
NAG Library Function Document

nag_glopt_bnd_mcs_solve (e05jbc)

Note: this function uses optional arguments to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional arguments, you need only
read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings please
refer to Section 11 for a detailed description of the algorithm, and to Section 12 for a detailed description
of the specification of the optional arguments.

1 Purpose

nag_glopt_bnd_mcs_solve (e05jbc) is designed to find the global minimum or maximum of an arbitrary
function, subject to simple bound-constraints using a multi-level coordinate search method. Derivatives
are not required, but convergence is only guaranteed if the objective function is continuous in a
neighbourhood of a global optimum. It is not intended for large problems.

The initialization function nag_glopt_bnd_mcs_init (e05jac) must have been called before calling
nag_glopt_bnd_mcs_solve (e05jbc).

2 Specification

#include <nag.h>
#include <nage05.h>

void nag_glopt_bnd_mcs_solve (Integer n,

void (*objfun)(Integer n, const double x[], double *f, Integer nstate,
Nag_Comm *comm, Integer *inform),

Nag_BoundType bound, Nag_MCSInitMethod initmethod, double bl[],
double bu[], Integer sdlist, double list[], Integer numpts[],
Integer initpt[],

void (*monit)(Integer n, Integer ncall, const double xbest[],
const Integer icount[], Integer ninit, const double list[],
const Integer numpts[], const Integer initpt[], Integer nbaskt,
const double xbaskt[], const double boxl[], const double boxu[],
Integer nstate, Nag_Comm *comm, Integer *inform),

double x[], double *obj, Nag_E05State *state, Nag_Comm *comm,
NagError *fail)

nag_glopt_bnd_mcs_init (e05jac) must be called before calling nag_glopt_bnd_mcs_solve (e05jbc), or
any of the option-setting or option-getting functions:

nag_glopt_bnd_mcs_optset_file (e05jcc),

nag_glopt_bnd_mcs_optset_string (e05jdc),

nag_glopt_bnd_mcs_optset_char (e05jec),

nag_glopt_bnd_mcs_optset_int (e05jfc),

nag_glopt_bnd_mcs_optset_real (e05jgc),

nag_glopt_bnd_mcs_option_check (e05jhc),

nag_glopt_bnd_mcs_optget_int (e05jkc) or

nag_glopt_bnd_mcs_optget_real (e05jlc).

You must not alter the number of non-fixed variables in your problem or the contents of state between
calls of the functions:

nag_glopt_bnd_mcs_init (e05jac),

nag_glopt_bnd_mcs_solve (e05jbc),
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nag_glopt_bnd_mcs_optset_file (e05jcc),

nag_glopt_bnd_mcs_optset_string (e05jdc),

nag_glopt_bnd_mcs_optset_char (e05jec),

nag_glopt_bnd_mcs_optset_int (e05jfc),

nag_glopt_bnd_mcs_optset_real (e05jgc),

nag_glopt_bnd_mcs_option_check (e05jhc),

nag_glopt_bnd_mcs_optget_int (e05jkc) or

nag_glopt_bnd_mcs_optget_real (e05jlc).

3 Description

nag_glopt_bnd_mcs_solve (e05jbc) is designed to solve modestly sized global optimization problems
having simple bound-constraints only; it finds the global optimum of a nonlinear function subject to a set
of bound constraints on the variables. Without loss of generality, the problem is assumed to be stated in
the following form:

minimize
x2Rn

F xð Þ subject to l � x � u and l � u;

where F xð Þ (the objective function) is a nonlinear scalar function (assumed to be continuous in a
neighbourhood of a global minimum), and the bound vectors are elements of �Rn, where �R denotes the
extended reals R [ �1;1f g. Relational operators between vectors are interpreted elementwise.

The optional argument Maximize should be set if you wish to solve maximization, rather than
minimization, problems.

If certain bounds are not present, the associated elements of l or u can be set to special values that will
be treated as �1 or þ1. See the description of the optional argument Infinite Bound Size. Phrases in
this document containing terms like ‘unbounded values’ should be understood to be taken relative to this
optional argument.

Fixing variables (that is, setting li ¼ ui for some i) is allowed in nag_glopt_bnd_mcs_solve (e05jbc).

A typical excerpt from a function calling nag_glopt_bnd_mcs_solve (e05jbc) is:

nag_glopt_bnd_mcs_init(n_r, &state, ...);
nag_glopt_bnd_mcs_optset_string(optstr, &state, ...);
nag_glopt_bnd_mcs_solve(n, objfun, ...);

where nag_glopt_bnd_mcs_optset_string (e05jdc) sets the optional argument and value specified in
optstr.

The initialization function nag_glopt_bnd_mcs_init (e05jac) does not need to be called before each
invocation of nag_glopt_bnd_mcs_solve (e05jbc). You should be aware that a call to the initialization
function will reset each optional argument to its default value, and, if you are using repeatable
randomized initialization lists (see the description of the argument initmethod), the random state stored
in state will be destroyed.

You must supply a function that evaluates F xð Þ; derivatives are not required.

The method used by nag_glopt_bnd_mcs_solve (e05jbc) is based on MCS, the Multi-level Coordinate
Search method described in Huyer and Neumaier (1999), and the algorithm it uses is described in detail
in Section 11.

4 References

Huyer W and Neumaier A (1999) Global optimization by multi-level coordinate search Journal of Global
Optimization 14 331–355
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5 Arguments

Note: for convenience the subarray notation a i : j; k : lð Þ, as described in Section 3.2.1.4 in the Essential
Introduction, is used. Using this notation, the term ‘column index’ refers to the index j in LIST i; jð Þ, say
(see list for the definition of LIST).

1: n – Integer Input

On entry: n, the number of variables.

Constraint: n > 0.

2: objfun – function, supplied by the user External Function

objfun must evaluate the objective function F xð Þ for a specified n-vector x.

The specification of objfun is:

void objfun (Integer n, const double x[], double *f, Integer nstate,
Nag_Comm *comm, Integer *inform)

1: n – Integer Input

On entry: n, the number of variables.

2: x½n� – const double Input

On entry: x, the vector at which the objective function is to be evaluated.

3: f – double * Output

On exit: must be set to the value of the objective function at x, unless you have specified
termination of the current problem using inform.

4: nstate – Integer Input

On entry: if nstate ¼ 1 then nag_glopt_bnd_mcs_solve (e05jbc) is calling objfun for the
first time. This argument setting allows you to save computation time if certain data
must be read or calculated only once.

5: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to objfun.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_glopt_bnd_mcs_solve
(e05jbc) you may allocate memory and initialize these pointers with various
quantities for use by objfun when called from nag_glopt_bnd_mcs_solve (e05jbc)
(see Section 3.2.1.1 in the Essential Introduction).

6: inform – Integer * Output

On exit: must be set to a value describing the action to be taken by the solver on return
from objfun. Specifically, if the value is negative the solution of the current problem will
terminate immediately; otherwise, computations will continue.
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3: bound – Nag_BoundType Input

On entry: indicates whether the facility for dealing with bounds of special forms is to be used.
bound must be set to one of the following values.

bound ¼ Nag Bounds
You will supply l and u individually.

bound ¼ Nag NoBounds
There are no bounds on x.

bound ¼ Nag BoundsZero
There are semi-infinite bounds 0 � x.

bound ¼ Nag BoundsEqual
There are constant bounds l ¼ ‘1 and u ¼ u1.

Note that it only makes sense to fix any components of x when bound ¼ Nag Bounds.

Constraint: bound ¼ Nag Bounds, Nag NoBounds, Nag BoundsZero or Nag BoundsEqual.

4: initmethod – Nag_MCSInitMethod Input

On entry: selects which initialization method to use.

initmethod ¼ Nag SimpleBdry
Simple initialization (boundary and midpoint), with
numpts½i� 1� ¼ 3, initpt½i� 1� ¼ 2 and
LIST i; jð Þ ¼ bl½i� 1�; bl½i� 1� þ bu½i� 1�ð Þ=2;bu½i� 1�ð Þ,
for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; 3.

initmethod ¼ Nag SimpleOffBdry
Simple initialization (off-boundary and midpoint), with
numpts½i� 1� ¼ 3, initpt½i� 1� ¼ 2 and
LIST i; jð Þ ¼

5bl½i� 1� þ bu½i� 1�ð Þ=6; bl½i� 1� þ bu½i� 1�ð Þ=2; bl½i� 1� þ 5bu½i� 1�ð Þ=6ð Þ,
for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; 3.

initmethod ¼ Nag Linesearch
Initialization using linesearches.

initmethod ¼ Nag UserSet
You are providing your own initialization list.

initmethod ¼ Nag Random
Generate a random initialization list.

See list for the definition of LIST.

For more information on methods initmethod ¼ Nag Linesearch, Nag UserSet or Nag Random
see Section 11.1.

If ‘infinite’ values (as determined by the value of the optional argument Infinite Bound Size) are
detected by nag_glopt_bnd_mcs_solve (e05jbc) when you are using a simple initialization method
(initmethod ¼ Nag SimpleBdry or Nag SimpleOffBdry), a safeguarded initialization procedure
will be attempted, to avoid overflow.

Suggested value: initmethod ¼ Nag SimpleBdry

Constraint: initmethod ¼ Nag SimpleBdry, Nag SimpleOffBdry, Nag Linesearch, Nag UserSet or
Nag Random.

5: bl½n� – double Input/Output
6: bu½n� – double Input/Output

On entry: bl is l, the array of lower bounds. bu is u, the array of upper bounds.
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If bound ¼ Nag Bounds, you must set bl½i � 1� to ‘i and bu½i � 1� to ui, for i ¼ 1; 2; . . . ; n. If a
particular xi is to be unbounded below, the corresponding bl½i� 1� should be set to �infbnd,
where infbnd is the value of the optional argument Infinite Bound Size. Similarly, if a particular
xi is to be unbounded above, the corresponding bu½i� 1� should be set to infbnd.

If bound ¼ Nag NoBounds or Nag BoundsZero, arrays bl and bu need not be set on input.

If bound ¼ Nag BoundsEqual, you must set bl½0� to ‘1 and bu½0� to u1. The remaining elements
of bl and bu will then be populated by these initial values.

On exit: unless fail:code ¼ NE_INT, NE_INT_2, NE_NOT_INIT, NE_REAL or NE_REAL_2 on
exit, bl and bu are the actual arrays of bounds used by nag_glopt_bnd_mcs_solve (e05jbc).

Constraints:

if bound ¼ Nag Bounds, bl½i � 1� � bu½i � 1�, for i ¼ 1; 2; . . . ; n;
if bound ¼ Nag BoundsEqual, bl½0� < bu½0�.

7: sdlist – Integer Input

On entry: must be set to, at least, the maximum over i of the number of points in coordinate i at
which to split according to the initialization list list; that is, sdlist � max

i
numpts½i� 1�.

Internally, nag_glopt_bnd_mcs_solve (e05jbc) uses list to determine sets of points along each
coordinate direction to which it fits quadratic interpolants. Since fitting a quadratic requires at least
three distinct points, this puts a lower bound on sdlist. Furthermore, in the case of initialization by
linesearches (initmethod ¼ Nag Linesearch) internal storage considerations require that sdlist be
at least 192.

Constraints:

if initmethod 6¼ Nag Linesearch, sdlist � 3;
if initmethod ¼ Nag Linesearch, sdlist � 192;
if initmethod ¼ Nag UserSet, sdlist � max

i
numpts½i � 1�f g.

8: list½n� sdlist� – double Input/Output

Note: where LIST i; jð Þ appears in this document, it refers to the array element
list½ i� 1ð Þ � sdlistþ j� 1�.
Note: for convenience the subarray notation LIST i : j; k : lð Þ, as described in Section 3.2.1.4 in
the Essential Introduction, is used. Using this notation, the term ‘column index’ refers to the index
j in LIST i; jð Þ, say.

On entry: this argument need not be set on entry if you wish to use one of the preset initialization
methods (initmethod 6¼ Nag UserSet).

list is the ‘initialization list’: whenever a sub-box in the algorithm is split for the first time (either
during the initialization procedure or later), for each non-fixed coordinate i the split is done at the
values LIST i; 1 : numpts½i� 1�ð Þ, as well as at some adaptively chosen intermediate points. The
array sections LIST i; 1 : numpts½i � 1�ð Þ, for i ¼ 1; 2; . . . ;n, must be in ascending order with
each entry being distinct. In this context, ‘distinct’ should be taken to mean relative to the safe-
range argument (see nag_real_safe_small_number (X02AMC)).

On exit: unless fail:code ¼ NE_ALLOC_FAIL, NE_INT, NE_INT_2, NE_NOT_INIT,
NE_REAL or NE_REAL_2 on exi t , the ac tual in i t ia l iza t ion da ta used by
nag_glopt_bnd_mcs_solve (e05jbc). If you wish to monitor the contents of list you are advised
to do so solely through monit, not through the output value here.

Constraint: if x½i � 1� is not fixed, LIST i; 1 : numpts½i � 1�ð Þ is in ascending order with each
entry being distinct, for i ¼ 1; 2; . . . ;nbl½i � 1� � LIST i; jð Þ � bu½i � 1�, for i ¼ 1; 2; . . . ; n and
j ¼ 1; 2; . . . ; numpts½i � 1�.
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9: numpts½n� – Integer Input/Output

On entry: this argument need not be set on entry if you wish to use one of the preset initialization
methods (initmethod 6¼ Nag UserSet).

numpts encodes the number of splitting points in each non-fixed dimension.

On exit: unless fail:code ¼ NE_ALLOC_FAIL, NE_INT, NE_INT_2, NE_NOT_INIT,
NE_REAL or NE_REAL_2 on exi t , the ac tual in i t ia l iza t ion da ta used by
nag_glopt_bnd_mcs_solve (e05jbc).

Constraints:

if x½i � 1� is not fixed, numpts½i � 1� � sdlist;
numpts½i � 1� � 3, for i ¼ 1; 2; . . . ;n.

10: initpt½n� – Integer Input/Output

On entry: this argument need not be set on entry if you wish to use one of the preset initialization
methods (initmethod 6¼ Nag UserSet).

You must designate a point stored in list that you wish nag_glopt_bnd_mcs_solve (e05jbc) to
consider as an ‘initial point’ for the purposes of the splitting procedure. Call this initial point x�.
The coordinates of x� correspond to a set of indices Ji, for i ¼ 1; 2; . . . ; n, such that x�i is stored in
LIST i; Jið Þ, for i ¼ 1; 2; . . . ; n. You must set initpt½i � 1� ¼ Ji, for i ¼ 1; 2; . . . ; n.

On exit: unless fail:code ¼ NE_ALLOC_FAIL, NE_INT, NE_INT_2, NE_NOT_INIT,
NE_REAL or NE_REAL_2 on exi t , the ac tual in i t ia l iza t ion da ta used by
nag_glopt_bnd_mcs_solve (e05jbc).

Constraint: if x½i � 1� is not fixed, 1 � initpt½i � 1� � sdlist, for i ¼ 1; 2; . . . ;n.

11: monit – function, supplied by the user External Function

monit may be used to monitor the optimization process. It is invoked upon every successful
completion of the procedure in which a sub-box is considered for splitting. It will also be called
just before nag_glopt_bnd_mcs_solve (e05jbc) exits if that splitting procedure was not successful.

If no monitoring is required, monit may be specified as NULLFN.

The specification of monit is:

void monit (Integer n, Integer ncall, const double xbest[],
const Integer icount[], Integer ninit, const double list[],
const Integer numpts[], const Integer initpt[], Integer nbaskt,
const double xbaskt[], const double boxl[], const double boxu[],
Integer nstate, Nag_Comm *comm, Integer *inform)

1: n – Integer Input

On entry: n, the number of variables.

2: ncall – Integer Input

On entry: the cumulative number of calls to objfun.

3: xbest½n� – const double Input

On entry: the current best point.

4: icount½6� – const Integer Input

On entry: an array of counters.

icount½0�
nboxes, the current number of sub-boxes.
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icount½1�
ncloc, the cumulative number of calls to objfun made in local searches.

icount½2�
nloc, the cumulative number of points used as start points for local searches.

icount½3�
nsweep, the cumulative number of sweeps through levels.

icount½4�
m, the cumulative number of splits by initialization list.

icount½5�
s, the current lowest level containing non-split boxes.

5: ninit – Integer Input

On entry: the maximum over i of the number of points in coordinate i at which to split
according to the initialization list list. See also the description of the argument numpts.

6: list½n� ninit� – const double Input

On entry: the initialization list.

7: numpts½n� – const Integer Input

On entry: the number of points in each coordinate at which to split according to the
initialization list list.

8: initpt½n� – const Integer Input

On entry: a pointer to the ‘initial point’ in list. Element initpt½i� 1� is the column index
in LIST of the ith coordinate of the initial point.

9: nbaskt – Integer Input

On entry: the number of points in the ‘shopping basket’ xbaskt.

10: xbaskt½n� nbaskt� – const double Input

Note : The jth candidate minimum has i ts ith coordinate s tored in
xbaskt½ j � 1ð Þ � nbasktþ i � 1�, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;nbaskt.

On entry: the ‘shopping basket’ of candidate minima.

11: boxl½n� – const double Input

On entry: the array of lower bounds of the current search box.

12: boxu½n� – const double Input

On entry: the array of upper bounds of the current search box.

13: nstate – Integer Input

On entry: is set by nag_glopt_bnd_mcs_solve (e05jbc) to indicate at what stage of the
minimization monit was called.

nstate ¼ 1
This is the first time that monit has been called.

nstate ¼ �1
This is the last time monit will be called.

nstate ¼ 0
This is the first and last time monit will be called.
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14: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to monit.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_glopt_bnd_mcs_solve
(e05jbc) you may allocate memory and initialize these pointers with various
quantities for use by monit when called from nag_glopt_bnd_mcs_solve (e05jbc)
(see Section 3.2.1.1 in the Essential Introduction).

15: inform – Integer * Output

On exit: must be set to a value describing the action to be taken by the solver on return
from monit. Specifically, if the value is negative the solution of the current problem will
terminate immediately; otherwise, computations will continue.

12: x½n� – double Output

On exit: if fail:code ¼ NE_NOERROR, contains an estimate of the global optimum (see also
Section 7).

13: obj – double * Output

On exit: if fail:code ¼ NE_NOERROR, contains the function value at x.

If you request early termination of nag_glopt_bnd_mcs_solve (e05jbc) using inform in objfun or
the analogous inform in monit, there is no guarantee that the function value at x equals obj.

14: state – Nag_E05State * Communication Structure

state contains information required by other functions in this suite. You must not modify it
directly in any way.

15: comm – Nag_Comm *

The NAG communication argument (see Section 3.2.1.1 in the Essential Introduction).

16: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

nag_glopt_bnd_mcs_solve (e05jbc) returns with fail:code ¼ NE_NOERROR if your termination
criterion has been met: either a target value has been found to the required relative error (as
de te rmined by the va lues of the op t iona l a rguments Target Objective Value,
Target Objective Error and Target Objective Safeguard), or the best function value was static
for the number of sweeps through levels given by the optional argument Static Limit. The latter
criterion is the default.

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.
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NE_DIV_COMPLETE

The division procedure completed but your target value could not be reached.
Despite every sub-box being processed Splits Limit times, the target value you provided in
Target Objective Value could not be found to the tolerances given in Target Objective Error
and Target Objective Safeguard. You could try reducing Splits Limit or the objective
tolerances.

NE_INF_INIT_LIST

A finite initialization list could not be computed internally. Consider reformulating the bounds on
the problem, try providing your own initialization list, use the randomization option
(initmethod ¼ Nag Random) or vary the value of Infinite Bound Size.

The user-supplied initialization list contained infinite values, as determined by the optional
argument Infinite Bound Size.

NE_INLIST_CLOSE

An error occurred during initialization. It is likely that points from the initialization list are very
close together. Try relaxing the bounds on the variables or use a different initialization method.

NE_INT

On entry, initmethod ¼ Nag Linesearch and sdlist ¼ valueh i.
Constraint: if initmethod ¼ Nag Linesearch then sdlist � 192.

On entry, initmethod ¼ valueh i and sdlist ¼ valueh i.
Constraint: if initmethod 6¼ Nag Linesearch then sdlist � 3.

On entry, n ¼ valueh i.
Constraint: n > 0.

On entry, user-supplied section LIST i; 1 : numpts½i� 1�ð Þ contained ndist distinct elements, and
ndist < numpts½i� 1�: ndist ¼ valueh i, numpts½i� 1� ¼ valueh i, i ¼ valueh i.
The number of non-fixed variables nr ¼ 0.
Constraint: nr > 0.

NE_INT_2

A value of Splits Limit (smax) smaller than nr þ 3 was set: smax ¼ valueh i, nr ¼ valueh i.
On entry, user-supplied initpt½i� 1� ¼ valueh i, i ¼ valueh i.
Constraint: if x½i� 1� is not fixed then initpt½i � 1� � 1, for i ¼ 1; 2; . . . ; n.

On entry, user-supplied initpt½i� 1� ¼ valueh i, i ¼ valueh i and sdlist ¼ valueh i.
Constraint: if x½i� 1� is not fixed then initpt½i � 1� � sdlist, for i ¼ 1; 2; . . . ; n.

On entry, user-supplied numpts½i� 1� ¼ valueh i, i ¼ valueh i.
Constraint: if x½i� 1� is not fixed then numpts½i � 1� � 3, for i ¼ 1; 2; . . . ; n.

On entry, user-supplied numpts½i� 1� ¼ valueh i, i ¼ valueh i and sdlist ¼ valueh i.
Constraint: if x½i� 1� is not fixed then numpts½i � 1� � sdlist, for i ¼ 1; 2; . . . ;n.

On entry, user-supplied section LIST i; 1 : numpts½i� 1�ð Þ was not in ascending order:
numpts½i� 1� ¼ valueh i, i ¼ valueh i.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.
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NE_LINESEARCH_ERROR

An error occurred during linesearching. It is likely that your objective function is badly scaled: try
rescaling it. Also, try relaxing the bounds or use a different initialization method. If the problem
persists, please contact NAG quoting error code valueh i.

NE_MONIT_TERMIN

User-supplied monitoring function requested termination.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_NOT_INIT

Initialization function nag_glopt_bnd_mcs_init (e05jac) has not been called.

NE_OBJFUN_TERMIN

User-supplied objective function requested termination.

NE_REAL

On entry, bound ¼ Nag BoundsEqual and bl½0� ¼ bu½0� ¼ valueh i.
Constraint: if bound ¼ Nag BoundsEqual then bl½0� < bu½0�.

NE_REAL_2

On entry, bound ¼ Nag Bounds or Nag BoundsEqual and bl½i� 1� ¼ valueh i, bu½i� 1� ¼ valueh i
and i ¼ valueh i.
Constraint: if bound ¼ Nag Bounds then bl½i � 1� � bu½i � 1�, for i ¼ 1; 2; . . . ;n; if
bound ¼ Nag BoundsEqual then bl½0� < bu½0�.
On entry, user-supplied LIST i; jð Þ ¼ valueh i, i ¼ valueh i, j ¼ valueh i, and bl½i� 1� ¼ valueh i.
Constraint: if x½i� 1� is not fixed then LIST i; jð Þ � bl½i � 1�, for i ¼ 1; 2; . . . ; n and
j ¼ 1; 2; . . . ; numpts½i � 1�.
On entry, user-supplied LIST i; jð Þ ¼ valueh i, i ¼ valueh i, j ¼ valueh i, and bu½i� 1� ¼ valueh i.
Constraint: if x½i� 1� is not fixed then LIST i; jð Þ � bu½i � 1�, for i ¼ 1; 2; . . . ; n and
j ¼ 1; 2; . . . ; numpts½i � 1�.

NE_TOO_MANY_FEVALS

The function evaluations limit was exceeded.
Approximately Function Evaluations Limit function calls have been made without your chosen
termination criterion being satisfied.

7 Accuracy

If fail:code ¼ NE_NOERROR on exit, then the vector returned in the array x is an estimate of the
solution x whose function value satisfies your termination criterion: the function value was static for
Static Limit sweeps through levels, or

F xð Þ � objval � max objerr � objvalj j; objsfgð Þ;

where objval is the value of the optional argument Target Objective Value, objerr is the value of the
optional argument Target Objective Error, and objsfg is the value of the optional argument
Target Objective Safeguard.
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8 Parallelism and Performance

nag_glopt_bnd_mcs_solve (e05jbc) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library.

nag_glopt_bnd_mcs_solve (e05jbc) makes calls to BLAS and/or LAPACK routines, which may be
threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For each invocation of nag_glopt_bnd_mcs_solve (e05jbc), local workspace arrays of fixed length are
allocated internally. The total size of these arrays amounts to 13nr þ smax � 1 Integer elements, where
smax is the value of the optional argument Splits Limit and nr is the number of non-fixed variables, and
2þ nrð Þsdlistþ 2nþ 22nr þ 3n2

r þ 1 double elements. In addition, if you are using randomized
initialization lists (see the description of the argument initmethod), a further 21 Integer elements are
allocated internally.

In order to keep track of the regions of the search space that have been visited while looking for a global
optimum, nag_glopt_bnd_mcs_solve (e05jbc) internally allocates arrays of increasing sizes depending on
the difficulty of the problem. Two of the main factors that govern the amount allocated are the number of
sub-boxes (call this quantity nboxes) and the number of points in the ‘shopping basket’ (the argument
nbaskt on entry to monit). Safe, pessimistic upper bounds on these two quantities are so large as to be
impractical. In fact, the worst-case number of sub-boxes for even the most simple initialization list (when
ninit ¼ 3 on entry to monit) grows like nrnr . Thus nag_glopt_bnd_mcs_solve (e05jbc) does not attempt
to estimate in advance the final values of nboxes or nbaskt for a given problem. There are a total of 5
Integer arrays and 4þ nr þ ninit double arrays whose lengths depend on nboxes, and there are a total of
2 Integer arrays and 3þ nþ nr double arrays whose lengths depend on nbaskt .
nag_glopt_bnd_mcs_solve (e05jbc) makes a fixed initial guess that the maximum number of sub-boxes
required will be 10000 and that the maximum number of points in the ‘shopping basket’ will be 1000. If
ever a greater amount of sub-boxes or more room in the ‘shopping basket’ is required,
nag_glopt_bnd_mcs_solve (e05jbc) performs reallocation, usually doubling the size of the inade-
quately-sized arrays. Clearly this process requires periods where the original array and its extension exist
in memory simultaneously, so that the data within can be copied, which compounds the complexity of
nag_glopt_bnd_mcs_solve (e05jbc)’s memory usage. It is possible (although not likely) that if your
problem is particularly difficult to solve, or of a large size (hundreds of variables), you may run out of
memory.

One array that could be dynamically resized by nag_glopt_bnd_mcs_solve (e05jbc) is the ‘shopping
basket’ (xbaskt on entry to monit). If the initial attempt to allocate 1000nr doubles for this array fails,
monit will not be called on exit from nag_glopt_bnd_mcs_solve (e05jbc).

nag_glopt_bnd_mcs_solve (e05jbc) performs better if your problem is well-scaled. It is worth trying (by
guesswork perhaps) to rescale the problem if necessary, as sensible scaling will reduce the difficulty of
the optimization problem, so that nag_glopt_bnd_mcs_solve (e05jbc) will take less computer time.

10 Example

This example finds the global minimum of the ‘peaks’ function in two dimensions

F x; yð Þ ¼ 3 1� xð Þ2 exp �x2 � yþ 1ð Þ2
� �

� 10
x

5
� x3 � y5

� �
exp �x2 � y2
� �

� 1

3
exp � xþ 1ð Þ2 � y2
� �

on the box �3; 3½ � � �3; 3½ �.
The function F has several local minima and one global minimum in the given box. The global
minimum is approximately located at 0:23;�1:63ð Þ, where the function value is approximately �6:55.
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We use default values for all the optional arguments, and we instruct nag_glopt_bnd_mcs_solve (e05jbc)
to use the simple initialization list corresponding to initmethod ¼ Nag SimpleBdry. In particular, this
will set for us the initial point 0; 0ð Þ (see Section 10.3).

10.1 Program Text

/* nag_glopt_bnd_mcs_solve (e05jbc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 25, 2014.
*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage05.h>

#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL objfun(Integer n, const double x[], double *f,

Integer nstate, Nag_Comm *comm, Integer *inform);
static void NAG_CALL monit(Integer n, Integer ncall, const double xbest[],

const Integer icount[], Integer sdlist,
const double list[], const Integer numpts[],
const Integer initpt[], Integer nbaskt,
const double xbaskt[], const double boxl[],
const double boxu[], Integer nstate, Nag_Comm *comm,
Integer *inform);

static void NAG_CALL output_current_box(const double boxl[],
const double boxu[]);

#ifdef __cplusplus
}
#endif

int main(void)
{

/* Scalars */
double obj;
Integer exit_status=0, i, n=2, plot, sdlist;
Nag_BoundType boundenum;
Nag_MCSInitMethod initmethodenum;
/* Arrays */
static double ruser[2] = {-1.0, -1.0};
char bound[16], initmethod[18];
double *bl = 0, *bu = 0, *list = 0, *x = 0;
Integer *initpt = 0, *numpts = 0;
Integer iuser[1];
/* Nag Types */
Nag_E05State state;
NagError fail;
Nag_Comm comm;

INIT_FAIL(fail);

printf("nag_glopt_bnd_mcs_solve (e05jbc) Example Program Results\n");

/* For communication with user-supplied functions: */
comm.iuser = iuser;
comm.user = ruser;

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Read sdlist from data file */
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#ifdef _WIN32
scanf_s("%"NAG_IFMT"%*[^\n] ", &sdlist);

#else
scanf("%"NAG_IFMT"%*[^\n] ", &sdlist);

#endif

if (n <= 0 || sdlist <= 0)
goto END;

if (!(bl = NAG_ALLOC(n, double)) ||
!(bu = NAG_ALLOC(n, double)) ||
!(list = NAG_ALLOC(n*sdlist, double)) ||
!(x = NAG_ALLOC(n, double)) ||
!(initpt = NAG_ALLOC(n, Integer)) ||
!(numpts = NAG_ALLOC(n, Integer)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read in bound (and bl and bu if necessary) */
#ifdef _WIN32

scanf_s("%15s%*[^\n] ", bound, _countof(bound));
#else

scanf("%15s%*[^\n] ", bound);
#endif

/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/

boundenum = (Nag_BoundType) nag_enum_name_to_value(bound);

if (boundenum == Nag_Bounds)
/* Read in the whole of each bound */
{

for (i = 0; i < n; ++i)
#ifdef _WIN32

scanf_s("%lf", &bl[i]);
#else

scanf("%lf", &bl[i]);
#endif
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

for (i = 0; i < n; ++i)
#ifdef _WIN32

scanf_s("%lf", &bu[i]);
#else

scanf("%lf", &bu[i]);
#endif
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

}
else if (boundenum == Nag_BoundsEqual)

/* Bounds are uniform: read in only the first entry of each */
{

#ifdef _WIN32
scanf_s("%lf%*[^\n] ", &bl[0]);

#else
scanf("%lf%*[^\n] ", &bl[0]);

#endif
#ifdef _WIN32

scanf_s("%lf%*[^\n] ", &bu[0]);
#else

e05 – Global Optimization of a Function e05jbc

Mark 25 e05jbc.13



scanf("%lf%*[^\n] ", &bu[0]);
#endif

}

/* Read in initmethod */
#ifdef _WIN32

scanf_s("%17s%*[^\n] ", initmethod, _countof(initmethod));
#else

scanf("%17s%*[^\n] ", initmethod);
#endif

/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/

initmethodenum = (Nag_MCSInitMethod) nag_enum_name_to_value(initmethod);

/* Read in plot. Its value determines whether monit displays
* information on the current search box
*/

#ifdef _WIN32
scanf_s("%"NAG_IFMT"%*[^\n] ", &plot);

#else
scanf("%"NAG_IFMT"%*[^\n] ", &plot);

#endif

/* Communicate plot through to monit */
iuser[0] = plot;

/* Call nag_glopt_bnd_mcs_init (e05jac) to initialize
* nag_glopt_bnd_mcs_solve (e05jbc). */

/* Its first argument is a legacy argument and has no significance. */
nag_glopt_bnd_mcs_init(0, &state, &fail);

if (fail.code != NE_NOERROR)
{

printf("Initialization of nag_glopt_bnd_mcs_solve (e05jbc) failed.\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

/* Solve the problem. */
/* nag_glopt_bnd_mcs_solve (e05jbc).
* Global optimization by multilevel coordinate search, simple bounds.
*/

nag_glopt_bnd_mcs_solve(n, objfun, boundenum, initmethodenum, bl, bu,
sdlist, list, numpts, initpt, monit, x, &obj,
&state, &comm, &fail);

if (fail.code != NE_NOERROR)
{

printf("Error message from nag_glopt_bnd_mcs_solve (e05jbc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

printf("Final objective value = %11.5f\n", obj);
printf("Global optimum x = ");
for (i = 0; i < n; ++i)

printf("%9.5f", x[i]);
printf("\n");

END:
NAG_FREE(bl);
NAG_FREE(bu);
NAG_FREE(list);
NAG_FREE(x);
NAG_FREE(initpt);
NAG_FREE(numpts);
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return exit_status;
}

static void NAG_CALL objfun(Integer n, const double x[], double *f,
Integer nstate, Nag_Comm *comm, Integer *inform)

{
/* Routine to evaluate objective function */

if (comm->user[0] == -1.0)
{

printf("(User-supplied callback objfun, first invocation.)\n");
comm->user[0] = 0.0;

}

/* This is a two-dimensional objective function.
* As an example of using the inform mechanism,
* terminate if any other problem size is supplied.
*/

if (n!=2)
{

*inform = -1;
return;

}

*inform = 0;

if (*inform >= 0)
/* Here we’re prepared to evaluate objfun at the current x */

{
if (nstate == 1)
/* This is the first call to objfun */

{
printf("\n(objfun was just called for the first time)\n");

}

*f = (
3.0*pow((1.0-x[0]), 2)*exp(-pow(x[0], 2)-pow((x[1]+1), 2))
- (10.0*(x[0]/5.0-pow(x[0], 3)-pow(x[1], 5))*

exp(-pow(x[0], 2)-pow(x[1], 2)))
- 1.0/3.0*exp(-pow((x[0]+1.0), 2)-pow(x[1], 2))
);

}
}

static void NAG_CALL monit(Integer n, Integer ncall, const double xbest[],
const Integer icount[], Integer sdlist,
const double list[], const Integer numpts[],
const Integer initpt[], Integer nbaskt,
const double xbaskt[], const double boxl[],
const double boxu[], Integer nstate, Nag_Comm *comm,
Integer *inform)

{
/* Scalars */
Integer i, j;
Integer plot;

#define LIST(I, J) list[(I-1)*sdlist + (J-1)]
#define XBASKT(I, J) xbaskt[(I-1)*nbaskt + (J-1)]

if (comm->user[1] == -1.0)
{

printf("(User-supplied callback monit, first invocation.)\n");
comm->user[1] = 0.0;

}

*inform = 0;

if (*inform >= 0)
/* We are going to allow the iterations to continue */

{
/* Extract plot from the communication structure */
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plot = comm->iuser[0];

if (nstate == 0 || nstate == 1)
/* When nstate == 1, monit is called for the first time.
* When nstate == 0, monit is called for the first AND last time.
* Display a welcome message */
{

printf("\n*** Begin monitoring information ***\n\n");

printf("Values controlling initial splitting of a box:\n");
for (i = 1; i <= n; ++i)

{
printf("**\n");
printf("In dimension %5"NAG_IFMT"\n", i);
printf("Extent of initialization list in this dimension ="

"%5"NAG_IFMT"\n", numpts[i - 1]);
printf("Initialization points in this dimension:\n");
printf("LIST(i, 1:numpts[i - 1]) =");
for (j = 1; j <= numpts[i - 1]; ++j)

printf("%9.5f", LIST(i, j));
printf("\n");
printf("Initial point in this dimension: LIST(i,%5"NAG_IFMT")\n",

initpt[i - 1]);
}

if (plot != 0 && n == 2)
printf("<Begin displaying search boxes>\n\n");

}

if (plot != 0 && n == 2)
{

/* Display the coordinates of the edges of the current search box */
output_current_box(boxl, boxu);

}

if (nstate <= 0)
/* monit is called for the last time */

{
if (plot != 0 && n == 2)

printf("<End displaying search boxes>\n\n");
printf("Total sub-boxes = %5"NAG_IFMT"\n", icount[0]);
printf("Total function evaluations = %5"NAG_IFMT"\n", ncall);
printf("Total function evaluations used in local search = "

"%5"NAG_IFMT"\n", icount[1]);
printf("Total points used in local search = %5"NAG_IFMT"\n",

icount[2]);
printf("Total sweeps through levels = %5"NAG_IFMT"\n", icount[3]);
printf("Total splits by init. list = %5"NAG_IFMT"\n", icount[4]);
printf("Lowest level with nonsplit boxes = %5"NAG_IFMT"\n",

icount[5]);
printf("Number of candidate minima in the ’shopping basket’"

" = %5"NAG_IFMT"\n", nbaskt);
printf("Shopping basket:\n");

for (i = 1; i <= n; ++i)
{

printf("xbaskt(%3"NAG_IFMT",:) =", i);
for (j = 1; j <= nbaskt; ++j)

printf("%9.5f", XBASKT(i, j));
printf("\n");

}

printf("Best point:\n");
printf("xbest =");
for (i = 0; i < n; ++i)

printf("%9.5f", xbest[i]);
printf("\n");

printf("\n*** End monitoring information ***\n\n");
}

}
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}

static void NAG_CALL output_current_box(const double boxl[],
const double boxu[])

{
printf("%20.15f %20.15f\n", boxl[0], boxl[1]);
printf("%20.15f %20.15f\n\n", boxl[0], boxu[1]);
printf("%20.15f %20.15f\n", boxl[0], boxl[1]);
printf("%20.15f %20.15f\n\n", boxu[0], boxl[1]);
printf("%20.15f %20.15f\n", boxl[0], boxu[1]);
printf("%20.15f %20.15f\n\n", boxu[0], boxu[1]);
printf("%20.15f %20.15f\n", boxu[0], boxl[1]);
printf("%20.15f %20.15f\n\n", boxu[0], boxu[1]);

}

10.2 Program Data

nag_glopt_bnd_mcs_solve (e05jbc) Example Program Data
3 : sdlist
Nag_Bounds : bound
-3.0 -3.0 : Lower bounds bl
3.0 3.0 : Upper bounds bu
Nag_SimpleBdry : initmethod
0 : plot

10.3 Program Results

nag_glopt_bnd_mcs_solve (e05jbc) Example Program Results
(User-supplied callback objfun, first invocation.)

(objfun was just called for the first time)
(User-supplied callback monit, first invocation.)

*** Begin monitoring information ***

Values controlling initial splitting of a box:
**
In dimension 1
Extent of initialization list in this dimension = 3
Initialization points in this dimension:
LIST(i, 1:numpts[i - 1]) = -3.00000 0.00000 3.00000
Initial point in this dimension: LIST(i, 2)
**
In dimension 2
Extent of initialization list in this dimension = 3
Initialization points in this dimension:
LIST(i, 1:numpts[i - 1]) = -3.00000 0.00000 3.00000
Initial point in this dimension: LIST(i, 2)
Total sub-boxes = 228
Total function evaluations = 197
Total function evaluations used in local search = 88
Total points used in local search = 13
Total sweeps through levels = 12
Total splits by init. list = 5
Lowest level with nonsplit boxes = 7
Number of candidate minima in the ’shopping basket’ = 2
Shopping basket:
xbaskt( 1,:) = -1.34740 0.22828
xbaskt( 2,:) = 0.20452 -1.62553
Best point:
xbest = 0.22828 -1.62553

*** End monitoring information ***

Final objective value = -6.55113
Global optimum x = 0.22828 -1.62553
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Example Program
The Peaks Function F and Search Boxes

The global minimum is denoted by GM, while our start point is labelled with X

GM

X

Note: the remainder of this document is intended for more advanced users. Section 11 contains a detailed
description of the algorithm. This information may be needed in order to understand Section 12, which
describes the optional arguments that can be set by calls to nag_glopt_bnd_mcs_optset_file (e05jcc),
nag_glopt_bnd_mcs_optset_string (e05jdc), nag_glopt_bnd_mcs_optset_char (e05jec),
nag_glopt_bnd_mcs_optset_int (e05jfc) and/or nag_glopt_bnd_mcs_optset_real (e05jgc).

11 Algorithmic Details

Here we summarise the main features of the MCS algorithm used in nag_glopt_bnd_mcs_solve (e05jbc),
and we introduce some terminology used in the description of the function and its arguments. We
assume throughout that we will only do any work in coordinates i in which xi is free to vary. The MCS
algorithm is fully described in Huyer and Neumaier (1999).

11.1 Initialization and Sweeps

Each sub-box is determined by a basepoint x and an opposite point y. We denote such a sub-box by
B x; y½ �. The basepoint is allowed to belong to more than one sub-box, is usually a boundary point, and is
often a vertex.

An initialization procedure produces an initial set of sub-boxes. Whenever a sub-box is split along a
coordinate i for the first time (in the initialization procedure or later), the splitting is done at three or

more user-defined values xji

n o
j

at which the objective function is sampled, and at some adaptively

chosen intermediate points. At least four children are generated. More precisely, we assume that we are
given

‘i � x1
i < x2

i < � � � < xLii � ui; Li � 3; for i ¼ 1; 2; . . . ; n
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and a vector p that, for each i, locates within xji

n o
j

the ith coordinate of an initial point x0; that is, if

x0
i ¼ x

j
i for some j ¼ 1; 2; . . . ; Li, then pi ¼ j. A good guess for the global optimum can be used as x0.

The initialization points and the vectors l and p are collectively called the initialization list (and
sometimes we will refer to just the initialization points as ‘the initialization list’, whenever this causes no
confusion). The initialization data may be input by you, or they can be set to sensible default values by

nag_glopt_bnd_mcs_solve (e05jbc): if you provide them yourself, LIST i; jð Þ should contain xji ,
numpts½i� 1� should contain Li, and initpt½i� 1� should contain pi, for i ¼ 1; 2; . . . ; n and
j ¼ 1; 2; . . . ; Li; if you wish nag_glopt_bnd_mcs_solve (e05jbc) to use one of its preset initialization
methods, you could choose one of two simple, three-point methods (see Figure 1). If the list generated
by one of these methods contains infinite values, attempts are made to generate a safeguarded list using
the function subint x; yð Þ (which is also used during the splitting procedure, and is described in
Section 11.2). If infinite values persist, nag_glopt_bnd_mcs_solve (e05jbc) exits with fail:code ¼
NE_INF_INIT_LIST. There is also the option to generate an initialization list with the aid of
linesearches (by setting initmethod ¼ Nag Linesearch). Starting with the absolutely smallest point in the
root box, linesearches are made along each coordinate. For each coordinate, the local minimizers found
by the linesearches are put into the initialization list. If there were fewer than three minimizers, they are
augmented by close-by values. The final preset initialization option (initmethod ¼ Nag Random)
generates a randomized list, so that independent multiple runs may be made if you suspect a global
optimum has not been found. Each call to the initialization function nag_glopt_bnd_mcs_init (e05jac)
resets the initial-state vector for the Wichmann–Hill base-generator that is used. Depending on whether
you set the optional argument Repeatability to ON or OFF, the random state is initialized to give a
repeatable or non-repeatable sequence. Then, a random integer between 3 and sdlist is selected, which is
then used to determine the number of points to be generated in each coordinate; that is, numpts becomes
a constant vector, set to this value. The components of list are then generated, from a uniform
distribution on the root box if the box is finite, or else in a safeguarded fashion if any bound is infinite.
The array initpt is set to point to the best point in list.

Given an initialization list (preset or otherwise), nag_glopt_bnd_mcs_solve (e05jbc) evaluates F at x0,
and sets the initial estimate of the global minimum, x�, to x0. Then, for i ¼ 1; 2; . . . ; n, the objective
function F is evaluated at Li � 1 points that agree with x� in all but the ith coordinate. We obtain pairs

x̂j ; f j
i

� �
, for j ¼ 1; 2; . . . ; Li, with: x� ¼ x̂j1 , say; with, for j 6¼ j1,

x̂jk ¼
x�k if k 6¼ i;
xjk otherwise;

�

and with

fji ¼ F x̂j
� �

:

The point having the smallest function value is renamed x� and the procedure is repeated with the next
coordinate.

Once nag_glopt_bnd_mcs_solve (e05jbc) has a full set of initialization points and function values, it can
generate an initial set of sub-boxes. Recall that the root box is B x; y½ � ¼ l; u½ �, having basepoint x ¼ x0.
The opposite point y is a corner of l; u½ � farthest away from x, in some sense. The point x need not be a
vertex of l; u½ �, and y is entitled to have infinite coordinates. We loop over each coordinate i, splitting the

current box along coordinate i into 2Li � 2, 2Li � 1 or 2Li sub-intervals with exactly one of the x̂ji as

endpoints, depending on whether two, one or none of the x̂ji are on the boundary. Thus, as well as

splitting at x̂j
i, for j ¼ 1; 2; . . . ; Li, we split at additional points zj

i, for j ¼ 2; 3; . . . ; Li. These additional

zji are such that

zji ¼ x̂
j�1
i þ qm x̂ji � x̂

j�1
i

� �
; j ¼ 2; . . . ; Li;

where q is the golden-section ratio
ffiffiffi
5
p
� 1

� �
=2, and the exponent m takes the value 1 or 2, chosen so

that the sub-box with the smaller function value gets the larger fraction of the interval. Each child sub-

box gets as basepoint the point obtained from x� by changing x�i to the xji that is a boundary point of the
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corresponding ith coordinate interval; this new basepoint therefore has function value fji . The opposite
point is derived from y by changing yi to the other end of that interval.

nag_glopt_bnd_mcs_solve (e05jbc) can now rank the coordinates based on an estimated variability of F .
For each i we compute the union of the ranges of the quadratic interpolant through any three consecutive

x̂ji , taking the difference between the upper and lower bounds obtained as a measure of the variability of
F in coordinate i. A vector � is populated in such a way that coordinate i has the �ith highest estimated
variability. For tiebreaks, when the x� obtained after splitting coordinate i belongs to two sub-boxes, the
one that contains the minimizer of the quadratic models is designated the current sub-box for coordinate
iþ 1.

Boxes are assigned levels in the following manner. The root box is given level 1. When a sub-box of
level s is split, the child with the smaller fraction of the golden-section split receives level sþ 2; all
other children receive level sþ 1. The box with the better function value is given the larger fraction of
the splitting interval and the smaller level because then it is more likely to be split again more quickly.
We see that after the initialization procedure the first level is empty and the non-split boxes have levels
2; . . . ; nr þ 2, so it is meaningful to choose smax much larger than nr. Note that the internal structure of
nag_glopt_bnd_mcs_solve (e05jbc) demands that smax be at least nr þ 3.

Examples of initializations in two dimensions are given in Figure 1. In both cases the initial point is
x0 ¼ l þ uð Þ=2; on the left the initialization points are

x1 ¼ l; x2 ¼ l þ uð Þ=2; x3 ¼ u;

while on the right the points are

x1 ¼ 5l þ uð Þ=6; x2 ¼ l þ uð Þ=2; x3 ¼ l þ 5uð Þ=6:

In Figure 1, basepoints and levels after initialization are displayed. Note that these initialization lists
correspond to initmethod ¼ Nag SimpleBdry and initmethod ¼ Nag SimpleOffBdry, respectively.
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Figure 2
Examples of the initialization procedure

After initialization, a series of sweeps through levels is begun. A sweep is defined by three steps:

(i) scan the list of non-split sub-boxes. Fill a record list b according to bs ¼ 0 if there is no box at level
s, and with bs pointing to a sub-box with the lowest function value among all sub-boxes with level s
otherwise, for 0 < s < smax ;

(ii) the sub-box with label bs is a candidate for splitting. If the sub-box is not to be split, according to
the rules described in Section 11.2, increase its level by 1 and update bsþ1 if necessary. If the sub-
box is split, mark it so, insert its children into the list of sub-boxes, and update b if any child with
level s0 yields a strict improvement of F over those sub-boxes at level s0;

(iii) increment s by 1. If s ¼ smax then displaying monitoring information and start a new sweep; else if
bs ¼ 0 then repeat this step; else display monitoring information and go to the previous step.

Clearly, each sweep ends after at most smax � 1 visits of the third step.

11.2 Splitting

Each sub-box is stored by nag_glopt_bnd_mcs_solve (e05jbc) as a set of information about the history
of the sub-box: the label of its parent, a label identifying which child of the parent it is, etc. Whenever a
sub-box B x; y½ � of level s < smax is a candidate for splitting, as described in Section 11.1, we recover x,
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y, and the number, nj, of times coordinate j has been split in the history of B. Sub-box B could be split
in one of two ways.

(i) Splitting by rank

If s > 2nr min nj þ 1
� �� �

, the box is always split. The splitting index is set to a coordinate i such

that ni ¼ min nj
� �

.

(ii) Splitting by expected gain

If s � 2nr min nj þ 1
� �� �

, the sub-box could be split along a coordinate where a maximal gain in
function value is expected. This gain is estimated according to a local separable quadratic model
obtained by fitting to 2nr þ 1 function values. If the expected gain is too small the sub-box is not
split at all, and its level is increased by 1.

Eventually, a sub-box that is not eligible for splitting by expected gain will reach level
2nr min nj þ 1

� �� �
þ 1 and then be split by rank, as long as smax is large enough. As smax !1, the

rule for splitting by rank ensures that each coordinate is split arbitrarily often.

Before describing the details of each splitting method, we introduce the procedure for correctly handling
splitting at adaptive points and for dealing with unbounded intervals. Suppose we want to split the ith
coordinate interval tu xi; yif g, where we define tu xi; yif g ¼ min xi; yið Þ;max xi; yið Þ½ �, for xi 2 R and
yi 2 �R, and where x is the basepoint of the sub-box being considered. The descendants of the sub-box
should shrink sufficiently fast, so we should not split too close to xi. Moreover, if yi is large we want the
new splitting value to not be too large, so we force it to belong to some smaller interval tu �0; �00f g,
determined by

�00 ¼ subint xi; yið Þ; �0 ¼ xi þ �00 � xið Þ=10;

where the function subint is defined by

subint x; yð Þ ¼
sign yð Þ if 1000 xj j < 1 and yj j > 1000;
10sign yð Þ xj j if 1000 xj j � 1 and yj j > 1000 xj j;
y otherwise:

8<
:

11.2.1 Splitting by rank

Consider a sub-box B with level s > 2nr min nj þ 1
� �� �

. Although the sub-box has reached a high level,
there is at least one coordinate along which it has not been split very often. Among the i such that
ni ¼ min nj

� �
for B, select the splitting index to be the coordinate with the lowest �i (and hence highest

variability rank). ‘Splitting by rank’ refers to the ranking of the coordinates by ni and �i.

If ni ¼ 0, so that B has never been split along coordinate i, the splitting is done according to the
initialization list and the adaptively chosen golden-section split points, as described in Section 11.1. Also
as covered there, new basepoints and opposite points are generated. The children having the smaller
fraction of the golden-section split (that is, those with larger function values) are given level
min sþ 2; smaxf g. All other children are given level sþ 1.

Otherwise, B ranges between xi and yi in the ith coordinate direction. The splitting value is selected to
be zi ¼ xi þ 2 subint xi; yið Þ � xið Þ=3; we are not attempting to split based on a large reduction in
function value, merely in order to reduce the size of a large interval, so zi may not be optimal. Sub-box
B is split at zi and the golden-section split point, producing three parts and requiring only one additional
function evaluation, at the point x0 obtained from x by changing the ith coordinate to zi. The child with
the smaller fraction of the golden-section split is given level min sþ 2; smaxf g, while the other two parts
are given level sþ 1. Basepoints are assigned as follows: the basepoint of the first child is taken to be x,
and the basepoint of the second and third children is the point x0. Opposite points are obtained by
changing yi to the other end of the ith coordinate-interval of the corresponding child.

11.2.2 Splitting by expected gain

When a sub-box B has level s � 2nr min nj þ 1
� �� �

, we compute the optimal splitting index and splitting
value from a local separable quadratic used as a simple local approximation of the objective function. To
fit this curve, for each coordinate we need two additional points and their function values. Such data may
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be recoverable from the history of B: whenever the ith coordinate was split in the history of B, we
obtained values that can be used for the current quadratic interpolation in coordinate i.

We loop over i; for each coordinate we pursue the history of B back to the root box, and we take the
first two points and function values we find, since these are expected to be closest to the current
basepoint x. If the current coordinate has not yet been split we use the initialization list. Then we
generate a local separable model e �ð Þ for F �ð Þ by interpolation at x and the 2nr additional points just
collected:

e �ð Þ ¼ F xð Þ þ
Xn
i¼1

ei �ið Þ:

We define the expected gain êi in function value when we evaluate at a new point obtained by changing
coordinate i in the basepoint, for each i, based on two cases:

(i) ni ¼ 0. We compute the expected gain as

êi ¼ min
1�j�Li

fji

n o
� fpii :

Again, we split according to the initialization list, with the new basepoints and opposite points being
as before.

(ii) ni > 0. Now, the ith component of our sub-box ranges from xi to yi. Using the quadratic partial
correction function

ei �ið Þ ¼ �i �i � xið Þ þ �i �i � xið Þ2

we can approximate the maximal gain expected when changing xi only. We will choose the splitting
value from tu �0; �00f g. We compute

êi ¼ min
�i2tu �0;�00f g

ei �ið Þ

and call zi the minimizer in tu �0; �00f g.
If the expected best function value fexp satisfies

fexp ¼ F xð Þ þ min
1�i�n

êi < fbest; ð1Þ

where fbest is the current best function value (including those function values obtained by local
optimization), we expect the sub-box to contain a better point and so we split it, using as splitting
index the component with minimal êi. Equation (1) prevents wasting function calls by avoiding
splitting sub-boxes whose basepoints have bad function values. These sub-boxes will eventually be
split by rank anyway.

We now have a splitting index and a splitting value zi. The sub-box is split at zi as long as zi 6¼ yi,
and at the golden-section split point; two or three children are produced. The larger fraction of the
golden-section split receives level sþ 1, while the smaller fraction receives level min sþ 2; smaxf g.
If it is the case that zi 6¼ yi and the third child is larger than the smaller of the two children from the
golden-section split, the third child receives level sþ 1. Otherwise it is given the level
min sþ 2; smaxf g. The basepoint of the first child is set to x, and the basepoint of the second
(and third if it exists) is obtained by changing the ith coordinate of x to zi. The opposite points are
again derived by changing yi to the other end of the ith coordinate interval of B.

If equation (1) does not hold, we expect no improvement. We do not split, and we increase the level
of B by 1.

11.3 Local Search

The local optimization algorithm used by nag_glopt_bnd_mcs_solve (e05jbc) uses linesearches along
directions that are determined by minimizing quadratic models, all subject to bound constraints. Triples
of vectors are computed using coordinate searches based on linesearches. These triples are used in triple
search procedures to build local quadratic models for F. A trust-region-type approach to minimize these
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models is then carried out, and more information about the coordinate search and the triple search can be
found in Huyer and Neumaier (1999).

The local search starts by looking for better points without being too local, by making a triple search
using points found by a coordinate search. This yields a new point and function value, an approximation
of the gradient of the objective, and an approximation of the Hessian of the objective. Then the quadratic
model for F is minimized over a small box, with the solution to that minimization problem then being
used as a linesearch direction to minimize the objective. A measure r is computed to quantify the
predictive quality of the quadratic model.

The third stage is the checking of termination criteria. The local search will stop if more than loclim
visits to this part of the local search have occurred, where loclim is the value of the optional argument
Local Searches Limit. If that is not the case, it will stop if the limit on function calls has been exceeded
(see the description of the optional argument Function Evaluations Limit). The final criterion checks if
no improvement can be made to the function value, or whether the approximated gradient g is small, in
the sense that

gj jT max xj j; xoldj jð Þ < loctol f0 � fð Þ:
The vector xold is the best point at the start of the current loop in this iterative local-search procedure, the
constant loctol is the value of the optional argument Local Searches Tolerance, f is the objective value
at x, and f0 is the smallest function value found by the initialization procedure.

Next, nag_glopt_bnd_mcs_solve (e05jbc) attempts to move away from the boundary, if any components
of the current point lie there, using linesearches along the offending coordinates. Local searches are
terminated if no improvement could be made.

The fifth stage carries out another triple search, but this time it does not use points from a coordinate
search, rather points lying within the trust-region box are taken.

The final stage modifies the trust-region box to be bigger or smaller, depending on the quality of the
quadratic model, minimizes the new quadratic model on that box, and does a linesearch in the direction
of the minimizer. The value of r is updated using the new data, and then we go back to the third stage
(checking of termination criteria).

The Hessians of the quadratic models generated by the local search may not be positive definite, so
nag_glopt_bnd_mcs_solve (e05jbc) uses the general nonlinear optimizer nag_opt_sparse_nlp_solve
(e04vhc) to minimize the models.

12 Optional Arguments

Several optional arguments in nag_glopt_bnd_mcs_solve (e05jbc) define choices in the problem
specification or the algorithm logic. In order to reduce the number of formal arguments of
nag_glopt_bnd_mcs_solve (e05jbc) these optional arguments have associated default values that are
appropriate for most problems. Therefore, you need only specify those optional arguments whose values
are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
arguments.

The following is a list of the optional arguments available. A full description of each optional argument
is provided in Section 12.1.

Defaults

Function Evaluations Limit

Infinite Bound Size

List

Local Searches

Local Searches Limit

Local Searches Tolerance

Maximize

Minimize
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Nolist

Repeatability

Splits Limit

Static Limit

Target Objective Error

Target Objective Safeguard

Target Objective Value

Optional arguments may be specified by call ing one, or more, of the functions
nag_glopt_bnd_mcs_optset_file (e05jcc) , nag_glopt_bnd_mcs_optset_st r ing (e05jdc) ,
nag_glopt_bnd_mcs_optset_char (e05jec), nag_glopt_bnd_mcs_optset_int (e05jfc) and
nag_glopt_bnd_mcs_optset_real (e05jgc) before a call to nag_glopt_bnd_mcs_solve (e05jbc).

nag_glopt_bnd_mcs_optset_file (e05jcc) reads options from an external options file, with Begin and End
as the first and last lines respectively, and with each intermediate line defining a single optional
argument. For example,

Begin
Static Limit = 50

End

The call

e05jcc (fileid, &state, &fail);

can then be used to read the file on the descriptor fileid as returned by a call of nag_open_file (x04acc).
The value fail:code ¼ NE_NOERROR is returned on successful exit. nag_glopt_bnd_mcs_optset_file
(e05jcc) should be consulted for a full description of this method of supplying optional arguments.

nag_glopt_bnd_mcs_optset_str ing (e05jdc), nag_glopt_bnd_mcs_optset_char (e05jec),
nag_glopt_bnd_mcs_optset_int (e05jfc) or nag_glopt_bnd_mcs_optset_real (e05jgc) can be called to
supply opt ions d i rec t ly, one ca l l be ing necessary for each opt iona l a rgument .
nag_glopt_bnd_mcs_optset_str ing (e05jdc), nag_glopt_bnd_mcs_optset_char (e05jec),
nag_glopt_bnd_mcs_optset_int (e05jfc) or nag_glopt_bnd_mcs_optset_real (e05jgc) should be consulted
for a full description of this method of supplying optional arguments.

All optional arguments not specified by you are set to their default values. Valid values of optional
arguments specified by you are unaltered by nag_glopt_bnd_mcs_solve (e05jbc) and so remain in effect
for subsequent calls to nag_glopt_bnd_mcs_solve (e05jbc), unless you explicitly change them.

12.1 Description of the Optional Arguments

For each option, we give a summary line, a description of the optional argument and details of
constraints.

The summary line contains:

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively, and where the letter a denotes an option that takes an ON or OFF value;

the default value, where the symbol � is a generic notation for machine precision (see
nag_machine_precision (X02AJC)), the symbol rmax stands for the largest positive model number
(see nag_real_largest_number (X02ALC)), nr represents the number of non-fixed variables, and
the symbol d stands for the maximum number of decimal digits that can be represented (see
nag_decimal_digits (X02BEC)).

Option names are case-insensitive and must be provided in full; abbreviations are not recognized.

Defaults

This special keyword is used to reset all optional arguments to their default values, and any random state
stored in state will be destroyed.

Any option value given with this keyword will be ignored. This optional argument cannot be queried or
got.
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Function Evaluations Limit i Default ¼ 100n2
r

This puts an approximate limit on the number of function calls allowed. The total number of calls made
is checked at the top of an internal iteration loop, so it is possible that a few calls more than nf may be
made.

Constraint: nf > 0.

Infinite Bound Size r Default ¼ r
1
4
max

This defines the ‘infinite’ bound infbnd in the definition of the problem constraints. Any upper bound
greater than or equal to infbnd will be regarded as 1 (and similarly any lower bound less than or equal
to �infbnd will be regarded as �1).

Constraint: r
1
4
max � infbnd � r

1
2
max .

Local Searches a Default ¼ ON

If you want to try to accelerate convergence of nag_glopt_bnd_mcs_solve (e05jbc) by starting local
searches from candidate minima, you will require lcsrch to be ON.

Constraint: lcsrch ¼ ON or OFF.

Local Searches Limit i Default ¼ 50

This defines the maximal number of iterations to be used in the trust-region loop of the local-search
procedure.

Constraint: loclim > 0.

Local Searches Tolerance r Default ¼ 2�

The value of loctol is the multiplier used during local searches as a stopping criterion for when the
approximated gradient is small, in the sense described in Section 11.3.

Constraint: loctol � 2�.

Minimize Default
Maximize

These keywords specify the required direction of optimization. Any option value given with these
keywords will be ignored.

Nolist Default
List

These options control the echoing of each optional argument specification as it is supplied. List turns
printing on, Nolist turns printing off. The output is sent to stdout.

Any option value given with these keywords will be ignored. This optional argument cannot be queried
or got.

Repeatability a Default ¼ OFF

For use with random initialization lists (initmethod ¼ Nag Random). When set to ON, an internally-
initialized random state is stored in state for use in subsequent calls to nag_glopt_bnd_mcs_solve
(e05jbc).

Constraint: repeat ¼ ON or OFF.
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Splits Limit i Default ¼ d nr þ 2ð Þ=3b c
Along with the initialization list list, this defines a limit on the number of times the root box will be split
along any single coordinate direction. If Local Searches is OFF you may find the default value to be too
small.

Constraint: smax > nr þ 2.

Static Limit i Default ¼ 3nr

As the default termination criterion, computation stops when the best function value is static for stclim
sweeps through levels. This argument is ignored if you have specified a target value to reach in
Target Objective Value.

Constraint: stclim > 0.

Target Objective Error r Default ¼ �1
4

If you have given a target objective value to reach in objval (the value of the optional argument
Target Objective Value), objerr sets your desired relative error (from above if Minimize is set, from
below if Maximize is set) between obj and objval, as described in Section 7. See also the description of
the optional argument Target Objective Safeguard.

Constraint: objerr � 2�.

Target Objective Safeguard r Default ¼ �1
2

If you have given a target objective value to reach in objval (the value of the optional argument
Target Objective Value), objsfg sets your desired safeguarded termination tolerance, for when objval is
close to zero.

Constraint: objsfg � 2�.

Target Objective Value r

This argument may be set if you wish nag_glopt_bnd_mcs_solve (e05jbc) to use a specific value as the
target function value to reach during the optimization. Setting objval overrides the default termination
criterion determined by the optional argument Static Limit.
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