
NAG Library Function Document

nag_opt_lin_lsq (e04ncc)

1 Purpose

nag_opt_lin_lsq (e04ncc) solves linearly constrained linear least squares problems and convex quadratic
programming problems. It is not intended for large sparse problems.

2 Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_lin_lsq (Integer m, Integer n, Integer nclin, const double a[],
Integer tda, const double bl[], const double bu[], const double cvec[],
double b[], double h[], Integer tdh, Integer kx[], double x[],
double *objf, Nag_E04_Opt *options, Nag_Comm *comm, NagError *fail)

3 Description

nag_opt_lin_lsq (e04ncc) is designed to solve a class of quadratic programming problems stated in the
following general form:

minimize
x2Rn

F xð Þ subject to l � x
Ax

� �
� u; ð1Þ

where A is an nL by n matrix and the objective function F xð Þ may be specified in a variety of ways
depending upon the particular problem to be solved. The available forms for F xð Þ are listed in Table 1
below, in which the prefixes FP, LP, QP and LS stand for ‘feasible point’, ‘linear programming’,
‘quadratic programming’ and ‘least squares’ respectively, c is an n element vector, b is an m element
vector, and xk k denotes the Euclidean length of x.

Problem Type f xð Þ Matrix H
FP Not applicable Not applicable
LP cTx Not applicable

QP1 1
2x

THx n by n symmetric positive semidefinite

QP2 cTxþ 1
2x

THx n by n symmetric positive semidefinite

QP3 1
2x

THTHx m by n upper trapezoidal

QP4 cTxþ 1
2x

THTHx m by n upper trapezoidal

LS1 1
2 b�Hxk k2 m by n

LS2 cTxþ 1
2 b�Hxk k2 m by n

LS3 1
2 b�Hxk k2 m by n upper trapezoidal

LS4 cTxþ 1
2 b�Hxk k2 m by n upper trapezoidal

Table 1

For problems of type LS, H is referred to as the least squares matrix, or the matrix of observations, and b
as the vector of observations. The default problem type is LS1, and other objective functions are selected
by using the optional argument options:prob (see Section 12.2).

When H is upper trapezoidal it will usually be the case that m ¼ n, so that H is upper triangular, but
full generality has been allowed for in the specification of the problem. The upper trapezoidal form is
intended for cases where a previous factorization, such as a QR factorization, has been performed.

The constraints involving A are called the general constraints. Note that upper and lower bounds are
specified for all the variables and for all the general constraints. An equality constraint can be specified

e04 – Minimizing or Maximizing a Function e04ncc

Mark 25 e04ncc.1

by setting li ¼ ui. If certain bounds are not present, the associated elements of l or u can be set to
special values that will be treated as �1 or þ1. (See the description of the optional argument
options:inf bound in Section 12.2.

The function F xð Þ is a quadratic function, whose defining feature is that its second-derivative matrix
r2F xð Þ (the Hessian matrix) is constant. For the LP case, r2F xð Þ ¼ 0; for QP1 and QP2, r2F xð Þ ¼ H;
and for QP3, QP4 and LS problems, r2F xð Þ ¼ HTH and the Hessian matrix is positive semidefinite
(positive definite if H is full rank), so that F xð Þ is convex. If H is defined as the zero matrix,
nag_opt_lin_lsq (e04ncc) will solve the resulting linear programming problem; however, this can be
accomplished more efficiently by using nag_opt_lp (e04mfc).

Problems of type QP3 and QP4 for which H is not in upper trapezoidal form should be solved as
problems of type LS1 and LS2 respectively, with b ¼ 0.

You must supply an initial estimate of the solution.

If H is of full rank then nag_opt_lin_lsq (e04ncc) will obtain the unique (global) minimum. If H is not
of full rank then the solution may still be a global minimum if all active constraints have nonzero
Lagrange multipliers. Otherwise the solution obtained will be either a weak minimum (i.e., with a unique
optimal objective value, but an infinite set of optimal x), or else the objective function is unbounded
below in the feasible region. The last case can only occur when F xð Þ contains an explicit linear term (as
in problems LP, QP2, QP4, LS2 and LS4).

The method used by nag_opt_lin_lsq (e04ncc) is described in detail in Section 11.

4 References

Gill P E, Hammarling S, Murray W, Saunders M A and Wright M H (1986) Users’ guide for LSSOL
(Version 1.0) Report SOL 86-1 Department of Operations Research, Stanford University

Gill P E, Murray W, Saunders M A and Wright M H (1984) Procedures for optimization problems with a
mixture of bounds and general linear constraints ACM Trans. Math. Software 10 282–298

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

Stoer J (1971) On the numerical solution of constrained least squares problems SIAM J. Numer. Anal. 8
382–411

5 Arguments

1: m – Integer Input

On entry: m, the number of rows in the matrix H. If the problem is of type FP or LP, m is not
referenced and is assumed to be zero. The default type is LS1; other problem types can be
specified using the optional argument options:prob, see Section 12.2.

If the problem is of type QP, m will usually be n, the number of variables. However, a value of m
less than n is appropriate for problem type QP3 or QP4 if H is an upper trapezoidal matrix with
m rows. Similarly, m may be used to define the dimension of a leading block of nonzeros in the
Hessian matrices of QP1 or QP2. In QP cases, m should not be greater than m; if it is, the last
m� nð Þ rows of H are ignored.

If the problem is a least squares problem (in particular, the default type LS1), m is also the
dimension of the array b. Note that all possibilities (m < n, m ¼ n and m > n) are allowed in
this case.

Constraint: m > 0 if problem is not FP or LP.

2: n – Integer Input

On entry: n, the number of variables.

Constraint: n > 0.

e04ncc NAG Library Manual

e04ncc.2 Mark 25

3: nclin – Integer Input

On entry: nL, the number of general linear constraints.

Constraint: nclin � 0.

4: a½nclin� tda� – const double Input

Note: the i; jð Þth element of the matrix A is stored in a½ i� 1ð Þ � tdaþ j� 1�.
On entry: the ith row of a must contain the coefficients of the ith general linear constraint (the ith
row of A), for i ¼ 1; 2; . . . ; nL. If nclin ¼ 0 then the array a is not referenced.

5: tda – Integer Input

On entry: the stride separating matrix column elements in the array a.

Constraint: tda � n if nclin > 0.

6: bl½nþ nclin� – const double Input
7: bu½nþ nclin� – const double Input

On entry: bl must contain the lower bounds and bu the upper bounds, for all the constraints in the
following order. The first n elements of each array must contain the bounds on the variables, and
the next nL elements the bounds for the general linear constraints (if any). To specify a
nonexistent lower bound (i.e., lj ¼ �1), set bl½j� 1� � �options:inf bound, and to specify a
nonexistent upper bound (i.e., uj ¼ þ1), set bu½j� 1� � options:inf bound, where

options:inf bound is one of the optional arguments (default value 1020 (see Section 12.2). To
specify the jth constraint as an equality, set bl½j� 1� ¼ bu½j� 1� ¼ �, say, where
�j j < options:inf bound.

Constraints:

bl½j� � bu½j�, for j ¼ 0; 1; . . . ; nþ nclin� 1;
if bl½j� ¼ bu½j� ¼ �, �j j < options:inf bound.

8: cvec½n� – const double Input

On entry: the coefficients of the explicit linear term of the objective function when the problem is
of type LP, QP2, QP4, LS2 or LS4.

If the problem is of type FP, QP1, QP3, LS1 (the default) or LS3, cvec is not referenced and may
be NULL.

9: b½m� – double Input/Output

On entry: the m elements of the vector of observations.

On exit: the transformed residual vector of equation (10).

b is referenced only in the case of least squares problem types (in particular, the default type LS1.
For other problem types, b is not referenced and may be NULL.

10: h½m� tdh� – double Input/Output

Note: the i; jð Þth element of the matrix H is stored in h½ i� 1ð Þ � tdhþ j� 1�.
On entry: the array h must contain the matrix H as specified in Table 1 (see Section 3).

For problems QP1 and QP2, the first m rows and columns of h must contain the leading m by m
rows and columns of the symmetric Hessian matrix. Only the diagonal and upper triangular
elements of the leading m rows and columns of h are referenced. The remaining elements are
assumed to be zero and need not be assigned.

For problems QP3, QP4, LS3 and LS4, the first m rows of h must contain an m by n upper
trapezoidal factor of either the Hessian or the least squares matrix, ordered according to the array
kx (see below). The factor need not be of full rank, i.e., some of the diagonals may be zero.

e04 – Minimizing or Maximizing a Function e04ncc

Mark 25 e04ncc.3

However, as a general rule, the larger the dimension of the leading nonsingular sub-matrix of H,
the fewer iterations will be required. Elements outside the upper trapezoidal part of the first m
rows of H are assumed to be zero and need not be assigned.

If a constrained least squares problem contains a very large number of observations, storage
limitations may prevent storage of the entire least squares matrix. In such cases, you should
transform the original H into a triangular matrix before the call to nag_opt_lin_lsq (e04ncc) and
solve as type LS3 or LS4.

On exit: by default, h contains the upper triangular Cholesky factor R of equation (8), with
columns ordered as indicated by kx (see below). If the optional argument
options:hessian ¼ Nag TRUE (see Section 12.2), and the problem is one of the LS or QP types,
h contains the upper triangular Cholesky factor of the Hessian matrix r2F , with columns ordered
as indicated by kx (see below). In either case, this matrix may be used to obtain the variance-
covariance matrix or to recover the upper triangular factor of the original least squares matrix.

If the problem is of type FP or LP, h is not referenced and may be NULL.

11: tdh – Integer Input

On entry: the stride separating matrix column elements in the array h.

Constraint: tdh � n.

12: kx½n� – Integer Input/Output

On entry: for problems of type QP3, QP4, LS3 or LS4 the array kx must specify the order of the
columns of the matrix H with respect to the ordering of x. Thus if column j of H is the column
associated with the variable xi then kx½j� 1� ¼ i.
If the problem is of any other type then the array kx need not be initialized.

Constraints:

1 � kx½i� � n, for i ¼ 0; 1; . . . ;n� 1;
if i 6¼ j, kx½i� 6¼ kx½j�.

On exit: defines the order of the columns of H with respect to the ordering of x, as described
above.

13: x½n� – double Input/Output

On entry: an initial estimate of the solution.

On exit: the point at which nag_opt_lin_lsq (e04ncc) terminated. If fail:code ¼ NE NOERROR,
NW_SOLN_NOT_UNIQUE or NW_NOT_FEASIBLE, x contains an estimate of the solution.

14: objf – double * Output

On exit: the value of the objective function at x if x is feasible, or the sum of infeasibilities at x
otherwise. If the problem is of type FP and x is feasible, objf is set to zero.

15: options – Nag_E04_Opt * Input/Output

On entry/exit: a pointer to a structure of type Nag_E04_Opt whose members are optional
arguments for nag_opt_lin_lsq (e04ncc). These structure members offer the means of adjusting
some of the argument values of the algorithm and on output will supply further details of the
results. A description of the members of options is given below in Section 12. Some of the results
returned in options can be used by nag_opt_lin_lsq (e04ncc) to perform a ‘warm start’ (see the
member options:start in Section 12.2).

If any of these optional arguments are required then the structure options should be declared and
initialized by a call to nag_opt_init (e04xxc) and supplied as an argument to nag_opt_lin_lsq
(e04ncc). However, if the optional arguments are not required the NAG defined null pointer,

E04_DEFAULT, can be used in the function call.

e04ncc NAG Library Manual

e04ncc.4 Mark 25

16: comm – Nag_Comm * Input/Output

Note: comm is a NAG defined type (see Section 3.2.1.1 in the Essential Introduction).

On entry/exit: structure containing pointers for communication with an optional user-defined
printing function; see Section 12.3.1 for details. If you do not need to make use of this
communication feature the null pointer NAGCOMM_NULL may be used in the call to nag_opt_lin_lsq
(e04ncc); comm will then be declared internally for use in calls to user-supplied functions.

17: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

5.1 Description of Printed Output

Intermediate and final results are printed out by default. The level of printed output can be controlled
w i t h t h e s t r u c t u r e m e m b e r options:print level (s e e S e c t i o n 1 2 . 2) . T h e d e f a u l t ,
options:print level ¼ Nag Soln Iter provides a single line of output at each iteration and the final
result. This section describes the default printout produced by nag_opt_lin_lsq (e04ncc).

The convention for numbering the constraints in the iteration results is that indices 1 to n refer to the
bounds on the variables, and indices nþ 1 to nþ nL refer to the general constraints.

The following line of output is produced at every iteration. In all cases, the values of the quantities
printed are those in effect on completion of the given iteration.

Itn is the iteration count.

Step is the step taken along the computed search direction. If a constraint is added during
the current iteration, Step will be the step to the nearest constraint. During the
optimality phase, the step can be greater than 1:0 only if the factor Rz is singular (see
Section 11.3).

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a
weighted sum of the magnitudes of constraint violations. If x is feasible, Objective

is the value of the objective function. The output line for the final iteration of the
feasibility phase (i.e., the first iteration for which Ninf is zero) will give the value of
the true objective at the first feasible point.

During the optimality phase, the value of the objective function will be non-
increasing. During the feasibility phase, the number of constraint infeasibilities will
not increase until either a feasible point is found, or the optimality of the multipliers
implies that no feasible point exists. Once optimal multipliers are obtained, the
number of infeasibilities can increase, but the sum of infeasibilities will either remain
constant or be reduced until the minimum sum of infeasibilities is found.

Norm Gz ZT
1 gFR

�� ��, the Euclidean norm of the reduced gradient with respect to Z1 (see
Section 11.3). During the optimality phase, this norm will be approximately zero after
a unit step.

The printout of the final result consists of:

Varbl gives the name (V) and index j, for j ¼ 1; 2; . . . ; n of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a fixed
variable, LL if on its lower bound, UL if on its upper bound, TF if temporarily fixed at
its current value). If Value lies outside the upper or lower bounds by more than the
optional argument options:ftol (default value

ffiffi
�
p

, where � is the machine precision;
see Section 12.2), State will be ++ or -- respectively.

A key is sometimes printed before State to give some additional information about
the state of a variable.

e04 – Minimizing or Maximizing a Function e04ncc

Mark 25 e04ncc.5

A Alternative optimum possible. The variable is active at one of its bounds, but its
Lagrange Multiplier is essentially zero. This means that if the variable were
allowed to start moving away from its bound, there would be no change to the
objective function. The values of the other free variables might change, giving a
genuine alternative solution. However, if there are any degenerate variables
(labelled D), the actual change might prove to be zero, since one of them could
encounter a bound immediately. In either case, the values of the Lagrange
multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of its
bounds.

I Infeasible. The variable is currently violating one of its bounds by more than
options:ftol.

Value is the value of the variable at the final iteration.

Lower bound is the lower bound specified for variable j. (None indicates that
bl½j� 1� � �options:inf bound, where options:inf bound is the optional argument.)

Upper bound is the upper bound specified for variable j. (None indicates that
bu½j� 1� � options:inf bound, where options:inf bound is the optional argument.)

Lagr mult is the value of the Lagrange multiplier for the associated bound. This will be zero if

S t a t e i s F R u n l e s s bl½j� 1� � �options:inf bound a n d
bu½j� 1� � options:inf bound, in which case the entry will be blank. If x is optimal,
the multiplier should be non-negative if State is LL, and non-positive if State is UL.

Residual is the difference between the variable Value and the nearer of its (finite) bounds
bl½j� 1� and bu½j� 1�. A blank entry indicates that the associated variable is not
bounded (i.e., bl½j� 1� � �options:inf bound and bu½j� 1� � options:inf bound).

The meaning of the printout for general constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, bl½j� 1� and bu½j� 1� replaced by bl½nþ j� 1� and bu½nþ j� 1�
respectively, and with the following change in the heading:

L Con the name (L) and index j, for j ¼ 1; 2; . . . ; nL of the linear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Residual column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

6 Error Indicators and Warnings

NE_2_INT_ARG_LT

On entry, tda ¼ valueh i while n ¼ valueh i. These arguments must satisfy tda � n.

On entry, tdh ¼ valueh i while n ¼ valueh i. These arguments must satisfy tdh � n.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_ARRAY_CONS

The contents of array kx are not valid. Constraint: must contain a permutation of integers
1; 2; . . . ; n.

NE_B_NULL

options:prob ¼ valueh i but argument b ¼ NULL.

e04ncc NAG Library Manual

e04ncc.6 Mark 25

NE_BAD_PARAM

On entry, argument options:print level had an illegal value.

On entry, argument options:prob had an illegal value.

On entry, argument options:start had an illegal value.

NE_BOUND

The lower bound for variable valueh i (array element bl½ valueh i�) is greater than the upper bound.

NE_BOUND_LCON

The lower bound for linear constraint valueh i (array element bl½ valueh i�) is greater than the upper
bound.

NE_CVEC_NULL

options:prob ¼ valueh i but argument cvec ¼ NULL.

NE_CYCLING

The algorithm could be cycling, since a total of 50 changes were made to the working set without
altering x. Check the detailed iteration printout for a repeated pattern of constraint deletions and
additions.

If a sequence of constraint changes is being repeated, the iterates are probably cycling. (
nag_opt_lin_lsq (e04ncc) does not contain a method that is guaranteed to avoid cycling; such a
method would be combinatorial in nature.) Cycling may occur in two circumstances: at a
constrained stationary point where there are some small or zero Lagrange multipliers; or at a point
(usually a vertex) where the constraints that are satisfied exactly are nearly linearly dependent. In
the latter case, you have the option of identifying the offending dependent constraints and
removing them from the problem, or restarting the run with a larger value of the optional
argument options:ftol (default value ¼

ffiffi
�
p

, where � is the machine precision; see Section 12.2).
If this error exit occurs but no suspicious pattern of constraint changes can be observed, it may be
worthwhile to restart with the final x (with optional argument options:start ¼ Nag Cold or
Nag Warm).

NE_H_NULL_QP

options:prob ¼ valueh i but argument h ¼ NULL. This problem type requires an array to be
supplied in argument h.

NE_INT_ARG_LT

On entry, m ¼ valueh i.
Constraint: m � 1.

On entry, n ¼ valueh i.
Constraint: n � 1.

On entry, nclin ¼ valueh i.
Constraint: nclin � 0.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_INVALID_INT_RANGE_1

Value valueh i given to options:fmax iter is not valid. Correct range is options:fmax iter � 0.

Value valueh i given to options:inf bound is not valid. Correct range is options:inf bound > 0:0.

Value valueh i given to options:inf step is not valid. Correct range is options:inf step > 0:0.

e04 – Minimizing or Maximizing a Function e04ncc

Mark 25 e04ncc.7

Value valueh i given to options:max iter is not valid. Correct range is options:max iter � 0.

Value valueh i given to options:rank tol is not valid. Correct range is
0:0 < options:rank tol < 1:0.

NE_INVALID_REAL_RANGE_F

Value valueh i given to options:ftol is not valid. Correct range is options:ftol > 0:0.

NE_INVALID_REAL_RANGE_FF

Value valueh i given to options:crash tol is not valid. Correct range is
0:0 � options:crash tol � 1:0.

NE_NOT_APPEND_FILE

Cannot open file stringh i for appending.

NE_NOT_CLOSE_FILE

Cannot close file stringh i.

NE_OPT_NOT_INIT

Options structure not initialized.

NE_STATE_VAL

options:state½ valueh i� is out of range. options:state½ valueh i� ¼ valueh i.

NE_UNBOUNDED

Solution appears to be unbounded.

This error indicator implies that a step as large as optional argument options:inf step (default
value 1020; see Section 12.2) would have to be taken in order to continue the algorithm. This
situation can occur only when H is singular, there is an explicit linear term, and at least one
variable has no upper or lower bound.

NE_WARM_START

options:start ¼ Nag Warm but pointer options:state ¼ NULL.

NE_WRITE_ERROR

Error occurred when writing to file stringh i.

NW_NOT_FEASIBLE

No feasible point was found for the linear constraints.

It was not possible to satisfy all the constraints to within the feasibility tolerance. In this case, the
constraint violations at the final x will reveal a value of the tolerance for which a feasible point
will exist – for example, if the feasibility tolerance for each violated constraint exceeds its

Residual (see Section 5.1) at the final point. The modified problem (with an altered value of the
optional feasibility tolerance, options:ftol) may then be solved using optional argument
options:start ¼ Nag Warm (see Section 12.2). You should check that there are no constraint
redundancies. If the data for the constraints are accurate only to the absolute precision �, you
should ensure that the value of options:ftol is greater than �. For example, if all elements of A are
of order unity and are accurate only to three decimal places, options:ftol should be at least 10�3.

NW_OVERFLOW_WARN

Serious ill conditioning in the working set after adding constraint valueh i. Overflow may occur in
subsequent iterations.

e04ncc NAG Library Manual

e04ncc.8 Mark 25

If overflow occurs preceded by this warning then serious ill conditioning has probably occurred in
the working set when adding a constraint. It may be possible to avoid the difficulty by increasing
the magnitude of the optional argument options:ftol and re-running the program. If the message
recurs even after this change, the offending linearly dependent constraint j must be removed from
the problem.

NW_SOLN_NOT_UNIQUE

Optimal solution is not unique.

The point in x is a weak local minimum, i.e., the projected gradient is negligible, the Lagrange
multipliers are optimal, but either Rz (see Section 11.3) is singular or there is a small multiplier.
This means that x is not unique.

NW_TOO_MANY_ITER

The maximum number of iterations, valueh i, have been performed.

The limiting number of iterations (determined by the optional arguments options:max iter and
options:fmax iter, see Section 12.2) was reached before normal termination occurred. If the
method appears to be making progress (e.g., the objective function is being satisfactorily reduced),
either increase the iteration limits or, alternatively, rerun nag_opt_lin_lsq (e04ncc) using the
optional argument options:start ¼ Nag Warm to specify the initial working set. If the iteration
limit is already large, but some of the constraints could be nearly linearly dependent, check the
extended iteration printout (see Section 12.3) for a repeated pattern of constraints entering and
leaving the working set. (Near-dependencies are often indicated by wide variations in size in the
diagonal elements of the matrix T (see Section 11.2), which will be printed if optional argument
options:print level ¼ Nag Soln Iter Full (default value options:print level ¼ Nag Soln Iter; see
Section 12.2.) In this case, the algorithm could be cycling (see the comments below for
fail:code ¼ NE CYCLING).

7 Accuracy

nag_opt_lin_lsq (e04ncc) implements a numerically stable active set strategy and returns solutions that
are as accurate as the condition of the problem warrants on the machine.

8 Parallelism and Performance

Not applicable.

9 Further Comments

9.1 Termination Criteria

nag_opt_lin_lsq (e04ncc) exits with fail:code ¼ NE NOERROR if x is a strong local minimizer, i.e., the
reduced gradient is negligible, the Lagrange multipliers are optimal (see Section 5.1) and Rz (see
Section 11.3) is nonsingular.

9.2 Scaling

Sensible scaling of the problem is likely to reduce the number of iterations required and make the
problem less sensitive to perturbations in the data, thus improving the condition of the problem. In the
absence of better information it is usually sensible to make the Euclidean lengths of each constraint of
comparable magnitude. See the e04 Chapter Introduction and Gill et al. (1981) for further information
and advice.

e04 – Minimizing or Maximizing a Function e04ncc

Mark 25 e04ncc.9

10 Example

To minimize the quadratic function cTxþ 1
2x

THx , where

c ¼ �4:0;�1:0;�1:0;�1:0;�1:0;�1:0;�1:0;�1:0;�0:3ð ÞT;

H ¼

2 1 1 1 1 0 0 0 0
1 2 1 1 1 0 0 0 0
1 1 2 1 1 0 0 0 0
1 1 1 2 1 0 0 0 0
1 1 1 1 2 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

subject to the bounds

�2 � x1 � 2
�2 � x2 � 2
�2 � x3 � 2
�2 � x4 � 2
�2 � x5 � 2
�2 � x6 � 2
�2 � x7 � 2
�2 � x8 � 2
�2 � x9 � 2

and to the general constraints

�2:0 � x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 þ x8 þ 4x9 � 1:5
�2:0 � x1 þ 2x2 þ 3x3 þ 4x4 � 2x5 þ x6 þ x7 þ x8 þ x9 � 1:5
�2:0 � x1 � x2 þ x3 � x4 þ x5 þ x6 þ x7 þ x8 þ x9 � 4:0

The initial point, which is feasible, is

x0 ¼ 0; 0; 0; 0; 0; 0; 0; 0; 0ð ÞT;

and F x0ð Þ ¼ 0.

The optimal solution (to five figures) is

x� ¼ 2:0;�0:23333;�0:26667;�0:3;�0:1; 2:0; 2:0;�1:7777;�0:45555ð ÞT;

and F x�ð Þ ¼ �8:0678. Three bound constraints and two general constraints are active at the solution.
Note that, although the Hessian matrix is positive semidefinite, the point x� is unique.

This example illustrates the use of the options structure. Since the problem is of type QP2 (as described
in Section 3) and the default value of the optional argument options:prob ¼ Nag LS1, it is necessary to
reset this argument to options:prob ¼ Nag QP2 in order to solve the problem. This is achieved by
declaring the options structure and initializing it by calling nag_opt_init (e04xxc). Then options:prob is
assigned directly, before calling nag_opt_lin_lsq (e04ncc). On return from nag_opt_lin_lsq (e04ncc),
nag_opt_free (e04xzc) is used to free the memory assigned to the pointers in the options structure. You
must not use the standard C function free() for this purpose.

10.1 Program Text

/* nag_opt_lin_lsq (e04ncc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 5, 1998.
*
* Mark 6 revised, 2000.

e04ncc NAG Library Manual

e04ncc.10 Mark 25

* Mark 8 revised, 2004.
*
*/

#include <nag.h>
#include <stdio.h>
#include <string.h>
#include <nag_stdlib.h>
#include <nage04.h>

#define A(I, J) a[(I) *tda + J]
#define H(I, J) h[(I) *tdh + J]

int main(void)
{

Integer exit_status = 0;
Integer i, j, *kx = 0, m, n, nbnd, nclin, tda, tdh;
Nag_E04_Opt options;
double *a = 0, *bl = 0, *bu = 0, *cvec = 0, *h = 0, objf, *x = 0;
Nag_Comm comm;
NagError fail;

INIT_FAIL(fail);

printf("nag_opt_lin_lsq (e04ncc) Example Program Results\n");
fflush(stdout);

#ifdef _WIN32
scanf_s(" %*[^\n]"); /* Skip heading in data file */

#else
scanf(" %*[^\n]"); /* Skip heading in data file */

#endif

/* Read problem dimensions */
#ifdef _WIN32

scanf_s(" %*[^\n]");
#else

scanf(" %*[^\n]");
#endif
#ifdef _WIN32

scanf_s("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[^\n]", &m, &n, &nclin);
#else

scanf("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[^\n]", &m, &n, &nclin);
#endif

if (m > 0 && n > 0 && nclin >= 0)
{

nbnd = n + nclin;
if (!(a = NAG_ALLOC(nclin*n, double)) ||

!(bl = NAG_ALLOC(nbnd, double)) ||
!(bu = NAG_ALLOC(nbnd, double)) ||
!(cvec = NAG_ALLOC(n, double)) ||
!(h = NAG_ALLOC(m*n, double)) ||
!(x = NAG_ALLOC(n, double)) ||
!(kx = NAG_ALLOC(n, Integer)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
tda = n;
tdh = n;

}
else

{
printf("Invalid m or n or nclin.\n");
exit_status = 1;
return exit_status;

}

/* We solve a QP2 type problem in this example */

e04 – Minimizing or Maximizing a Function e04ncc

Mark 25 e04ncc.11

/* Read cvec, h, a, bl, bu and x from data file */

#ifdef _WIN32
scanf_s(" %*[^\n]");

#else
scanf(" %*[^\n]");

#endif
for (i = 0; i < m; ++i)

#ifdef _WIN32
scanf_s("%lf", &cvec[i]);

#else
scanf("%lf", &cvec[i]);

#endif

#ifdef _WIN32
scanf_s(" %*[^\n]");

#else
scanf(" %*[^\n]");

#endif
for (i = 0; i < m; ++i)

for (j = 0; j < n; ++j)
#ifdef _WIN32

scanf_s("%lf", &H(i, j));
#else

scanf("%lf", &H(i, j));
#endif

if (nclin > 0)
{

#ifdef _WIN32
scanf_s(" %*[^\n]");

#else
scanf(" %*[^\n]");

#endif
for (i = 0; i < nclin; ++i)

for (j = 0; j < n; ++j)
#ifdef _WIN32

scanf_s("%lf", &A(i, j));
#else

scanf("%lf", &A(i, j));
#endif

}

/* Read lower bounds */
#ifdef _WIN32

scanf_s(" %*[^\n]");
#else

scanf(" %*[^\n]");
#endif

for (i = 0; i < nbnd; ++i)
#ifdef _WIN32

scanf_s("%lf", &bl[i]);
#else

scanf("%lf", &bl[i]);
#endif

/* Read upper bounds */
#ifdef _WIN32

scanf_s(" %*[^\n]");
#else

scanf(" %*[^\n]");
#endif

for (i = 0; i < nbnd; ++i)
#ifdef _WIN32

scanf_s("%lf", &bu[i]);
#else

scanf("%lf", &bu[i]);
#endif

/* Read the initial point x */

e04ncc NAG Library Manual

e04ncc.12 Mark 25

#ifdef _WIN32
scanf_s(" %*[^\n]");

#else
scanf(" %*[^\n]");

#endif
for (i = 0; i < n; ++i)

#ifdef _WIN32
scanf_s("%lf", &x[i]);

#else
scanf("%lf", &x[i]);

#endif

/* Change the problem type */
/* nag_opt_init (e04xxc).
* Initialization function for option setting
*/

nag_opt_init(&options);
options.prob = Nag_QP2;

/* nag_opt_lin_lsq (e04ncc), see above. */
nag_opt_lin_lsq(m, n, nclin, a, tda, bl, bu, cvec, (double *) 0,

h, tdh, kx, x, &objf, &options, &comm, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_opt_lin_lsq (e04ncc).\n%s\n",

fail.message);
exit_status = 1;

}

/* Free options memory */
/* nag_opt_free (e04xzc).
* Memory freeing function for use with option setting
*/

nag_opt_free(&options, "all", &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_opt_free (e04xzc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

END:
NAG_FREE(a);
NAG_FREE(bl);
NAG_FREE(bu);
NAG_FREE(cvec);
NAG_FREE(h);
NAG_FREE(x);
NAG_FREE(kx);

return exit_status;
}

10.2 Program Data

nag_opt_lin_lsq (e04ncc) Example Program Data
Values of m, n, nclin

9 9 3

Objective function vector cvec
-4.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -0.1 -0.3

Objective function matrix H
2.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0
1.0 2.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0
1.0 1.0 2.0 1.0 1.0 0.0 0.0 0.0 0.0
1.0 1.0 1.0 2.0 1.0 0.0 0.0 0.0 0.0
1.0 1.0 1.0 1.0 2.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

e04 – Minimizing or Maximizing a Function e04ncc

Mark 25 e04ncc.13

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Linear constraint matrix A
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0
1.0 2.0 3.0 4.0 -2.0 1.0 1.0 1.0 1.0
1.0 -1.0 1.0 -1.0 1.0 1.0 1.0 1.0 1.0

Lower bounds
-2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0

Upper bounds
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.5 1.5 4.0

Initial estimate of x
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10.3 Program Results

nag_opt_lin_lsq (e04ncc) Example Program Results

Parameters to e04ncc

Linear constraints............ 3 Number of variables........... 9
Objective matrix rows......... 9

prob.................... Nag_QP2 start................... Nag_Cold
ftol.................... 1.05e-08 rank_tol................ 1.05e-07
crash_tol............... 1.00e-02 hessian.................. Nag_FALSE
inf_bound............... 1.00e+20 inf_step................ 1.00e+20
fmax_iter............... 60 max_iter................ 60
machine precision....... 1.11e-16
print_level......... Nag_Soln_Iter
outfile................. stdout

Memory allocation:
state................... Nag
ax...................... Nag lambda.................. Nag

Rank of the objective function data matrix = 5

Itn Step Ninf Sinf/Objective Norm Gz
0 0.0e+00 0 0.000000e+00 4.5e+00
1 7.5e-01 0 -4.375000e+00 5.0e-01
2 1.0e+00 0 -4.400000e+00 2.8e-17
3 3.0e-01 0 -4.700000e+00 8.9e-01
4 1.0e+00 0 -5.100000e+00 2.4e-17
5 5.4e-01 0 -6.055714e+00 1.7e+00
6 1.1e-02 0 -6.113326e+00 1.6e+00
7 1.1e-01 0 -6.215049e+00 1.2e+00
8 1.0e+00 0 -6.538008e+00 1.8e-17
9 6.5e-01 0 -7.428704e+00 7.2e-02

10 1.0e+00 0 -7.429717e+00 1.8e-17
11 1.0e+00 0 -8.067718e+00 1.8e-17
12 1.0e+00 0 -8.067778e+00 1.8e-17

Exit from QP problem after 12 iterations.

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual
V 1 UL 2.00000e+00 -2.00000e+00 2.00000e+00 -8.0000e-01 0.0000e+00
V 2 FR -2.33333e-01 -2.00000e+00 2.00000e+00 0.0000e+00 1.7667e+00
V 3 FR -2.66667e-01 -2.00000e+00 2.00000e+00 0.0000e+00 1.7333e+00
V 4 FR -3.00000e-01 -2.00000e+00 2.00000e+00 0.0000e+00 1.7000e+00
V 5 FR -1.00000e-01 -2.00000e+00 2.00000e+00 0.0000e+00 1.9000e+00
V 6 UL 2.00000e+00 -2.00000e+00 2.00000e+00 -9.0000e-01 0.0000e+00
V 7 UL 2.00000e+00 -2.00000e+00 2.00000e+00 -9.0000e-01 0.0000e+00
V 8 FR -1.77778e+00 -2.00000e+00 2.00000e+00 0.0000e+00 2.2222e-01
V 9 FR -4.55556e-01 -2.00000e+00 2.00000e+00 0.0000e+00 1.5444e+00

e04ncc NAG Library Manual

e04ncc.14 Mark 25

L Con State Value Lower Bound Upper Bound Lagr Mult Residual
L 1 UL 1.50000e+00 -2.00000e+00 1.50000e+00 -6.6667e-02 1.1102e-15
L 2 UL 1.50000e+00 -2.00000e+00 1.50000e+00 -3.3333e-02 -4.4409e-16
L 3 FR 3.93333e+00 -2.00000e+00 4.00000e+00 0.0000e+00 6.6667e-02

Exit after 12 iterations.

Optimal QP solution found.

Final QP objective value = -8.0677778e+00

11 Further Description

This section gives a detailed description of the algorithm used in nag_opt_lin_lsq (e04ncc). This, and
possibly the next section, Section 12, may be omitted if the more sophisticated features of the algorithm
and software are not currently of interest.

11.1 Overview

nag_opt_lin_lsq (e04ncc) is based on an inertia-controlling method that maintains a Cholesky
factorization of the reduced Hessian (see below). The method is based on that of Gill and Murray
(1978) and is described in detail by Gill et al. (1981). Here we briefly summarise the main features of
the method.

nag_opt_lin_lsq (e04ncc) uses essentially the same algorithm as the subroutine LSSOL described in Gill
et al. (1986). It is based on a two-phase (primal) quadratic programming method with features to exploit
the convexity of the objective function due to Gill et al. (1984). (In the full-rank case, the method is
related to that of Stoer, see Stoer (1971).) nag_opt_lin_lsq (e04ncc) has two phases: finding an initial
feasible point by minimizing the sum of infeasibilities (the feasibility phase), and minimizing the
quadratic objective function within the feasible region (the optimality phase). The two-phase nature of
the algorithm is reflected by changing the function being minimized from the sum of infeasibilities to the
quadratic objective function. The feasibility phase does not perform the standard simplex method (i.e., it
does not necessarily find a vertex), except in the LP case when nL � n. Once any iterate is feasible, all
subsequent iterates remain feasible.

nag_opt_lin_lsq (e04ncc) has been designed to be efficient when used to solve a sequence of related
problems — for example, within a sequential quadratic programming method for nonlinearly constrained
optimization (e.g., nag_opt_nlp (e04ucc)). In particular, you may specify an initial working set (the
indices of the constraints believed to be satisfied exactly at the solution); see the discussion of the
optional argument options:start in Section 12.2.

In general, an iterative process is required to solve a quadratic program. (For simplicity, we shall always
consider a typical iteration and avoid reference to the index of the iteration.) Each new iterate �x is
defined by

�x ¼ xþ �p; ð2Þ

where the step length � is a non-negative scalar, and p is called the search direction.

At each point x, a working set of constraints is defined to be a linearly independent subset of the
constraints that are satisfied ‘exactly’ (to within the tolerance defined by the optional argument
options:ftol; see Section 12.2). The working set is the current prediction of the constraints that hold with
equality at a solution of (1). The search direction is constructed so that the constraints in the working set
remain unaltered for any value of the step length. For a bound constraint in the working set, this
property is achieved by setting the corresponding element of the search direction to zero. Thus, the
associated variable is fixed, and specification of the working set induces a partition of x into fixed and
free variables. During a given iteration, the fixed variables are effectively removed from the problem;
since the relevant elements of the search direction are zero, the columns of A corresponding to fixed
variables may be ignored.

e04 – Minimizing or Maximizing a Function e04ncc

Mark 25 e04ncc.15

Let nW denote the number of general constraints in the working set and let nFX denote the number of
variables fixed at one of their bounds (nW and nFX are the quantities Lin and Bnd in the extended
iteration printout from nag_opt_lin_lsq (e04ncc); see Section 12.3). Similarly, let nFR nFR ¼ n� nFXð Þ
denote the number of free variables. At every iteration, the variables are re-ordered so that the last nFX

variables are fixed, with all other relevant vectors and matrices ordered accordingly. The order of the
variables is indicated by the contents of the array kx on exit (see Section 5).

11.2 Definition of the Search Direction

Let AFR denote the nW by nFR sub-matrix of general constraints in the working set corresponding to the
free variables, and let pFR denote the search direction with respect to the free variables only. The general
constraints in the working set will be unaltered by any move along p if

AFRpFR ¼ 0: ð3Þ

In order to compute pFR, the TQ factorization of AFR is used:

AFRQFR ¼ 0 T
� �

ð4Þ

where T is a nonsingular nW by nW reverse-triangular matrix (i.e., tij ¼ 0 if iþ j < nW), and the
nonsingular nFR by nFR matrix QFR is the product of orthogonal transformations (see Gill et al. (1984)).
If the columns of QFR are partitioned so that

QFR ¼ Z Y
� �

; ð5Þ

where Y is nFR by nW, then the nZ nZ ¼ nFR � nWð Þ columns of Z form a basis for the null space of
AFR. Let nR be an integer such that 0 � nR � nZ , and let Z1 denote a matrix whose nR columns are a
subset of the columns of Z. (The integer nR is the quantity Zr in the extended iteration printout from
nag_opt_lin_lsq (e04ncc); see Section 12.3. In many cases, Z1 will include all the columns of Z.) The
direction pFR will satisfy (3) if

pFR ¼ Z1pZ ð6Þ

where pZ is any nR-vector.

11.3 The Main Iteration

Let Q denote the n by n matrix

Q ¼ QFR

IFX

� 	
ð7Þ

where IFX is the identity matrix of order nFX. Let R denote an n by n upper triangular matrix (the
Cholesky factor) such that

QT ~r2FQ � HQ ¼ RTR; ð8Þ

and let the matrix of the first nZ rows and columns of R be denoted by RZ. (The matrix ~r2F in (8) is
the Hessian with its rows and columns permuted so that the free variables come first.)

The definition of pZ in (6) depends on whether or not the matrix RZ is singular at x. In the nonsingular
case, pZ satisfies the equations

RT
ZRZpZ ¼ �gZ ð9Þ

where gZ denotes the vector ZTgFR and g denotes the objective gradient. (The norm of gFR is the printed
quantity Norm Gf; see Section 12.3.) When pZ is defined by (9), xþ p is the minimizer of the objective
function subject to the constraints (bounds and general) in the working set treated as equalities. In
general, a vector fZ is available such that RT

ZfZ ¼ �gZ , which allows pZ to be computed from a single
back-substitution RZpZ ¼ fZ . For example, when solving problem LS1, fZ comprises the first nZ
elements of the transformed residual vector

f ¼ P b�Hxð Þ ð10Þ

which is recurred from one iteration to the next, where P is an orthogonal matrix.

e04ncc NAG Library Manual

e04ncc.16 Mark 25

In the singular case, pZ is defined such that

RZpZ ¼ 0 and gT
ZpZ < 0: ð11Þ

This vector has the property that the objective function is linear along p and may be reduced by any step
of the form xþ �p, where � > 0.

The vector ZTgFR is known as the projected gradient at x. If the projected gradient is zero, x is a
constrained stationary point in the subspace defined by Z. During the feasibility phase, the projected
gradient will usually be zero only at a vertex (although it may be zero at non-vertices in the presence of
constraint dependencies). During the optimality phase, a zero projected gradient implies that x minimizes
the quadratic objective when the constraints in the working set are treated as equalities. At a constrained
stationary point, Lagrange multipliers �A and �B for the general and bound constraints are defined from
the equations

AT
FR�A ¼ gFR and �B ¼ gFX �AT

FX�A: ð12Þ
Given a positive constant � of the order of the machine precision, the Lagrange multiplier �j
corresponding to an inequality constraint in the working set is said to be optimal if �j � � when the
associated constraint is at its upper bound, or if �j � �� when the associated constraint is at its lower
bound. If a multiplier is non-optimal, the objective function (either the true objective or the sum of
infeasibilities) can be reduced by deleting the corresponding constraint (with index Jdel; see
Section 12.3) from the working set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is nonzero, there is
no feasible point, and nag_opt_lin_lsq (e04ncc) will continue until the minimum value of the sum of
infeasibilities has been found. At this point, the Lagrange multiplier �j corresponding to an inequality
constraint in the working set will be such that � 1þ �ð Þ � �j � � when the associated constraint is at its
upper bound, and �� � �j � 1þ �ð Þ when the associated constraint is at its lower bound. Lagrange
multipliers for equality constraints will satisfy �j

 � 1þ �.

The choice of step length is based on remaining feasible with respect to the satisfied constraints. If RZ is
nonsingular and xþ p is feasible, � will be taken as unity. In this case, the projected gradient at �x will
be zero, and Lagrange multipliers are computed. Otherwise, � is set to �M , the step to the ‘nearest’
constraint (with index Jadd; see Section 12.3), which is added to the working set at the next iteration.

If H is not input as a triangular matrix, it is overwritten by a triangular matrix R satisfying (8) obtained
using the Cholesky factorization in the QP case, or the QR factorization in the LS case. Column
interchanges are used in both cases, and an estimate is made of the rank of the triangular factor.
Thereafter, the dependent rows of R are eliminated from the problem.

Each change in the working set leads to a simple change to AFR: if the status of a general constraint
changes, a row of AFR is altered; if a bound constraint enters or leaves the working set, a column of AFR

changes. Explicit representations are recurred of the matrices T;QFR and R; and of vectors QTg, QTc
and f , which are related by the formulae

f ¼ Pb� R
0

� 	
QTx; b � 0 for the QP caseð Þ;

and

QTg ¼ QTc�RTf:

Note that the triangular factor R associated with the Hessian of the original problem is updated during
both the optimality and the feasibility phases.

The treatment of the singular case depends critically on the following feature of the matrix updating
schemes used in nag_opt_lin_lsq (e04ncc): if a given factor RZ is nonsingular, it can become singular
during subsequent iterations only when a constraint leaves the working set, in which case only its last
diagonal element can become zero. This property implies that a vector satisfying (11) may be found
using the single back-substitution �RZpZ ¼ eZ , where �RZ is the matrix RZ with a unit last diagonal, and
eZ is a vector of all zeros except in the last position. If the Hessian matrix r2F is singular, the matrix R
(and hence RZ) may be singular at the start of the optimality phase. However, RZ will be nonsingular if
enough constraints are included in the initial working set. (The matrix with no rows and columns is

e04 – Minimizing or Maximizing a Function e04ncc

Mark 25 e04ncc.17

positive definite by definition, corresponding to the case when AFR contains nFR constraints.) The idea is
to include as many general constraints as necessary to ensure a nonsingular RZ.

At the beginning of each phase, an upper triangular matrix R1 is determined that is the largest
nonsingular leading sub-matrix of RZ . The use of interchanges during the factorization of H tends to
maximize the dimension of R1. (The rank of R1 is estimated using the optional argument
options:rank tol; see Section 12.2.) Let Z1 denote the columns of Z corresponding to R1, and let Z
be partitioned as Z ¼ Z1 Z2

� �
. A working set for which Z1 defines the null space can be obtained by

including the rows of ZT
2 as ‘artificial constraints’. Minimization of the objective function then proceeds

within the subspace defined by Z1.

The artificially augmented working set is given by

�AFR ¼ AFR

ZT
2

� 	
; ð13Þ

so that pFR will satisfy AFRpFR ¼ 0 and ZT
2 pFR ¼ 0. By definition of the TQ factorization, �AFR

automatically satisfies the following:

�AFRQFR ¼ AFR

ZT
2

� 	
QFR ¼ AFR

ZT
2

� 	
Z1 Z2 Y
� �

¼ 0 �T
� �

;

where

�T ¼ 0 T
I 0

� 	
;

and hence the TQ factorization of (13) requires no additional work.

The matrix Z2 need not be kept fixed, since its role is purely to define an appropriate null space; the TQ
factorization can therefore be updated in the normal fashion as the iterations proceed. No work is
required to ‘delete’ the artificial constraints associated with Z2 when ZT

1 gFR ¼ 0, since this simply
involves repartitioning QFR. When deciding which constraint to delete, the ‘artificial’ multiplier vector
associated with the rows of ZT

2 is equal to ZT
2 gFR, and the multipliers corresponding to the rows of the

‘true’ working set are the multipliers that would be obtained if the temporary constraints were not
present.

The number of columns in Z2 and Z1, the Euclidean norm of ZT
1 gFR, and the condition estimator of R1

appear in the extended iteration printout as Art, Zr, Norm Gz and Cond Rz respectively (see
Section 12.3).

Although the algorithm of nag_opt_lin_lsq (e04ncc) does not perform simplex steps in general, there is
one exception: a linear program with fewer general constraints than variables (i.e., nL � n). (Use of the
simplex method in this situation leads to savings in storage.) At the starting point, the ‘natural’ working
set (the set of constraints exactly or nearly satisfied at the starting point) is augmented with a suitable
number of ‘temporary’ bounds, each of which has the effect of temporarily fixing a variable at its current
value. In subsequent iterations, a temporary bound is treated as a standard constraint until it is deleted
from the working set, in which case it is never added again.

One of the most important features of nag_opt_lin_lsq (e04ncc) is its control of the conditioning of the
working set, whose nearness to linear dependence is estimated by the ratio of the largest to smallest
diagonals of the TQ factor T (the printed value Cond T; see Section 12.3). In constructing the initial
working set, constraints are excluded that would result in a large value of Cond T. Thereafter,
nag_opt_lin_lsq (e04ncc) allows constraints to be violated by as much as a user-specified feasibility
tolerance (see options:ftol, Section 12.2) in order to provide, whenever possible, a choice of constraints
to be added to the working set at a given iteration. Let �M denote the maximum step at which xþ �Mp
does not violate any constraint by more than its feasibility tolerance. All constraints at distance
� � � �Mð Þ along p from the current point are then viewed as acceptable candidates for inclusion in the
working set. The constraint whose normal makes the largest angle with the search direction is added to
the working set. In order to ensure that the new iterate satisfies the constraints in the working set as
accurately as possible, the step taken is the exact distance to the newly added constraint. As a
consequence, negative steps are occasionally permitted, since the current iterate may violate the
constraint to be added by as much as the feasibility tolerance.

e04ncc NAG Library Manual

e04ncc.18 Mark 25

12 Optional Arguments

A number of optional input and output arguments to nag_opt_lin_lsq (e04ncc) are available through the
structure argument options, type Nag_E04_Opt. An argument may be selected by assigning an
appropriate value to the relevant structure member; those arguments not selected will be assigned default
values. If no use is to be made of any of the optional arguments you should use the NAG defined null
pointer, E04_DEFAULT, in place of options when calling nag_opt_lin_lsq (e04ncc); the default settings
will then be used for all arguments.

Before assigning values to options directly the structure must be initialized by a call to the function
nag_opt_init (e04xxc). Values may then be assigned to the structure members in the normal C manner.

Option settings may also be read from a text file using the function nag_opt_read (e04xyc) in which case
initialization of the options structure will be performed automatically if not already done. Any
subsequent direct assignment to the options structure must not be preceded by initialization.

If assignment of functions and memory to pointers in the options structure is required, then this must be
done directly in the calling program; they cannot be assigned using nag_opt_read (e04xyc).

12.1 Optional Argument Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for nag_opt_lin_lsq
(e04ncc) together with their default values where relevant. The number � is a generic notation for
machine precision (see nag_machine_precision (X02AJC)).

Nag_ProblemType prob Nag_LS1
Nag_Start start Nag Cold
Boolean list Nag_TRUE
Nag_PrintType print_level Nag_Soln_Iter

char outfile[80] stdout

void (*print_fun)() NULL

Integer fmax_iter max 50; 5 nþ nclinð Þð Þ
Integer max_iter max 50; 5 nþ nclinð Þð Þ
double crash_tol 0.01

double ftol
ffiffi
�
p

double inf_bound 1020

double inf_step max options:inf bound; 1020
� �

double rank_tol 100� or 10
ffiffi
�
p

Integer *state size nþ nclin
double *ax size nclin
double *lambda size nþ nclin
Boolean hessian Nag_FALSE
Integer iter

12.2 Description of the Optional Arguments

prob – Nag_ProblemType Default ¼ Nag LS1

On entry: specifies the type of objective function to be minimized during the optimality phase. The
following are the ten possible values of options:prob and the size of the arrays h, kx, b and cvec that
are required to define the objective function:

Nag FP h, b and cvec not referenced;

Nag LP h and b not referenced, cvec of size n;

Nag QP1 h of size m� tdh, symmetric, b and cvec not referenced;

Nag QP2 h of size m� tdh, symmetric, b not referenced, cvec of size n;

e04 – Minimizing or Maximizing a Function e04ncc

Mark 25 e04ncc.19

Nag QP3 h of size m� tdh, upper trapezoidal, b and cvec not referenced;

Nag QP4 h of size m� tdh, upper trapezoidal, b not referenced, cvec of size n.

Nag LS1 h of size m� tdh, b of size m, cvec not referenced;

Nag LS2 h of size m� tdh, b of size m, cvec of size n;

Nag LS3 h of size m� tdh, upper trapezoidal, b of size m, cvec not referenced;

Nag LS4 h of size m� tdh, upper trapezoidal, b of size m, cvec of size n.

The array kx of size n must be supplied for all problem types but need only be initialized for types
Nag QP3, Nag QP4, Nag LS3 and Nag LS4. If H ¼ 0, i.e., the objective function is purely linear, the
efficiency of nag_opt_lin_lsq (e04ncc) may be increased by specifying options:prob ¼ Nag LP.

Constraint: options:prob ¼ Nag FP, Nag LP, Nag QP1, Nag QP2, Nag QP3, Nag QP4, Nag LS1,
Nag LS2, Nag LS3 or Nag LS4.

start – Nag_Start Default ¼ Nag Cold

On entry: specifies how the initial working set is chosen. With options:start ¼ Nag Cold,
nag_opt_lin_lsq (e04ncc) chooses the initial working set based on the values of the variables and
constraints at the initial point. Broadly speaking, the initial working set will include equality constraints
and bounds or inequality constraints that violate or ‘nearly’ satisfy their bounds (to within the value of
the optional argument options:crash tol; see below).

With options:start ¼ Nag Warm, you must provide a valid definition of every array element of the
optional argument options:state (see below). nag_opt_lin_lsq (e04ncc) will override your specification
of options:state if necessary, so that a poor choice of the working set will not cause a fatal error. For
instance, any elements of options:state which are set to �2, �1 or 4 will be reset to zero, as will any
elements which are set to 3 when the corresponding elements of bl and bu are not equal. A warm start
will be advantageous if a good estimate of the initial working set is available – for example, when
nag_opt_lin_lsq (e04ncc) is called repeatedly to solve related problems.

Constraint: options:start ¼ Nag Cold or Nag Warm.

list – Nag_Boolean Default ¼ Nag TRUE

On entry: if options:list ¼ Nag TRUE the argument settings in the call to nag_opt_lin_lsq (e04ncc) will
be printed.

print level – Nag_PrintType Default ¼ Nag Soln Iter

On entry: the level of results printout produced by nag_opt_lin_lsq (e04ncc). The following values are
available:

Nag NoPrint No output.

Nag Soln The final solution.

Nag Iter One line of output for each iteration.

Nag Iter Long A longer line of output for each iteration with more information (line exceeds
80 characters).

Nag Soln Iter The final solution and one line of output for each iteration.

Nag Soln Iter Long The final solution and one long line of output for each iteration (line exceeds
80 characters).

Nag Soln Iter Const As Nag Soln Iter Long with the Lagrange multipliers, the variables x, the
constraint values Ax and the constraint status also printed at each iteration.

Nag Soln Iter Full As Nag Soln Iter Const with the diagonal elements of the matrix T associated
with the TQ factorization (see (4) in Section 11.2) of the working set, and the
diagonal elements of the upper triangular matrix R printed at each iteration.

e04ncc NAG Library Manual

e04ncc.20 Mark 25

Details of each level of results printout are described in Section 12.3.

Constraint: options:print level ¼ Nag NoPrint, Nag Soln, Nag Iter, Nag Soln Iter, Nag Iter Long,
Nag Soln Iter Long, Nag Soln Iter Const or Nag Soln Iter Full.

outfile – const char[80] Default ¼ stdout

On entry: the name of the file to which results should be printed. If options:outfile½0� ¼ n0 then the

stdout stream is used.

print fun – pointer to function Default ¼ NULL

On entry: printing function defined by you; the prototype of options:print fun is

void(*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

See Section 12.3.1 below for further details.

fmax iter – Integer Default ¼ max 50; 5 nþ nclinð Þð Þ
max iter – Integer Default ¼ max 50; 5 nþ nclinð Þð Þ
On entry: options:fmax iter and options:max iter specify the maximum number of iterations allowed in
the feasibility and optimality phase, respectively.

If you wish to check that a call to nag_opt_lin_lsq (e04ncc) is correct before attempting to solve the
problem in full then options:fmax iter may be set to 0. No iterations will then be performed but all
initialization prior to the first iteration will be done and a listing of argument settings will be output, if
optional argument options:list ¼ Nag TRUE (the default setting).

Constraints:

options:fmax iter � 0;
options:max iter � 0.

crash tol – double Default ¼ 0:01

On entry: options:crash tol is used when optional argument options:start ¼ Nag Cold (the default) and
nag_opt_lin_lsq (e04ncc) selects an initial working set. The initial working set will include (if possible)
bounds or general inequality constraints that lie within options:crash tol of their bounds. In particular, a
cons t ra in t o f the form aT

j x � l wil l be inc luded in the in i t i a l work ing se t i f

aT
j x� l

 � options:crash tol� 1þ lj jð Þ.

Constraint: 0:0 � options:crash tol � 1:0.

ftol – double Default ¼
ffiffi
�
p

On entry: defines the maximum acceptable absolute violation in each constraint at a ‘feasible’ point. For
example, if the variables and the coefficients in the general constraints are of order unity, and the latter
are correct to about 6 decimal digits, it would be appropriate to specify options:ftol as 10�6.

nag_opt_lin_lsq (e04ncc) attempts to find a feasible solution before optimizing the objective function. If
the sum of infeasibilities cannot be reduced to zero, nag_opt_lin_lsq (e04ncc) finds the minimum value
of the sum. Let Sinf be the corresponding sum of infeasibilities. If Sinf is quite small, it may be
appropriate to raise options:ftol by a factor of 10 or 100. Otherwise, some error in the data should be
suspected.

Note that a ‘feasible solution’ is a solution that satisfies the current constraints to within the feasibility
tolerance options:ftol.

Constraint: options:ftol > 0:0.

e04 – Minimizing or Maximizing a Function e04ncc

Mark 25 e04ncc.21

inf bound – double Default ¼ 1020

On entry: options:inf bound defines the ‘infinite’ bound in the definition of the problem constraints.
Any upper bound greater than or equal to options:inf bound will be regarded as þ1 (and similarly any
lower bound less than or equal to �options:inf bound will be regarded as �1).

Constraint: options:inf bound > 0:0.

inf step – double Default ¼ max options:inf bound; 1020
� �

On entry: specifies the magnitude of the change in variables that will be considered a step to an
unbounded solution. (Note that an unbounded solution can occur only when the Hessian is singular and
the objective contains an explicit linear term.) If the change in x during an iteration would exceed the
value of options:inf step, the objective function is considered to be unbounded below in the feasible
region.

Constraint: options:inf step > 0:0.

rank tol – double Default ¼ 100� or 10
ffiffi
�
p

The default value is 100� for problem types QP1, LS1 and LS3 but is 10
ffiffi
�
p

for other QP and LS
problem types. This option does not apply to FP or LP problem types.

On entry: options:rank tol enables you to control the estimate of the triangular factor R1 (see
Section 11.3). If �i denotes the function �i ¼ max R11j j; R22j j; . . . ; Riij jf g, the rank of R is defined to be
smallest index i such that Riþ1;iþ1

 � options:rank tol� �iþ1j j.

Constraint: 0:0 < options:rank tol < 1:0.

state – Integer * Default memory ¼ nþ nclin

On entry: options:state need not be set if the default option of options:start ¼ Nag Cold is used as
nþ nclin values of memory will be automatically allocated by nag_opt_lin_lsq (e04ncc).

If the option options:start ¼ Nag Warm has been chosen, options:state must point to a minimum of
nþ nclin elements of memory. This memory will already be available if the options structure has been
used in a previous call to nag_opt_lin_lsq (e04ncc) from the calling program, with
options:start ¼ Nag Cold and the same values of n and nclin. If a previous call has not been made
sufficient memory must be allocated to options:state by you.

When a warm start is chosen options:state should specify the status of the constraints at the start of the
feasibility phase. More precisely, the first n elements of options:state refer to the upper and lower
bounds on the variables, and the next nL elements refer to the general linear constraints (if any). Possible
values for options:state½j� are as follows:

options:state½j� Meaning
0 The constraint should not be in the initial working set.
1 The constraint should be in the initial working set at its lower bound.
2 The constraint should be in the initial working set at its upper bound.
3 The constraint should be in the initial working set as an equality. This value should

only be specified if bl½j� ¼ bu½j�.

The values �2, �1 and 4 are also acceptable but will be reset to zero by the function, as will any
elements which are set to 3 when the corresponding elements of bu and bl are not equal. If
nag_opt_lin_lsq (e04ncc) has been called previously with the same values of n and nclin, options:state
already contains satisfactory information. (See also the description of the optional argument
options:start.) The function also adjusts (if necessary) the values supplied in x to be consistent with
the values supplied in options:state.

Constraint: �2 � options:state½j � 1� � 4, for j ¼ 1; 2; . . . ;nþ nclin� 1.

On exit: the status of the constraints in the working set at the point returned in x. The significance of
each possible value of options:state½j� is as follows:

e04ncc NAG Library Manual

e04ncc.22 Mark 25

options:state½j� Meaning
�2 The constraint violates its lower bound by more than the feasibility tolerance.
�1 The constraint violates its upper bound by more than the feasibility tolerance.

0 The constraint is satisfied to within the feasibility tolerance, but is not in the working
set.

1 This inequality constraint is included in the working set at its lower bound.
2 This inequality constraint is included in the working set at its upper bound.
3 This constraint is included in the working set as an equality. This value of

options:state can occur only when bl½j� ¼ bu½j�.
4 This corresponds to optimality being declared with x½j� being temporarily fixed at its

current value. This value of options:state can only occur when
fail:code ¼ NW SOLN NOT UNIQUE.

ax – double * Default memory ¼ nclin

On entry: nclin values of memory will be automatically allocated by nag_opt_lin_lsq (e04ncc) and this is
the recommended method of use of options:ax. However you may supply memory from the calling
program.

On exit: if nclin > 0, options:ax points to the final values of the linear constraints Ax.

lambda – double * Default memory ¼ nþ nclin

On entry: nþ nclin values of memory will be automatically allocated by nag_opt_lin_lsq (e04ncc) and
this is the recommended method of use of options:lambda. However you may supply memory from the
calling program.

On exit: the values of the Lagrange multipliers for each constraint with respect to the current working
set. The first n elements contain the multipliers for the bound constraints on the variables, and the next
nL elements contain the multipliers for the general linear constraints (if any). If options:state½j� 1� ¼ 0
(i.e., constraint j is not in the working set), options:lambda½j� 1� is zero. If x is optimal,
options:lambda½j� 1� should be non-negative if options:state½j� 1� ¼ 1, non-posit ive if
options:state½j� 1� ¼ 2 and zero if options:state½j� 1� ¼ 4.

hessian – Nag_Boolean Default ¼ Nag FALSE

On entry: controls the contents of the argument h on return from nag_opt_lin_lsq (e04ncc).
nag_opt_lin_lsq (e04ncc) works exclusively with the transformed and reordered matrix HQ (8), and
hence extra computation is required to form the Hessian itself. If the optional argument
options:hessian ¼ Nag FALSE, h contains the Cholesky factor of the matrix HQ with columns ordered
as indicated by kx (see Section 5). If options:hessian ¼ Nag TRUE, h contains the Cholesky factor of
the Hessian matrix r2F , with columns ordered as indicated by kx.

iter – Integer

On exit: the total number of iterations performed in the feasibility phase and (if appropriate) the
optimality phase.

12.3 Description of Printed Output

The level of printed output can be controlled with the structure members options:list and
options:print level (see Section 12.2). If options:list ¼ Nag TRUE then the argument values to
nag_opt_lin_lsq (e04ncc) are listed, whereas the printout of results is governed by the value of
options:print level. The default of options:print level ¼ Nag Soln Iter provides a single line of output
at each iteration and the final result. This section describes all of the possible levels of results printout
available from nag_opt_lin_lsq (e04ncc).

To aid interpretation of the printed results, the following convention is used for numbering the
constraints: indices 1 to n refer to the bounds on the variables, and indices nþ 1 to nþ nL refer to the
general constraints.

e04 – Minimizing or Maximizing a Function e04ncc

Mark 25 e04ncc.23

When options:print level ¼ Nag Iter or Nag Soln Iter the following line of output is produced at every
iteration. In all cases, the values of the quantities printed are those in effect on completion of the given
iteration.

Itn is the iteration count.

Step is the step taken along the computed search direction. If a constraint is added during
the current iteration, Step will be the step to the nearest constraint. During the
optimality phase, the step can be greater than 1:0 only if the factor RZ is singular (see
Section 11.3).

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a
weighted sum of the magnitudes of constraint violations. If x is feasible, Objective

is the value of the objective function. The output line for the final iteration of the
feasibility phase (i.e., the first iteration for which Ninf is zero) will give the value of
the true objective at the first feasible point.

During the optimality phase, the value of the objective function will be non-increasing. During the
feasibility phase, the number of constraint infeasibilities will not increase until either a
feasible point is found, or the optimality of the multipliers implies that no feasible
point exists. Once optimal multipliers are obtained, the number of infeasibilities can
increase, but the sum of infeasibilities will either remain constant or be reduced until
the minimum sum of infeasibilities is found.

Norm Gz ZT
1 gFR

�� ��, the Euclidean norm of the reduced gradient with respect to Z1 (see
Section 11.3). During the optimality phase, this norm will be approximately zero after
a unit step.

If options:print level ¼ Nag Iter Long, Nag Soln Iter Long, Nag Soln Iter Const or Nag Soln Iter Full
the line of printout is extended to give the following additional information. (Note that this longer line
extends over more than 80 characters.)

Jdel is the index of the constraint deleted from the working set, along with the designation

L (lower bound), U (upper bound), E (equality), F (temporarily fixed variable) or A

(artificial constraint). If Jdel is zero, no constraint was deleted.

Jadd is the index of the constraint added to the working set, along with a designation as for

Jdel. If Jadd is zero, no constraint was added.

Bnd is the number of simple bound constraints in the current working set.

Lin is the number of general linear constraints in the current working set.

Art is the number of artificial constraints in the working set, i.e., the number of columns
of Z2 (see Section 11.3).

Zr is the number of columns of Z1 (see Section 11.2). Zr is the dimension of the
subspace in which the objective function is currently being minimized. The value of

Zr is the number of variables minus the number of constraints in the working set; i.e.,
Zr ¼ n� Bndþ Linþ Artð Þ.

The value of nZ , the number of columns of Z (see Section 11) can be calculated as
nZ ¼ n� Bndþ Linð Þ. A zero value of nZ implies that x lies at a vertex of the
feasible region.

Norm Gf is the Euclidean norm of the gradient function with respect to the free variables, i.e.,
variables not currently held at a bound.

Cond T is a lower bound on the condition number of the working set.

e04ncc NAG Library Manual

e04ncc.24 Mark 25

Cond Rz is a lower bound on the condition number of the triangular factor R1 (the first Zr rows
and columns of the factor RZ).

When options:print level ¼ Nag Soln Iter Const or Nag Soln Iter Full more detailed results are given at
each iteration. For the setting options:print level ¼ Nag Soln Iter Const additional values output are:

Value of x is the value of x currently held in x.

State is the current value of options:state associated with x.

Value of Ax is the value of Ax currently held in options:ax.

State is the current value of options:state associated with Ax.

Also printed are the Lagrange Multipliers for the bound constraints, linear constraints and artificial
constraints.

If options:print level ¼ Nag Soln Iter Full then the diagonals of T and R are also output at each
iteration.

When options:print level ¼ Nag Soln, Nag Soln Iter, Nag Soln Iter Long, Nag Soln Iter Const or
Nag Soln Iter Full the final printout from nag_opt_lin_lsq (e04ncc) includes a listing of the status of
every variable and constraint. The following describes the printout for each variable.

Varbl gives the name (V) and index j, for j ¼ 1; 2; . . . ; n of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a fixed
variable, LL if on its lower bound, UL if on its upper bound, TF if temporarily fixed at
its current value). If Value lies outside the upper or lower bounds by more than the
optional argument options:ftol (default value

ffiffi
�
p

, where � is the machine precision;
see Section 12.2), State will be ++ or -- respectively.

A key is sometimes printed before State to give some additional information about the state of a
variable.

A Alternative optimum possible. The variable is active at one of its bounds, but its
Lagrange Multiplier is essentially zero. This means that if the variable were
allowed to start moving away from its bound, there would be no change to the
objective function. The values of the other free variables might change, giving a
genuine alternative solution. However, if there are any degenerate variables
(labelled D), the actual change might prove to be zero, since one of them could
encounter a bound immediately. In either case, the values of the Lagrange
multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of its
bounds.

I Infeasible. The variable is currently violating one of its bounds by more than
options:ftol.

Value is the value of the variable at the final iteration.

Lower bound is the lower bound specified for variable j. (None indicates that
bl½j� 1� � �options:inf bound, where options:inf bound is the optional argument.)

Upper bound is the upper bound specified for variable j. (None indicates that
bu½j� 1� � options:inf bound, where options:inf bound is the optional argument.)

Lagr mult is the value of the Lagrange multiplier for the associated bound. This will be zero if

S t a t e i s F R u n l e s s bl½j� 1� � �options:inf bound a n d
bu½j� 1� � options:inf bound, in which case the entry will be blank. If x is optimal,
the multiplier should be non-negative if State is LL, and non-positive if State is UL.

e04 – Minimizing or Maximizing a Function e04ncc

Mark 25 e04ncc.25

Residual is the difference between the variable Value and the nearer of its (finite) bounds
bl½j� 1� and bu½j� 1�. A blank entry indicates that the associated variable is not
bounded (i.e., bl½j� 1� � �options:inf bound and bu½j� 1� � options:inf bound).

The meaning of the printout for general constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, bl½j� 1� and bu½j� 1� replaced by bl½nþ j� 1� and bu½nþ j� 1�
respectively, and with the following change in the heading:

L Con the name (L) and index j, for j ¼ 1; 2; . . . ; nL of the linear constraint.

Note that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Residual column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

If options:print level ¼ Nag NoPrint then printout will be suppressed; you can print the final solution
when nag_opt_lin_lsq (e04ncc) returns to the calling program.

12.3.1 Output of results via a user-defined printing function

You may also specify your own print function for output of iteration results and the final solution by use
of the options:print fun function pointer, which has prototype

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm)

The rest of this section can be skipped if you wish to use the default printing facilities.

When a user-defined function is assigned to options:print fun this will be called in preference to the
internal print function of nag_opt_lin_lsq (e04ncc). Calls to the user-defined function are again
controlled by means of the options:print level member. Information is provided through st and comm,
the two structure arguments to options:print fun.

If comm!it prt ¼ Nag TRUE then the results from the last iteration of nag_opt_lin_lsq (e04ncc) are
provided through st. Note that options:print fun will be called with comm!it prt ¼ Nag TRUE only if
options:print level ¼ Nag Iter, Nag Iter Long, Nag Soln Iter, Nag Soln Iter Long, Nag Soln Iter Const
or Nag Soln Iter Full. The following members of st are set:

n – Integer

The number of variables.

nclin – Integer

The number of linear constraints.

iter – Integer

The iteration count.

jdel – Integer

Index of constraint deleted from the working set.

jadd – Integer

Index of constraint added to the working set.

step – double

The step taken along the computed search direction.

ninf – Integer

The number of violated constraints (infeasibilities).

f – double

The current value of the objective function if st!ninf ¼ 0; otherwise, st!f is a weighted sum of
the magnitudes of constraint violations.

e04ncc NAG Library Manual

e04ncc.26 Mark 25

bnd – Integer

Number of bound constraints in the working set.

lin – Integer

Number of general linear constraints in the working set.

nart – Integer

Number of artificial constraints in the working set (see Section 11.3).

nrank – Integer

The rank of the upper triangular matrix R (see Section 11.3).

nrz – Integer

Number of columns of Z1 (see Section 11.2).

norm_gz – double

Euclidean norm of the reduced gradient, ZT
1 gFR

�� �� (see Section 11.3).

norm_gf – double

Euclidean norm of the gradient function with respect to the free variables.

cond_t – double

A lower bound on the condition number of the working set.

cond_r – double

A lower bound on the condition number of the triangular factor R1 (see Section 11.3).

x – double *

The components st!x½j � 1� of the current point x, for j ¼ 1; 2; . . . ; st!n.

ax – double *

If st!nclin > 0, the st!nclin components of the linear constraints Ax.

state – Integer *

options:state contains the status of the st!n variables and st!nclin general linear constraints.
See Section 12.2 for a description of the possible status values.

diagt – double *

If st!lin > 0, the st!lin elements in the diagonal of the matrix T .

diagr – double *

If st!nrank > 0, the first st!nrank elements of the diagonal of the upper triangular matrix R.

If comm!new lm ¼ Nag TRUE then the Lagrange multipliers have been updated and the following
members of st are set:

bnd – Integer

The number of bound constraints in the working set.

kx – Integer *
bclambda – double *

Indices of the bound constraints in the working set, with associated multipliers. st!kx½i� is the
index of the constraint with multiplier st!bclambda½i�, for i ¼ 0; 1; . . . ; st!bnd� 1.

lin – Integer

The number of linear constraints in the working set.

e04 – Minimizing or Maximizing a Function e04ncc

Mark 25 e04ncc.27

kactive – Integer *
lambda – double *

Indices of the linear constraints in the working set, with associated multipliers. st!kactive½i� is
the index of the constraint with multiplier st!lambda½st!bndþ i�, for i ¼ 0; 1; . . . ; st!lin� 1.

nart – Integer

The number of artificial constraints in the working set (see Section 11.3).

gq – double *

st!gq½i�, for i ¼ 0; 1; . . . ; st!nart� 1, hold the multipliers for the artificial constraints.

If comm!sol prt ¼ Nag TRUE then the final result from nag_opt_lin_lsq (e04ncc) is available and the
following members of st are set:

n – Integer

The number of variables.

nclin – Integer

The number of linear constraints.

iter – Integer

The iteration count.

x – double *

The components st!x½j � 1� of the final point x, for j ¼ 1; 2; . . . ; st!n.

feasible – Nag_Boolean

Will be Nag_TRUE if the final point is feasible.

f – double

The final value of the objective function if st!feasible is Nag_TRUE; otherwise, the sum of
infeasibilities. If the problem is of type FP and x is feasible then st!f is set to zero.

ax – double *

If st!nclin > 0, the st!nclin components of the final linear constraint activities, Ax.

state – Integer *

Contains the final status of the st!n variables and st!nclin general linear constraints. See
Section 12.2 for a description of the possible status values.

lambda – double *

Contains the st!nþ st!nclin final values of the Lagrange multipliers.

bl – double *

Contains the st!nþ st!nclin lower bounds.

bu – double *

Contains the st!nþ st!nclin upper bounds.

endstate – Nag_EndState

The state of termination of nag_opt_lin_lsq (e04ncc). Possible values of st!endstate and their
correspondence to the exit value of fail are:

Value of st!endstate Value of fail
Nag Feasible or Nag Optimal NE_NOERROR
Nag Weakmin NW_SOLN_NOT_UNIQUE
Nag Unbounded NE_UNBOUNDED
Nag Infeasible NW_NOT_FEASIBLE

e04ncc NAG Library Manual

e04ncc.28 Mark 25

Nag_Too_Many_Iter NW_TOO_MANY_ITER
Nag Cycling NE_CYCLING

The relevant members of the structure comm are:

it_prt – Nag_Boolean

Will be Nag_TRUE when the print function is called with the result of the current iteration.

sol_prt – Nag_Boolean

Will be Nag_TRUE when the print function is called with the final result.

new_lm – Nag_Boolean

Will be Nag_TRUE when the Lagrange multipliers have been updated.

user – double *
iuser – Integer *
p – Pointer

Pointers for communication of user information. If used they must be allocated memory either
before entry to nag_opt_lin_lsq (e04ncc) or during a call to options:print fun. The type Pointer
will be void * with a C compiler that defines void * and char * otherwise.

e04 – Minimizing or Maximizing a Function e04ncc

Mark 25 e04ncc.29 (last)

	e04ncc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Gill et al. (1986)
	Gill et al. (1984)
	Gill et al. (1981)
	Stoer (1971)

	5 Arguments
	m
	n
	nclin
	a
	tda
	bl
	bu
	cvec
	b
	h
	tdh
	kx
	x
	objf
	options
	comm
	fail
	5.1 Description of Printed Output

	6 Error Indicators and Warnings
	NE_2_INT_ARG_LT
	NE_ALLOC_FAIL
	NE_ARRAY_CONS
	NE_B_NULL
	NE_BAD_PARAM
	NE_BOUND
	NE_BOUND_LCON
	NE_CVEC_NULL
	NE_CYCLING
	NE_H_NULL_QP
	NE_INT_ARG_LT
	NE_INTERNAL_ERROR
	NE_INVALID_INT_RANGE_1
	NE_INVALID_REAL_RANGE_F
	NE_INVALID_REAL_RANGE_FF
	NE_NOT_APPEND_FILE
	NE_NOT_CLOSE_FILE
	NE_OPT_NOT_INIT
	NE_STATE_VAL
	NE_UNBOUNDED
	NE_WARM_START
	NE_WRITE_ERROR
	NW_NOT_FEASIBLE
	NW_OVERFLOW_WARN
	NW_SOLN_NOT_UNIQUE
	NW_TOO_MANY_ITER

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	9.1 Termination Criteria
	9.2 Scaling

	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	11 Further Description
	11.1 Overview
	11.2 Definition of the Search Direction
	11.3 The Main Iteration

	12 Optional Arguments
	12.1 Optional Argument Checklist and Default Values
	12.2 Description of the Optional Arguments
	prob
	start
	list
	print_level
	outfile
	print_fun
	fmax_iter
	max_iter
	crash_tol
	ftol
	inf_bound
	inf_step
	rank_tol
	state
	ax
	lambda
	hessian
	iter

	12.3 Description of Printed Output
	12.3.1 Output of results via a user-defined printing function
	n
	nclin
	iter
	jdel
	jadd
	step
	ninf
	f
	bnd
	lin
	nart
	nrank
	nrz
	norm_gz
	norm_gf
	cond_t
	cond_r
	x
	ax
	state
	diagt
	diagr
	bnd
	kx
	bclambda
	lin
	kactive
	lambda
	nart
	gq
	n
	nclin
	iter
	x
	feasible
	f
	ax
	state
	lambda
	bl
	bu
	endstate
	it_prt
	sol_prt
	new_lm
	user
	iuser
	p

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

