/

nag_dgemv(Nag_RowMajor, Nag_NoTrans, nclin, n, 1.0, a, tda, &X(1,i), 1,
0.0, work, 1, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_dgemv (f16pac).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

for (j = n+1; j <= n+nclin; j++)
printf("L %3"NAG_IFMT" %3"NAG_IFMT" %14.6g %12.4g\n", j-n,

ISTATE(j,i), work[j-n-1], CLAMDA(j,i));
}

if (ncnln>0) {
printf("\n\nN Con Istate Value Lagr Mult\n\n");

for (j = n+nclin+1; j <= n+nclin+ncnln; j++) {
ic = j - n - nclin;
printf("N %3"NAG_IFMT" %3"NAG_IFMT" %14.6g %12.4g\n", ic,

ISTATE(j,i), C(ic,i), CLAMDA(j,i));
}

}

printf("\n\nFinal objective value = %15.7g\n", objf[i-1]);

printf("\nQP multipliers\n");
for (j = 1; j <= n+nclin+ncnln; j++)
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printf("%12.4e\n", CLAMDA(j,i));

if (l==1) goto END;

if (print_all_solutions==0) {
printf("\n(Printing of further solutions suppressed)\n");
goto END;

}

printf("\n");
for (j = 0; j < 61; j++)

printf("-");
printf("\n");

}

END:
NAG_FREE(a);
NAG_FREE(bl);
NAG_FREE(bu);
NAG_FREE(c);
NAG_FREE(cjac);
NAG_FREE(clamda);
NAG_FREE(objf);
NAG_FREE(objgrd);
NAG_FREE(r);
NAG_FREE(opts);
NAG_FREE(work);
NAG_FREE(x);
NAG_FREE(info);
NAG_FREE(istate);
NAG_FREE(iter);
NAG_FREE(iopts);
return exit_status;

}

static void NAG_CALL schwefel_obj(Integer *mode, Integer n, const double *x,
double *objf, double *objgrd, Integer nstate,
Nag_Comm *comm)

{
/* Scalars */
Integer i;

#pragma omp master
if (comm->user[0] == -1.0)

{
printf("(User-supplied callback schwefel_obj, first invocation.)\n");
comm->user[0] = 0.0;

}

if (nstate == 1)
{

/* This is the first call.
* Take any special action here if desired.
*/

}

if (*mode==0 || *mode==2) {
/* Evaluate the objective function. */
*objf = 0.0;
for (i = 0; i < n; i++)

*objf += x[i]*sin(sqrt(fabs(x[i])));
}

if (*mode==1 || *mode==2) {
/* Calculate the gradient of the objective function. */
for (i = 0; i < n; i++) {

double t;
t = sqrt(fabs(x[i]));
objgrd[i] = sin(t) + 0.5*t*cos(t);

}
}
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}

static void NAG_CALL schwefel_confun(Integer *mode, Integer ncnln, Integer n,
Integer tdcjsl, const Integer *needc,
const double *x, double *c, double *cjsl,
Integer nstate, Nag_Comm *comm)

{

/* Scalars */
double t1, t2;
Integer k;
Nag_Boolean evalc, evalcjsl;

#pragma omp master
if (comm->user[1] == -1.0)

{
printf("(User-supplied callback schwefel_confun, first invocation.)\n");
comm->user[1] = 0.0;

}

if (nstate == 1)
{

/* This is the first call.
* Take any special action here if desired.
*/

}

/* mode: what is required - constraints, derivatives, or both? */
evalc = (*mode == 0 || *mode == 2) ? Nag_TRUE : Nag_FALSE;
evalcjsl = (*mode == 1 || *mode == 2) ? Nag_TRUE : Nag_FALSE;

for (k = 1; k <= ncnln; k++) {
if (needc[k - 1] <= 0) continue;
if (evalc == Nag_TRUE) {

/* Constraint values are required. */
switch (k) {
case 1:

c[k - 1] = pow(x[0], 2.0) - pow(x[1], 2.0) + 3.0*x[0]*x[1];
break;

case 2:
c[k - 1] = cos(pow((x[0]/200.0), 2.0) + (x[1]/100.0));
break;

default:
/* This constraint is not coded (there are only two).
* Terminate.
*/

*mode = -1;
break;

}
}
if (*mode < 0) break;
if (evalcjsl == Nag_TRUE) {

/* Constraint derivatives are required. */
#define CJSL(K, J) cjsl[(K-1)*tdcjsl + (J-1)]

switch (k) {
case 1:

CJSL(k, 1) = 2.0*x[0] + 3.0*x[1];
CJSL(k, 2) = -2.0*x[1] + 3.0*x[0];
break;

case 2:
t1 = x[0]/200.0;
t2 = x[1]/100.0;
CJSL(k, 1) = -sin(pow(t1, 2.0) + t2) * (2.0*t1)/200.0;
CJSL(k, 2) = -sin(pow(t1, 2.0) + t2)/100.0;
break;

}
#undef CJSL

}
}

}

static void NAG_CALL mystart(Integer npts, double quas[], Integer n,
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Nag_Boolean repeat, const double bl[],
const double bu[], Nag_Comm *comm,
Integer *mode)

{
/* Only nonzero elements of quas need to be specified here. */
Integer i, j;
if (comm->user[2] == -1.0)

{
printf("(User-supplied callback mystart, first invocation.)\n");
comm->user[2] = 0.0;

}
#define QUAS(J, I) quas[(J-1)*npts + (I-1)]

if (repeat == Nag_TRUE) {
/* Generate a uniform spread of points between bl and bu. */
for (j = 1; j <= npts; j++)

for (i = 1; i <= n; i++)
QUAS(i,j) = bl[i-1] + (bu[i-1]-bl[i-1])*(double)(j-1)/(double)(npts-1);

}
else {

/* Generate a non-repeatable spread of points between bl and bu. */
Nag_BaseRNG genid;
Integer lstate, subid;
Integer *state=0;
NagError fail;

INIT_FAIL(fail);

genid = Nag_WichmannHill_I;
subid = 53;
lstate = -1;

nag_rand_init_nonrepeatable(genid, subid, NULL, &lstate, &fail);
if (fail.code != NE_NOERROR) {

*mode = -1;
return;

}

if (!(state = NAG_ALLOC(lstate, Integer))) {
*mode = -1;
return;

}

nag_rand_init_nonrepeatable(genid, subid, state, &lstate, &fail);
if (fail.code != NE_NOERROR) {

*mode = -1;
goto END;

}

for (j = 2; j <= npts; j++)
for (i = 1; i <= n; i++) {

nag_rand_uniform(1, bl[i-1], bu[i-1], state, &QUAS(i, j), &fail);
if (fail.code != NE_NOERROR) {

*mode = -1;
goto END;

}
}

END:
NAG_FREE(state);

}
#undef QUAS
}

10.2 Program Data

nag_glopt_nlp_multistart_sqp (e05ucc) Example Program Data
10 1000 : nb, npts
Nag_TRUE : repeat
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10.3 Program Results

nag_glopt_nlp_multistart_sqp (e05ucc) Example Program Results

(User-supplied callback mystart, first invocation.)
(User-supplied callback schwefel_confun, first invocation.)
(User-supplied callback schwefel_obj, first invocation.)
Solution number 1

Local minimization exited with code 0

Varbl Istate Value Lagr Mult

V 1 0 -394.151 0
V 2 0 -433.491 0

L Con Istate Value Lagr Mult

L 1 0 -315.472 0

N Con Istate Value Lagr Mult

N 1 0 480024 0
N 2 2 0.9 -718.9

Final objective value = -731.7064

QP multipliers
0.0000e+00
0.0000e+00
0.0000e+00
0.0000e+00

-7.1894e+02

(Printing of further solutions suppressed)

11 Algorithmic Details

This section contains a detailed description of the method used by nag_glopt_nlp_multistart_sqp
(e05ucc).

11.1 Overview

nag_glopt_nlp_multistart_sqp (e05ucc) uses a local optimizer that is essentially identical to the function
NPSOL described in Gill et al. (1986b).

For the local optimizer, at a solution of (1), some of the constraints will be active, i.e., satisfied exactly.
An active simple bound constraint implies that the corresponding variable is fixed at its bound, and hence
the variables are partitioned into fixed and free variables. Let C denote the m by n matrix of gradients of
the active general linear and nonlinear constraints. The number of fixed variables will be denoted by nFX,
with nFR nFR ¼ n� nFXð Þ the number of free variables. The subscripts ‘FX’ and ‘FR’ on a vector or
matrix will denote the vector or matrix composed of the elements corresponding to fixed or free
variables.

A point x is a first-order Kuhn–Tucker point for (1) (see Powell (1974)) if the following conditions hold:

(i) x is feasible;

(ii) there exist vectors � and � (the Lagrange multiplier vectors for the bound and general constraints)
such that

g ¼ CT�þ � ð2Þ

where g is the gradient of F evaluated at x, and �j ¼ 0 if the jth variable is free.
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(iii) The Lagrange multiplier corresponding to an inequality constraint active at its lower bound must be
non-negative, and non-positive for an inequality constraint active at its upper bound.

Let Z denote a matrix whose columns form a basis for the set of vectors orthogonal to the rows of CFR;
i.e., CFRZ ¼ 0. An equivalent statement of the condition (2) in terms of Z is

ZTgFR ¼ 0:

The vector ZTgFR is termed the projected gradient of F at x. Certain additional conditions must be
satisfied in order for a first-order Kuhn–Tucker point to be a solution of (1) (see Powell (1974)).

The local optimizer implements a sequential quadratic programming (SQP) method. For an overview of
SQP methods, see, for example, Fletcher (1987), Gill et al. (1981) and Powell (1983).

The basic structure of the local optimizer involves major and minor iterations. The major iterations
generate a sequence of iterates xkf g that converge to x�, a first-order Kuhn–Tucker point of (1). At a
typical major iteration, the new iterate �x is defined by

�x ¼ xþ �p ð3Þ

where x is the current iterate, the non-negative scalar � is the step length, and p is the search direction.
(For simplicity, we shall always consider a typical iteration and avoid reference to the index of the
iteration.) Also associated with each major iteration are estimates of the Lagrange multipliers and a
prediction of the active set.

The search direction p in (3) is the solution of a quadratic programming subproblem of the form

minimize
p

gTpþ 1
2p

THp subject to �l �
p
ALp
ANp

8<
:

9=
; � �u; ð4Þ

where g is the gradient of F at x, the matrix H is a positive definite quasi-Newton approximation to the
Hessian of the Lagrangian function (see Section 11.4), and AN is the Jacobian matrix of c evaluated at x.
(Finite difference estimates may be used for g and AN ; see the optional argument Derivative Level.) Let
l in (1) be partitioned into three sections: lB, lL and lN , corresponding to the bound, linear and nonlinear
constraints. The vector �l in (4) is similarly partitioned, and is defined as

�lB ¼ lB � x; �lL ¼ lL �ALx; and �lN ¼ lN � c;

where c is the vector of nonlinear constraints evaluated at x. The vector �u is defined in an analogous
fashion.

The estimated Lagrange multipliers at each major iteration are the Lagrange multipliers from the
subproblem (4) (and similarly for the predicted active set). (The numbers of bounds, general linear and
nonlinear constraints in the QP active set are the quantities Bnd, Lin and Nln in the monitoring file
output of nag_glopt_nlp_multistart_sqp (e05ucc); see Section 13.) The local optimizer repeatedly solves
as major iterations quadratic programming problems. These are themselves iterative procedures and
comprise the minor iterations. (More details about solving the subproblem are given in Section 11.2.)

Certain matrices associated with the QP subproblem are relevant in the major iterations. Let the
subscripts ‘FX’ and ‘FR’ refer to the predicted fixed and free variables, and let C denote the m by n
matrix of gradients of the general linear and nonlinear constraints in the predicted active set. First, we
have available the TQ factorization of CFR:

CFRQFR ¼ 0 T
� 	

; ð5Þ

where T is a nonsingular m by m reverse-triangular matrix (i.e., tij ¼ 0 if iþ j < m), and the
nonsingular nFR by nFR matrix QFR is the product of orthogonal transformations (see Gill et al. (1984)).
Second, we have the upper triangular Cholesky factor R of the transformed and reordered Hessian
matrix

RTR ¼ HQ � QT ~HQ; ð6Þ

where ~H is the Hessian H with rows and columns permuted so that the free variables are first, and Q is
the n by n matrix
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Q ¼ QFR

IFX

� �
ð7Þ

with IFX the identity matrix of order nFX. If the columns of QFR are partitioned so that

QFR ¼ Z Y
� 	

;

the nZ (nZ � nFR �m) columns of Z form a basis for the null space of CFR. The matrix Z is used to
compute the projected gradient ZTgFR at the current iterate. (The values Nz and Norm Gz printed by
nag_glopt_nlp_multistart_sqp (e05ucc) give nZ and ZTgFRk k; see Section 13.)

A theoretical characteristic of SQP methods is that the predicted active set from the QP subproblem (4)
is identical to the correct active set in a neighbourhood of x�. In the local optimizer underlying
nag_glopt_nlp_multistart_sqp (e05ucc), this feature is exploited by using the QP active set from the
previous iteration as a prediction of the active set for the next QP subproblem, which leads in practice to
optimality of the subproblems in only one iteration as the solution is approached. Separate treatment of
bound and linear constraints in the local optimizer also saves computation in factorizing CFR and HQ.

Once p has been computed, the major iteration proceeds by determining a step length � that produces a
‘sufficient decrease’ in an augmented Lagrangian merit function (see Section 11.3). Finally, the
approximation to the transformed Hessian matrix HQ is updated using a modified BFGS quasi-Newton
update (see Section 11.4) to incorporate new curvature information obtained in the move from x to �x.

On entry to the local optimizer, an iterative procedure is executed, starting with the user-supplied initial
point, to find a point that is feasible with respect to the bounds and linear constraints (using the tolerance
specified by optional argument Linear Feasibility Tolerance). If no feasible point exists for the bound
and linear constraints, (1) has no solution and the local optimizer terminates. Otherwise, the problem
functions will thereafter be evaluated only at points that are feasible with respect to the bounds and
linear constraints. The only exception involves variables whose bounds differ by an amount comparable
to the finite difference interval (see the discussion of optional argument Difference Interval). In contrast
to the bounds and linear constraints, it must be emphasized that the nonlinear constraints will not
generally be satisfied until an optimal point is reached.

Facilities are provided to check whether the user-supplied gradients appear to be correct (see the
description of the optional argument Verify). In general, the check is provided at the first point that is
feasible with respect to the linear constraints and bounds. However, you may request that the check be
performed at the initial point.

In summary, the local method of nag_glopt_nlp_multistart_sqp (e05ucc) first determines a point that
satisfies the bound and linear constraints. Thereafter, each iteration includes:

(a) the solution of a quadratic programming subproblem;

(b) a linesearch with an augmented Lagrangian merit function; and

(c) a quasi-Newton update of the approximate Hessian of the Lagrangian function.

These three procedures are described in more detail in Sections 11.2 to 11.4.

11.2 Solution of the Quadratic Programming Subproblem

The search direction p is obtained by solving (4) using a method (see Gill et al. (1986)) that was
specifically designed to be used within an SQP algorithm for nonlinear programming. This method is
based on a two-phase (primal) quadratic programming method. The two phases of the method are:
finding an initial feasible point by minimizing the sum of infeasibilities (the feasibility phase), and
minimizing the quadratic objective function within the feasible region (the optimality phase). The
computations in both phases are performed by the same functions. The two-phase nature of the algorithm
is reflected by changing the function being minimized from the sum of infeasibilities to the quadratic
objective function.

In general, a quadratic program must be solved by iteration. Let p denote the current estimate of the
solution of (4); the new iterate �p is defined by
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�p ¼ pþ �d ð8Þ

where, as in (3), � is a non-negative step length and d is a search direction.

At the beginning of each iteration of the QP method, a working set is defined of constraints (general and
bound) that are satisfied exactly. The vector d is then constructed so that the values of constraints in the
working set remain unaltered for any move along d. For a bound constraint in the working set, this
property is achieved by setting the corresponding element of d to zero, i.e., by fixing the variable at its
bound. As before, the subscripts ‘FX’ and ‘FR’ denote selection of the elements associated with the
fixed and free variables.

Let C denote the sub-matrix of rows of

AL

AN

� �

corresponding to general constraints in the working set. The general constraints in the working set will
remain unaltered if

CFRdFR ¼ 0; ð9Þ

which is equivalent to defining dFR as

dFR ¼ ZdZ ð10Þ

for some vector dZ, where Z is the matrix associated with the TQ factorization (5) of CFR.

The definition of dZ in (10) depends on whether the current p is feasible. If not, dZ is zero except for an
element � in the jth position, where j and � are chosen so that the sum of infeasibilities is decreasing
along d. (For further details, see Gill et al. (1986).) In the feasible case, dZ satisfies the equations

RT
ZRZdZ ¼ �ZTqFR; ð11Þ

where RZ is the Cholesky factor of ZTHFRZ and q is the gradient of the quadratic objective function
q ¼ gþHpð Þ. (The vector ZTqFR is the projected gradient of the QP.) With (11), pþ d is the minimizer

of the quadratic objective function subject to treating the constraints in the working set as equalities.

If the QP projected gradient is zero, the current point is a constrained stationary point in the subspace
defined by the working set. During the feasibility phase, the projected gradient will usually be zero only
at a vertex (although it may vanish at non-vertices in the presence of constraint dependencies). During
the optimality phase, a zero projected gradient implies that p minimizes the quadratic objective function
when the constraints in the working set are treated as equalities. In either case, Lagrange multipliers are
computed. Given a positive constant 	 of the order of the machine precision, the Lagrange multiplier 
j
corresponding to an inequality constraint in the working set is said to be optimal if 
j � 	 when the jth
constraint is at its upper bound, or if 
j � �	 when the associated constraint is at its lower bound. If any
multiplier is nonoptimal, the current objective function (either the true objective or the sum of
infeasibilities) can be reduced by deleting the corresponding constraint from the working set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is nonzero, no
feasible point exists. The QP algorithm will then continue iterating to determine the minimum sum of
infeasibilities. At this point, the Lagrange multiplier 
j will satisfy � 1þ 	ð Þ � 
j � 	 for an inequality
constraint at its upper bound, and �	 � 
j � 1þ 	ð Þ for an inequality at its lower bound. The Lagrange
multiplier for an equality constraint will satisfy 
j

�� �� � 1þ 	.

The choice of step length � in the QP iteration (8) is based on remaining feasible with respect to the
satisfied constraints. During the optimality phase, if pþ d is feasible, � will be taken as unity. (In this
case, the projected gradient at �p will be zero.) Otherwise, � is set to �M, the step to the ‘nearest’
constraint, which is added to the working set at the next iteration.

Each change in the working set leads to a simple change to CFR: if the status of a general constraint
changes, a row of CFR is altered; if a bound constraint enters or leaves the working set, a column of CFR

changes. Explicit representations are recurred of the matrices T , QFR and R, and of the vectors QTq and
QTg.
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11.3 The Merit Function

After computing the search direction as described in Section 11.2, each major iteration proceeds by
determining a step length � in (3) that produces a ‘sufficient decrease’ in the augmented Lagrangian
merit function

L x; �; sð Þ ¼ F xð Þ �
X
i

�i ci xð Þ � sið Þ þ 1
2

X
i

�i ci xð Þ � sið Þ2; ð12Þ

where x, � and s vary during the linesearch. The summation terms in (12) involve only the nonlinear
constraints. The vector � is an estimate of the Lagrange multipliers for the nonlinear constraints of (1).
The non-negative slack variables sif g allow nonlinear inequality constraints to be treated without
introducing discontinuities. The solution of the QP subproblem (4) provides a vector triple that serves as
a direction of search for the three sets of variables. The non-negative vector � of penalty arguments is
initialized to zero at the beginning of the first major iteration. Thereafter, selected elements are increased
whenever necessary to ensure descent for the merit function. Thus, the sequence of norms of � (the
printed quantity Penalty; see Section 13) is generally nondecreasing, although each �i may be reduced
a limited number of times.

The merit function (12) and its global convergence properties are described in Gill et al. (1986a).

11.4 The Quasi-Newton Update

The matrix H in (4) is a positive definite quasi-Newton approximation to the Hessian of the Lagrangian
function. (For a review of quasi-Newton methods, see Dennis and Schnabel (1983).) At the end of each
major iteration, a new Hessian approximation �H is defined as a rank-two modification of H. In the local
optimizer used by nag_glopt_nlp_multistart_sqp (e05ucc), the BFGS (Broyden–Fletcher–Goldfarb–
Shanno) quasi-Newton update is used:

�H ¼ H � 1

sTHs
HssTH þ 1

yTs
yyT; ð13Þ

where s ¼ �x� x (the change in x).

In the local optimizer, H is required to be positive definite. If H is positive definite, �H defined by (13)
will be positive definite if and only if yTs is positive (see Dennis and Moré (1977)). Ideally, y in (13)
would be taken as yL, the change in gradient of the Lagrangian function

yL ¼ �g� �AT
N
N � gþAT

N
N; ð14Þ

where 
N denotes the QP multipliers associated with the nonlinear constraints of the original problem. If
yT
Ls is not sufficiently positive, an attempt is made to perform the update with a vector y of the form

y ¼ yL þ
XmN

i¼1

!i ai x̂ð Þci x̂ð Þ � ai xð Þci xð Þð Þ;

where !i � 0. If no such vector can be found, the update is performed with a scaled yL; in this case, M is
printed to indicate that the update was modified.

Rather than modifying H itself, the Cholesky factor of the transformed Hessian HQ (6) is updated,
where Q is the matrix from (5) associated with the active set of the QP subproblem. The update (13) is
equivalent to the following update to HQ:

�HQ ¼ HQ �
1

sT
QHQsQ

HQsQs
T
QHQ þ

1

yT
QsQ

yQy
T
Q; ð15Þ

where yQ ¼ QTy, and sQ ¼ QTs. This update may be expressed as a rank-one update to R (see Dennis
and Schnabel (1981)).
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12 Optional Arguments

Several optional arguments in nag_glopt_nlp_multistart_sqp (e05ucc) define choices in the problem
specification or the algorithm logic. In order to reduce the number of formal arguments of
nag_glopt_nlp_multistart_sqp (e05ucc) these optional arguments have associated default values that
are appropriate for most problems. Therefore you need only specify those optional arguments whose
values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
arguments. The following is a list of the optional arguments available and a full description of each
optional argument is provided in Section 12.1.

Central Difference Interval

Crash Tolerance

Defaults

Derivative Level

Difference Interval

Feasibility Tolerance

Function Precision

Hessian

Infinite Bound Size

Infinite Step Size

Iteration Limit

Iters

Itns

Linear Feasibility Tolerance

Line Search Tolerance

List

Major Iteration Limit

Major Print Level

Minor Iteration Limit

Minor Print Level

Monitoring File

Nolist

Nonlinear Feasibility Tolerance

Optimality Tolerance

Out_Level

Print Level

Punch Unit

Start Constraint Check At Variable

Start Objective Check At Variable

Step Limit

Stop Constraint Check At Variable

Stop Objective Check At Variable

Verify

Verify Constraint Gradients

Verify Gradients

Verify Level

Verify Objective Gradients
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Optional arguments may be specified by calling nag_glopt_opt_set (e05zkc) before a call to
nag_glopt_nlp_multistart_sqp (e05ucc). Before calling nag_glopt_nlp_multistart_sqp (e05ucc), the
o p t i o na l a rg um e n t a r r a y s i opts a n d opts M U S T b e i n i t i a l i z e d f o r us e w i t h
nag_glopt_nlp_multistart_sqp (e05ucc) by calling nag_glopt_opt_set (e05zkc) with optstr set to
‘Initialize = e05ucc’.

All optional arguments not specified are set to their default values. Optional arguments specified are
unaltered by nag_glopt_nlp_multistart_sqp (e05ucc) (unless they define invalid values) and so remain in
effect for subsequent calls to nag_glopt_nlp_multistart_sqp (e05ucc).

12.1 Description of the Optional Arguments

For each option, we give a summary line, a description of the optional argument and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined (if no characters of
an optional qualifier are underlined, the qualifier may be omitted)

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively

the default value, where the symbol � is a generic notation for machine precision (see
nag_machine_precision (X02AJC)), and �r denotes the relative precision of the objective function
Function Precision, and bigbnd signifies the value of Infinite Bound Size

Keywords and character values are case insensitive, however they must be separated by at least one
whitespace.

Optional arguments used to specify files have type Nag_FileID (see Section 3.2.1.1 in the Essential
Introduction). This ID value must either be set to 0 (the default value) in which case there will be no
output, or will be as returned by a call of nag_open_file (x04acc).

For nag_glopt_nlp_multistart_sqp (e05ucc) the maximum length of the argument cvalue used by
nag_glopt_opt_get (e05zlc) is 11.

Central Difference Interval r Default values are computed

If the algorithm switches to central differences because the forward-difference approximation is not
sufficiently accurate, the value of r is used as the difference interval for every element of x. The switch
to central differences is indicated by C at the end of each line of intermediate printout produced by the
major iterations (see Section 9.1). The use of finite differences is discussed further under the optional
argument Difference Interval.

If you supply a value for this optional argument, a small value between 0:0 and 1:0 is appropriate.

Crash Tolerance r Default ¼ 0:01

This value is used when the local minimizer selects an initial working set. If 0 � r � 1, the initial
working set will include (if possible) bounds or general inequality constraints that lie within r of their
bounds. In particular, a constraint of the form aT

j x � l will be included in the initial working set if

aT
j x� l

��� ��� � r 1þ lj jð Þ. If r < 0 or r > 1, the default value is used.

Defaults

This special keyword is used to reset all optional arguments to their default values, and any random state
stored in state will be destroyed.

Any option value given with this keyword will be ignored. This optional argument cannot be queried or
got.
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Derivative Level i Default ¼ 3

This argument indicates which derivatives are provided in user-supplied functions objfun and confun.
The possible choices for i are the following.

i Meaning

3 All elements of the objective gradient and the constraint Jacobian are provided.

2 All elements of the constraint Jacobian are provided, but some elements of the objective gradient are
not specified.

1 All elements of the objective gradient are provided, but some elements of the constraint Jacobian are
not specified.

0 Some elements of both the objective gradient and the constraint Jacobian are not specified.

The value i ¼ 3 should be used whenever possible, since nag_glopt_nlp_multistart_sqp (e05ucc) is more
reliable (and will usually be more efficient) when all derivatives are exact.

If i ¼ 0 or 2, nag_glopt_nlp_multistart_sqp (e05ucc) will estimate the unspecified elements of the
objective gradient, using finite differences. The computation of finite difference approximations usually
increases the total run-time, since a call to objfun is required for each unspecified element. Furthermore,
less accuracy can be attained in the solution (see Chapter 8 of Gill et al. (1981), for a discussion of
limiting accuracy).

If i ¼ 0 or 1, nag_glopt_nlp_multistart_sqp (e05ucc) will approximate unspecified elements of the
constraint Jacobian. One call to confun is needed for each variable for which partial derivatives are not
available. For example, if the Jacobian has the form

� � � �
� ? ? �
� � ? �
� � � �

0
B@

1
CA

where ‘�’ indicates an element provided by you and ‘?’ indicates an unspecified element, the local
minimizer will call confun twice: once to estimate the missing element in column 2, and again to
estimate the two missing elements in column 3. (Since columns 1 and 4 are known, they require no calls
to confun.)

At times, central differences are used rather than forward differences, in which case twice as many calls
to objfun and confun are needed. (The switch to central differences is not under your control.)

If i < 0 or i > 3, the default value is used.

Difference Interval r Default values are computed

This option defines an interval used to estimate derivatives by finite differences in the following
circumstances:

(a) For verifying the objective and/or constraint gradients (see the description of the optional argument
Verify).

(b) For estimating unspecified elements of the objective gradient or the constraint Jacobian.

In general, a derivative with respect to the jth variable is approximated using the interval 	j, where
	j ¼ r 1þ x̂j

�� ��� 	
, with x̂ the first point feasible with respect to the bounds and linear constraints. If the

functions are well scaled, the resulting derivative approximation should be accurate to O rð Þ. See Gill et
al. (1981) for a discussion of the accuracy in finite difference approximations.

If a difference interval is not specified, a finite difference interval will be computed automatically for
each variable by a procedure that requires up to six calls of confun and objfun for each element. This
option is recommended if the function is badly scaled or you wish to have the local minimizer determine
constant elements in the objective and constraint gradients (see the descriptions of confun and objfun in
Section 5).

If you supply a value for this optional argument, a small value between 0:0 and 1:0 is appropriate.
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Feasibility Tolerance r Default ¼
ffiffi
�
p

The scalar r defines the maximum acceptable absolute violations in linear and nonlinear constraints at a
‘feasible’ point; i.e., a constraint is considered satisfied if its violation does not exceed r. If r < � or
r � 1, the default value is used. Using this keyword sets both optional arguments
Linear Feasibility Tolerance and Nonlinear Feasibility Tolerance to r, if � � r < 1. (Additional
details are given under the descriptions of these optional arguments.)

Function Precision r Default ¼ �0:9

This argument defines �r, which is intended to be a measure of the accuracy with which the problem
functions F xð Þ and c xð Þ can be computed. If r < � or r � 1, the default value is used.

The value of �r should reflect the relative precision of 1þ F xð Þj j; i.e., �r acts as a relative precision
when Fj j is large, and as an absolute precision when Fj j is small. For example, if F xð Þ is typically of
order 1000 and the first six significant digits are known to be correct, an appropriate value for �r would
be 10�6. In contrast, if F xð Þ is typically of order 10�4 and the first six significant digits are known to be
correct, an appropriate value for �r would be 10�10. The choice of �r can be quite complicated for badly
scaled problems; see Chapter 8 of Gill et al. (1981) for a discussion of scaling techniques. The default
value is appropriate for most simple functions that are computed with full accuracy. However, when the
accuracy of the computed function values is known to be significantly worse than full precision, the
value of �r should be large enough so that nag_glopt_nlp_multistart_sqp (e05ucc) will not attempt to
distinguish between function values that differ by less than the error inherent in the calculation.

Hessian a Default ¼ NO

This option controls the contents of the upper triangular matrix R (see Section 5).
nag_glopt_nlp_multistart_sqp (e05ucc) works exclusively with the transformed and reordered Hessian
HQ (6), and hence extra computation is required to form the Hessian itself. If Hessian ¼ NO, r contains
the Cholesky factor of the transformed and reordered Hessian. If Hessian ¼ YES, the Cholesky factor of
the approximate Hessian itself is formed and stored in r.

Infinite Bound Size r Default ¼ 1020

This defines the ‘infinite’ bound infbnd in the definition of the problem constraints. Any upper bound
greater than or equal to infbnd will be regarded as 1 (and similarly any lower bound less than or equal
to �infbnd will be regarded as �1).

Constraint: r
1
4
max � infbnd � r

1
2
max .

Infinite Step Size r Default ¼ max bigbnd; 1020
� 	

If r > 0, r specifies the magnitude of the change in variables that is treated as a step to an unbounded
solution. If the change in x during an iteration would exceed the value of r, the objective function is
considered to be unbounded below in the feasible region. If r � 0, the default value is used.

Line Search Tolerance r Default ¼ 0:9

The value r (0 � r < 1) controls the accuracy with which the step � taken during each iteration
approximates a minimum of the merit function along the search direction (the smaller the value of r, the
more accurate the linesearch). The default value r ¼ 0:9 requests an inaccurate search, and is appropriate
for most problems, particularly those with any nonlinear constraints.

If there are no nonlinear constraints, a more accurate search may be appropriate when it is desirable to
reduce the number of major iterations – for example, if the objective function is cheap to evaluate, or if
a substantial number of derivatives are unspecified. If r < 0 or r � 1, the default value is used.

Linear Feasibility Tolerance r1 Default ¼
ffiffi
�
p

Nonlinear Feasibility Tolerance r2 Default ¼ �0:33 or
ffiffi
�
p

The default value of r2 is �0:33 if Derivative Level ¼ 0 or 1, and
ffiffi
�
p

otherwise.
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The scalars r1 and r2 define the maximum acceptable absolute violations in linear and nonlinear
constraints at a ‘feasible’ point; i.e., a linear constraint is considered satisfied if its violation does not
exceed r1, and similarly for a nonlinear constraint and r2. If rm < � or rm � 1, the default value is used,
for m ¼ 1; 2.

On entry to the local optimizer an iterative procedure is executed in order to find a point that satisfies the
linear constraints and bounds on the variables to within the tolerance r1. All subsequent iterates will
satisfy the linear constraints to within the same tolerance (unless r1 is comparable to the finite difference
interval).

For nonlinear constraints, the feasibility tolerance r2 defines the largest constraint violation that is
acceptable at an optimal point. Since nonlinear constraints are generally not satisfied until the final
iterate, the value of optional argument Nonlinear Feasibility Tolerance acts as a partial termination
criterion for the iterative sequence generated by the local minimizer (see the discussion of optional
argument Optimality Tolerance).

These tolerances should reflect the precision of the corresponding constraints. For example, if the
variables and the coefficients in the linear constraints are of order unity, and the latter are correct to
about 6 decimal digits, it would be appropriate to specify r1 as 10�6.

List
Nolist Default

For nag_glopt_nlp_multistart_sqp (e05ucc), normally each optional argument specification is not printed
as it is supplied. Optional argument Nolist may be used to suppress the printing and optional argument
List may be used to turn on printing.

Major Iteration Limit i Default ¼ max 50; 3 nþ nLð Þ þ 10nNð Þ
Iteration Limit
Iters
Itns

The value of i specifies the maximum number of major iterations allowed before termination of each
local subproblem. Setting i ¼ 0 and Major Print Level > 0 means that the workspace needed by each
local minimization will be computed and printed, but no iterations will be performed. If i < 0, the
default value is used.

Major Print Level i Default ¼ 0
Print Level i

The value of i controls the amount of printout produced by the major iterations of
nag_glopt_nlp_multistart_sqp (e05ucc), as indicated below. A detailed description of the printed output
is given in Section 9.1 (summary output at each major iteration and the final solution) and Section 13
(monitoring information at each major iteration). (See also the description of the optional argument
Minor Print Level.)

The following printout is sent to stdout:

i Output

0 No output.

For the other values described below, the arguments used by the local minimizer are displayed in
addition to intermediate and final output.

i Output

1 The final solution only.

5 One line of summary output ( < 80 characters; see Section 9.1) for each major iteration (no
printout of the final solution).

� 10 The final solution and one line of summary output for each major iteration.
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The following printout is sent to the file associated with the FileID defined by the optional argument
Monitoring File:

i Output

< 5 No output.

� 5 One long line of output ( > 80 characters; see Section 13) for each major iteration (no printout
of the final solution).

� 20 At each major iteration, the objective function, the Euclidean norm of the nonlinear constraint
violations, the values of the nonlinear constraints (the vector c), the values of the linear
constraints (the vector ALx), and the current values of the variables (the vector x).

� 30 At each major iteration, the diagonal elements of the matrix T associated with the TQ
factorization (5) (see Section 11.1) of the QP working set, and the diagonal elements of R, the
triangular factor of the transformed and reordered Hessian (6) (see Section 11.1).

Minor Iteration Limit i Default ¼ max 50; 3 nþ nL þ nNð Þð Þ
The value of i specifies the maximum number of iterations for finding a feasible point with respect to the
bounds and linear constraints (if any). The value of i also specifies the maximum number of minor
iterations for the optimality phase of each QP subproblem. If i � 0, the default value is used.

Minor Print Level i Default ¼ 0

The value of i controls the amount of printout produced by the minor iterations of
nag_glopt_nlp_multistart_sqp (e05ucc) (i.e., the iterations of the quadratic programming algorithm), as
indicated below. A detailed description of the printed output is given in Section 9.1 (summary output at
each minor iteration and the final QP solution) and Section 13 (monitoring information at each minor
iteration). (See also the description of the optional argument Major Print Level.) The following printout
is sent to stdout:

i Output

0 No output.

1 The final QP solution only.

5 One line of summary output ( < 80 characters; see Section 9.1) for each minor iteration (no
printout of the final QP solution).

� 10 The final QP solution and one line of summary output for each minor iteration.

The following printout is sent to the file associated with the FileID defined by the optional argument
Monitoring File:

i Output

< 5 No output.

� 5 One long line of output ( > 80 characters; see Section 9.1) for each minor iteration (no printout
of the final QP solution).

� 20 At each minor iteration, the current estimates of the QP multipliers, the current estimate of the
QP search direction, the QP constraint values, and the status of each QP constraint.

� 30 At each minor iteration, the diagonal elements of the matrix T associated with the TQ
factorization (5) (see Section 11.1) of the QP working set, and the diagonal elements of the
Cholesky factor R of the transformed Hessian (6) (see Section 11.1).

Monitoring File Default ¼ �1

(See Section 3.2.1.1 in the Essential Introduction for further information on NAG data types.)

i is of the type Nag_FileID and is obtained by a call to nag_open_file (x04acc).
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If i � 0 and Major Print Level � 5 or i � 0 and Minor Print Level � 5, monitoring information
produced by nag_glopt_nlp_multistart_sqp (e05ucc) at every iteration is sent to a file with ID i. If i < 0
and/or Major Print Level < 5 and Minor Print Level < 5, no monitoring information is produced.

Optimality Tolerance r Default ¼ �0:8
R

The argument r (�R � r < 1) specifies the accuracy to which you wish the final iterate to approximate a
solution of each local problem. Broadly speaking, r indicates the number of correct figures desired in the
objective function at the solution. For example, if r is 10�6 and a local minimization terminates
successfully, the final value of F should have approximately six correct figures. If r < �r or r � 1, the
default value is used.

The local optimizer will terminate successfully if the iterative sequence of x values is judged to have
converged and the final point satisfies the first-order Kuhn–Tucker conditions (see Section 11.1). The
sequence of iterates is considered to have converged at x if

� pk k �
ffiffiffi
r
p

1þ xk kð Þ; ð16Þ

where p is the search direction and � the step length from (3). An iterate is considered to satisfy the first-
order conditions for a minimum if

ZTgFR



 

 � ffiffiffi
r
p

1þmax 1þ F xð Þj j; gFRk kð Þð Þ ð17Þ

and

resj
�� �� � ftol for all j; ð18Þ

where ZTgFR is the projected gradient (see Section 11.1), gFR is the gradient of F xð Þ with respect to the
free variables, resj is the violation of the jth active nonlinear constraint, and ftol is the
Nonlinear Feasibility Tolerance.

Out Level i Default ¼ 0

This option defines the amount of extra information to be sent to the Fortran unit number defined by
Punch Unit. The possible choices for i are the following:

i Meaning

0 No extra output.

1 Updated solutions only. This is useful during long runs to observe progress.

2 Successful start points only. This is useful to save the starting points that gave rise to the final
solution.

3 Both updated solutions and successful start points.

Punch Unit i Default ¼ 6

This option allows you to send information arising from an appropriate setting of Out Level to be sent
to the Fortran unit number defined by Punch Unit. If you wish this file to be different to the standard
output unit (6) where other output is displayed then this file should be attached by calling nag_open_file
(x04acc) prior to calling nag_glopt_nlp_multistart_sqp (e05ucc).

Start Objective Check At Variable i1 Default ¼ 1
Stop Objective Check At Variable i2 Default ¼ n
Start Constraint Check At Variable i3 Default ¼ 1
Stop Constraint Check At Variable i4 Default ¼ n
These keywords take effect only if Verify Level > 0. They may be used to control the verification of
gradient elements computed by objfun and/or Jacobian elements computed by confun. For example, if
the first 30 elements of the objective gradient appeared to be correct in an earlier run, so that only
element 31 remains questionable, it is reasonable to specify Start Objective Check At Variable ¼ 31.
If the first 30 variables appear linearly in the objective, so that the corresponding gradient elements are
constant, the above choice would also be appropriate.
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If i2m�1 � 0 or i2m�1 > min n; i2mð Þ, the default value is used, for m ¼ 1; 2. If i2m � 0 or i2m > n, the
default value is used, for m ¼ 1; 2.

Step Limit r Default ¼ 2:0

If r > 0; r specifies the maximum change in variables at the first step of the linesearch. In some cases,
such as F xð Þ ¼ aebx or F xð Þ ¼ axb, even a moderate change in the elements of x can lead to floating-
point overflow. The argument r is therefore used to encourage evaluation of the problem functions at
meaningful points. Given any major iterate x, the first point ~x at which F and c are evaluated during the
linesearch is restricted so that

~x� xk k2 � r 1þ xk k2

� 	
:

The linesearch may go on and evaluate F and c at points further from x if this will result in a lower
value of the merit function (indicated by L at the end of each line of output produced by the major
iterations; see Section 9.1). If L is printed for most of the iterations, r should be set to a larger value.

Wherever possible, upper and lower bounds on x should be used to prevent evaluation of nonlinear
functions at wild values. The default value Step Limit ¼ 2:0 should not affect progress on well-behaved
functions, but values such as 0:1 or 0:01 may be helpful when rapidly varying functions are present. If a
small value of Step Limit is selected, a good starting point may be required. An important application is
to the class of nonlinear least squares problems. If r � 0, the default value is used.

Verify Level i Default ¼ 0
Verify i
Verify Constraint Gradients i
Verify Gradients i
Verify Objective Gradients i

These keywords refer to finite difference checks on the gradient elements computed by objfun and
confun. The possible choices for i are as follows:

i Meaning

�1 No checks are performed.

0 Only a ‘cheap’ test will be performed.

� 1 Individual gradient elements will also be checked using a reliable (but more expensive) test.

It is possible to specify Verify Level ¼ 0 to 3 in several ways. For example, the nonlinear objective
gradient (if any) will be verified if either Verify Objective Gradients or Verify Level ¼ 1 is specified.
The constraint gradients will be verified if Verify ¼ YES or Verify Level ¼ 2 or Verify is specified.
Similarly, the objective and the constraint gradients will be verified if Verify ¼ YES or
Verify Level ¼ 3 or Verify is specified.

If 0 � i � 3, gradients will be verified at the first point that satisfies the linear constraints and bounds.

If i ¼ 0, only a ‘cheap’ test will be performed, requiring one call to objfun and (if appropriate) one call
to confun.

If 1 � i � 3, a more reliable (but more expensive) check will be made on individual gradient elements,
w i t h i n t h e r a n g e s s p e c i fi e d b y t h e Start Constraint Check At Variable a n d
Stop Constraint Check At Variable keywords. A result of the form OK or BAD? is printed by
nag_glopt_nlp_multistart_sqp (e05ucc) to indicate whether or not each element appears to be correct.

If 10 � i � 13, the action is the same as for i� 10, except that it will take place at the user-specified
initial value of x.

If i < �1 or 4 � i � 9 or i > 13, the default value is used.

We suggest that Verify Level ¼ 3 be used whenever a new function function is being developed.

e05 – Global Optimization of a Function e05ucc

Mark 25 e05ucc.35



13 Description of Monitoring Information

This section describes the long line of output ( > 80 characters) which forms part of the monitoring
information produced by nag_glopt_nlp_multistart_sqp (e05ucc). (See also the description of the
optional arguments Major Print Level, Minor Print Level and Monitoring File.) You can control the
level of printed output.

When Major Print Level � 5 and Monitoring File � 0, the following line of output is produced at
every major iteration of nag_glopt_nlp_multistart_sqp (e05ucc) on the file specified by Monitoring File.
In all cases, the values of the quantities printed are those in effect on completion of the given iteration.

Maj is the major iteration count.

Mnr is the number of minor iterations required by the feasibility and optimality phases
of the QP subproblem. Generally, Mnr will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see Section 11). Note that Mnr may be greater than the optional argument
Minor Iteration Limit if some iterations are required for the feasibility phase.

Step is the step �k taken along the computed search direction. On reasonably well-
behaved local problems, the unit step (i.e., �k ¼ 1) will be taken as the solution is
approached.

Nfun is the cumulative number of evaluations of the objective function needed for the
linesearch. Evaluations needed for the estimation of the gradients by finite
differences are not included. Nfun is printed as a guide to the amount of work
required for the linesearch.

Merit Function is the value of the augmented Lagrangian merit function (12) at the current iterate.
This function will decrease at each iteration unless it was necessary to increase the
penalty arguments (see Section 11.3). As the solution is approached, Merit
Function will converge to the value of the objective function at the solution.

If the QP subproblem does not have a feasible point (signified by I at the end of
the current output line) then the merit function is a large multiple of the constraint
violations, weighted by the penalty arguments. During a sequence of major
iterations with infeasible subproblems, the sequence of Merit Function values
will decrease monotonically until either a feasible subproblem is obtained or the
local optimizer terminates. Repeated failures will prevent a feasible point being
found for the nonlinear constraints.

If there are no nonlinear constraints present (i.e., ncnln ¼ 0) then this entry
contains Objective, the value of the objective function F xð Þ. The objective
function will decrease monotonically to its optimal value when there are no
nonlinear constraints.

Norm Gz is ZTgFRk k, the Euclidean norm of the projected gradient (see Section 11.2). Norm
Gz will be approximately zero in the neighbourhood of a solution.

Violtn is the Euclidean norm of the residuals of constraints that are violated or in the
predicted active set (not printed if ncnln is zero). Violtn will be approximately
zero in the neighbourhood of a solution.

Nz is the number of columns of Z (see Section 11.2). The value of Nz is the number
of variables minus the number of constraints in the predicted active set; i.e.,
Nz ¼ n� Bndþ Linþ Nlnð Þ.

Bnd is the number of simple bound constraints in the predicted active set.

Lin is the number of general linear constraints in the predicted working set.

Nln is the number of nonlinear constraints in the predicted active set (not printed if
ncnln is zero).

Penalty is the Euclidean norm of the vector of penalty arguments used in the augmented
Lagrangian merit function (not printed if ncnln is zero).
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Cond H is a lower bound on the condition number of the Hessian approximation H.

Cond Hz is a lower bound on the condition number of the projected Hessian approximation
HZ (HZ ¼ ZTHFRZ ¼ RT

ZRZ; see (6)). The larger this number, the more difficult
the local problem.

Cond T is a lower bound on the condition number of the matrix of predicted active
constraints.

Conv is a three-letter indication of the status of the three convergence tests (16)–(18)
defined in the description of the optional argument Optimality Tolerance. Each
letter is T if the test is satisfied and F otherwise. The three tests indicate whether:

(i) the sequence of iterates has converged;

(ii) the projected gradient (Norm Gz) is sufficiently small; and

(iii) the norm of the residuals of constraints in the predicted active set (Violtn) is
small enough.

If any of these indicators is F for a successful local minimization you should
check the solution carefully.

M is printed if the quasi-Newton update has been modified to ensure that the Hessian
approximation is positive definite (see Section 11.4).

I is printed if the QP subproblem has no feasible point.

C is printed if central differences have been used to compute the unspecified
objective and constraint gradients. If the value of Step is zero then the switch to
central differences was made because no lower point could be found in the
linesearch. (In this case, the QP subproblem is resolved with the central difference
gradient and Jacobian.) If the value of Step is nonzero then central differences
were computed because Norm Gz and Violtn imply that x is close to a Kuhn–
Tucker point (see Section 11.1).

L is printed if the linesearch has produced a relative change in x greater than the
value defined by the optional argument Step Limit. If this output occurs
frequently during later iterations of the run, optional argument Step Limit should
be set to a larger value.

R is printed if the approximate Hessian has been refactorized. If the diagonal
condition estimator of R indicates that the approximate Hessian is badly
conditioned then the approximate Hessian is refactorized using column
interchanges. If necessary, R is modified so that its diagonal condition estimator
is bounded.
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