NAG Library Function Document
 nag_2d_cheb_eval (e02cbc)

1 Purpose

nag_2d_cheb_eval (e02cbc) evaluates a bivariate polynomial from the rectangular array of coefficients in its double Chebyshev series representation.

2 Specification

```
#include <nag.h>
#include <nage02.h>
void nag_2d_cheb_eval (Integer mfirst, Integer mlast, Integer k, Integer l,
    const double x[], double xmin, double xmax, double y, double ymin,
    double ymax, double ff[], const double a[], NagError *fail)
```


3 Description

This function evaluates a bivariate polynomial (represented in double Chebyshev form) of degree k in one variable, \bar{x}, and degree l in the other, \bar{y}. The range of both variables is -1 to +1 . However, these normalized variables will usually have been derived (as when the polynomial has been computed by nag_2d_cheb_fit_lines (e02cac), for example) from your original variables x and y by the transformations

$$
\bar{x}=\frac{2 x-\left(x_{\max }+x_{\min }\right)}{\left(x_{\max }-x_{\min }\right)} \quad \text { and } \quad \bar{y}=\frac{2 y-\left(y_{\max }+y_{\min }\right)}{\left(y_{\max }-y_{\min }\right)} .
$$

(Here $x_{\min }$ and $x_{\max }$ are the ends of the range of x which has been transformed to the range -1 to +1 of $\bar{x} . y_{\min }$ and $y_{\max }$ are correspondingly for y. See Section 9). For this reason, the function has been designed to accept values of x and y rather than \bar{x} and \bar{y}, and so requires values of $x_{\min }$, etc. to be supplied by you. In fact, for the sake of efficiency in appropriate cases, the function evaluates the polynomial for a sequence of values of x, all associated with the same value of y.
The double Chebyshev series can be written as

$$
\sum_{i=0}^{k} \sum_{j=0}^{l} a_{i j} T_{i}(\bar{x}) T_{j}(\bar{y})
$$

where $T_{i}(\bar{x})$ is the Chebyshev polynomial of the first kind of degree i and argument \bar{x}, and $T_{j}(\bar{y})$ is similarly defined. However the standard convention, followed in this function, is that coefficients in the above expression which have either i or j zero are written $\frac{1}{2} a_{i j}$, instead of simply $a_{i j}$, and the coefficient with both i and j zero is written $\frac{1}{4} a_{0,0}$.
The function first forms $c_{i}=\sum_{j=0}^{l} a_{i j} T_{j}(\bar{y})$, with $a_{i, 0}$ replaced by $\frac{1}{2} a_{i, 0}$, for each of $i=0,1, \ldots, k$. The value of the double series is then obtained for each value of x, by summing $c_{i} \times T_{i}(\bar{x})$, with c_{0} replaced by $\frac{1}{2} c_{0}$, over $i=0,1, \ldots, k$. The Clenshaw three term recurrence (see Clenshaw (1955)) with modifications due to Reinsch and Gentleman (1969) is used to form the sums.

4 References

Clenshaw C W (1955) A note on the summation of Chebyshev series Math. Tables Aids Comput. 9 118120

Gentleman W M (1969) An error analysis of Goertzel's (Watt's) method for computing Fourier coefficients Comput. J. 12 160-165

5 Arguments

1: mfirst - Integer Input
2: mlast - Integer Input
On entry: the index of the first and last x value in the array x at which the evaluation is required respectively (see Section 9).

Constraint: mlast \geq mfirst.
3: \mathbf{k} - Integer Input
4: l - Integer Input
On entry: the degree k of x and l of y, respectively, in the polynomial.
Constraint: $\mathbf{k} \geq 0$ and $\mathbf{l} \geq 0$.
5: $\mathbf{x}[$ mlast $]$ - const double Input
On entry: $\mathbf{x}[i-1]$, for $i=\mathbf{m f i r s t}, \ldots$, mlast, must contain the x values at which the evaluation is required.
Constraint: $\mathbf{x m i n} \leq \mathbf{x}[i-1] \leq \mathbf{x m a x}$, for all i.
6: \quad xmin - double Input
7: \quad xmax - double Input
On entry: the lower and upper ends, $x_{\min }$ and $x_{\max }$, of the range of the variable x (see Section 3).
The values of $\mathbf{x m i n}$ and $\mathbf{x m a x}$ may depend on the value of y (e.g., when the polynomial has been derived using nag_2d_cheb_fit_lines (e02cac)).

Constraint: xmax $>$ xmin.

8: $\quad \mathbf{y}$ - double
Input
On entry: the value of the y coordinate of all the points at which the evaluation is required.
Constraint: ymin $\leq y \leq$ ymax.
9: ymin - double Input
10: ymax - double Input
On entry: the lower and upper ends, $y_{\min }$ and $y_{\max }$, of the range of the variable y (see Section 3).
Constraint: ymax $>$ ymin.
11: $\mathbf{f f}[\mathbf{m l a s t}]$ - double Output
On exit: $\mathbf{f f}[i-1]$ gives the value of the polynomial at the point $\left(x_{i}, y\right)$, for $i=\mathbf{m f i r s t}, \ldots$, mlast.
12: $\mathbf{a}[$ dim $]$ - const double Input
Note: the dimension, dim, of the array a must be at least $((\mathbf{k}+1) \times(\mathbf{l}+1))$.
On entry: the Chebyshev coefficients of the polynomial. The coefficient $a_{i j}$ defined according to the standard convention (see Section 3) must be in $\mathbf{a}[i \times(l+1)+j]$.

13: fail - NagError *

Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument \langle value \rangle had an illegal value.

NE_INT_2

On entry, $\mathbf{k}=\langle$ value \rangle and $\mathbf{l}=\langle$ value \rangle.
Constraint: $\mathbf{k} \geq 0$ and $\mathbf{l} \geq 0$.
On entry, mfirst $=\langle$ value \rangle and $\mathbf{m l a s t}=\langle$ value \rangle.
Constraint: mfirst \leq mlast.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.
Unexpected failure in internal call to nag_1d_cheb_eval (e02aec).

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_REAL_2

On entry, $\mathbf{x m i n}=\langle$ value \rangle and $\mathbf{x m a x}=\langle$ value \rangle.
Constraint: xmin $<$ xmax.
On entry, $\mathbf{y}=\langle$ value \rangle and $\mathbf{y m a x}=\langle$ value \rangle.
Constraint: $\mathbf{y} \leq$ ymax.
On entry, $\mathbf{y}=\langle$ value \rangle and $\mathbf{y m i n}=\langle$ value \rangle.
Constraint: $\mathbf{y} \geq \mathbf{y m i n}$.
On entry, ymin $=\langle$ value \rangle and $\mathbf{y m a x}=\langle$ value \rangle.
Constraint: ymin $<$ ymax.

NE_REAL_ARRAY

On entry, $I=\langle$ value $\rangle, \mathbf{x}[I-1]=\langle$ value \rangle and $\mathbf{x m a x}=\langle$ value \rangle.
Constraint: $\mathbf{x}[I-1] \leq \mathbf{x m a x}$.
On entry, $I=\langle$ value $\rangle, \mathbf{x}[I-1]=\langle$ value \rangle and $\mathbf{x m i n}=\langle$ value \rangle.
Constraint: $\mathbf{x}[I-1] \geq \mathbf{x m i n}$.

7 Accuracy

The method is numerically stable in the sense that the computed values of the polynomial are exact for a set of coefficients which differ from those supplied by only a modest multiple of machine precision.

8 Parallelism and Performance

nag_2d_cheb_eval (e02cbc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The time taken is approximately proportional to $(k+1) \times(m+l+1)$, where $m=\mathbf{m l a s t}-\mathbf{m f i r s t}+1$, the number of points at which the evaluation is required.

This function is suitable for evaluating the polynomial surface fits produced by the function nag_2d_cheb_fit_lines (e02cac), which provides the array a in the required form. For this use, the values of $y_{\min }$ and $y_{\max }$ supplied to the present function must be the same as those supplied to nag_2d_cheb_fit_lines (e 02 cac). The same applies to $x_{\min }$ and $x_{\max }$ if they are independent of y. If they vary with y, their values must be consistent with those supplied to nag_2d_cheb_fit_lines (e02cac) (see Section 9 in nag_2d_cheb_fit_lines (e02cac)).

The arguments mfirst and mlast are intended to permit the selection of a segment of the array \mathbf{x} which is to be associated with a particular value of y, when, for example, other segments of \mathbf{x} are associated with other values of y. Such a case arises when, after using nag_2d_cheb_fit_lines (e02cac) to fit a set of data, you wish to evaluate the resulting polynomial at all the data values. In this case, if the arguments \mathbf{x}, \mathbf{y}, mfirst and mlast of the present function are set respectively (in terms of arguments of nag_2d_cheb_fit_lines (e02cac)) to $\mathbf{x}, \mathbf{y}(S), 1+\sum_{i=1}^{s-1} \mathbf{m}(i)$ and $\sum_{i=1}^{s} \mathbf{m}(i)$, the function will compute values of the polynomial surface at all data points which have $\mathbf{y}[S-1]$ as their y coordinate (from which values the residuals of the fit may be derived).

10 Example

This example reads data in the following order, using the notation of the argument list above:

```
\(N \quad \mathbf{k} \quad \mathbf{l}\)
\(\mathbf{a}[i-1], \quad\) for \(i=1,2, \ldots,(\mathbf{k}+1) \times(\mathbf{l}+1)\)
ymin ymax
\(\mathbf{y}[i-1] \quad M(i-1) \quad \mathbf{x m i n}[i-1] \quad \mathbf{x m a x}[i-1] \quad \mathrm{X} 1(i) \quad \mathrm{XM}(i), \quad\) for \(i=1,2, \ldots, N\).
```

For each line $\mathbf{y}=\mathbf{y}[i-1]$ the polynomial is evaluated at $M(i)$ equispaced points between $\mathrm{X} 1(i)$ and $\mathrm{XM}(i)$ inclusive.

10.1 Program Text

```
/* nag_2d_cheb_eval (e02cbc) Example Program.
    *
    * Copyright 2014 Numerical Algorithms Group.
    *
    * Mark 7, 2001.
    * Mark 7b revised, 2004.
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage02.h>
int main(void)
{
    /* Scalars */
    double xl, xm, xmax, xmin, y, ymax, ymin;
    Integer exit_status, i, j, k, l, m, n, ncoef, one;
```

```
    NagError fail;
    /* Arrays */
    double *a = 0, *ff = 0, *x = 0;
    INIT_FAIL(fail);
    exit_status = 0;
    printf("nag_2d_cheb_eval (e02cbc) Example Program Results\n");
    /* Skip heading in data file */
#ifdef WIN32
    scanf_s("%*[^\n] ");
#else
    scanf("%*[^\n] ");
#endif
#ifdef _WIN32
    while (scanf_s("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[^\n] ", &n, &k, &l) != EOF)
#else
    while (scanf("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[^\n] ", &n, &k, &l) != EOF)
#endif
    /* Allocate array a */
            ncoef = (k + 1) * (l + 1);
            if (!(a = NAG_ALLOC(ncoef, double)))
            {
                    printf("Allocation failure\n");
                    exit_status = -1;
                    goto END;
                }
        for (i = 0; i < ncoef; ++i)
#ifdef _WIN32
        scanf_s("%lf", &a[i]);
#else
        scanf("%lf", &a[i]);
#endif
#ifdef _WIN32
            sccanf_s("%*[^\n] ");
#else
            scanf("%*[^\n] ");
#endif
#ifdef _WIN32
    scanf_s("%lf%lf%*[^\n] ", &ymin, &ymax);
#else
    scanf("%lf%lf%*[^\n] ", &ymin, &ymax);
#endif
    for (i = 0; i < n; ++i)
        {
#ifdef _WIN32
                scanf_s("%lf%"NAG_IFMT"%lf%lf%lf%lf%*[^\n] ",
                    &y, &m, &xmin, &xmax, &xl, &xm);
#else
        scanf("%lf%"NAG_IFMT"%lf%lf%lf%lf%*[^\n] ",
                            &y, &m, &xmin, &xmax, &xl, &xm);
#endif
```

```
        /* Allocate arrays x and ff */
```

 /* Allocate arrays x and ff */
 if (!(x = NAG_ALLOC(m, double)) ||
 if (!(x = NAG_ALLOC(m, double)) ||
 !(ff = NAG_ALLOC(m, double)))
 !(ff = NAG_ALLOC(m, double)))
 {
 {
 printf("Allocation failure\n");
 printf("Allocation failure\n");
 exit_status = -1;
 exit_status = -1;
 goto END;
 goto END;
 }
 }
 for (j = 0; j < m; ++j)
 for (j = 0; j < m; ++j)
 x[j] = xl + (xm - x1) * (double) j / (double)(m - 1);
    ```
                        x[j] = xl + (xm - x1) * (double) j / (double)(m - 1);
```

```
                one = 1;
                /* nag_2d_cheb_eval (e02cbc).
                        * Evaluation of fitted polynomial in two variables
                    */
                nag_2d_cheb_eval(one, m, k, l, x, xmin, xmax, y, ymin, ymax,
                    ff, a, &fail);
                if (fail.code != NE_NOERROR)
                        {
                                printf("Error from nag_2d_cheb_eval (e02cbc).\n%s\n",
                            fail.message);
                                exit_status = 1;
                                goto END;
    }
                printf("\n");
                printf("y = %13.4e\n", y);
                printf("\n");
                printf(" i x(i) Poly(x(i),y)\n");
                for (j = 0; j < m; ++j)
                            printf("%3"NAG_IFMT"%13.4e%13.4e\n", j, x[j], ff[j]);
                NAG_FREE(ff);
                NAG_FREE(x);
                }
            NAG_FREE(a);
        }
END:
    NAG_FREE(a);
    NAG_FREE(ff);
    NAG_FREE(x);
    return exit_status;
}
```


10.2 Program Data

| $3-3$ | 2 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 15.34820 | | | | | |
| 5.15073 | | | | | |
| 0.10140 | | | | | |
| 1.14719 | | | | | |
| 0.14419 | | | | | |
| -0.10464 | | | | | |
| 0.04901 | | | | | |
| -0.00314 | | | | | |
| -0.00699 | | | | | |
| 0.00153 | | | | | |
| -0.00033 | | | | | |
| -0.00022 | | | | | |
| 0.0 | | | | | |
| 1.0 | 9 | 0.1 | 4.5 | 0.5 | 4.5 |
| 1.5 | 8 | 0.225 | 4.25 | 0.5 | 4.0 |
| 2.0 | 8 | 0.4 | 4.0 | 0.5 | 4.0 |

10.3 Program Results

```
nag_2d_cheb_eval (e02cbc) Example Program Results
y = 1.0000e+00
    i x(i) Poly(x(i),y)
    0 5.0000e-01 2.0812e+00
    1 1.0000e+00 2.1888e+00
    2 1.5000e+00 2.3018e+00
    3 2.0000e+00 2.4204e+00
    4 2.5000e+00 2.5450e+00
    5 3.0000e+00 2.6758e+00
```

| 6 | $3.5000 \mathrm{e}+00$ | $2.8131 \mathrm{e}+00$ |
| :---: | :---: | :---: |
| 7 | $4.0000 \mathrm{e}+00$ | $2.9572 \mathrm{e}+00$ |
| 8 | $4.5000 \mathrm{e}+00$ | $3.1084 \mathrm{e}+00$ |
| $\mathrm{y}=$ | $1.5000 \mathrm{e}+00$ | |
| | | |
| i | $\mathrm{x}(\mathrm{i})$ | $\mathrm{Poly}(\mathrm{x}(\mathrm{i}), \mathrm{y})$ |
| 0 | $5.0000 \mathrm{e}-01$ | $2.6211 \mathrm{e}+00$ |
| 1 | $1.0000 \mathrm{e}+00$ | $2.7553 \mathrm{e}+00$ |
| 2 | $1.5000 \mathrm{e}+00$ | $2.8963 \mathrm{e}+00$ |
| 3 | $2.0000 \mathrm{e}+00$ | $3.0444 \mathrm{e}+00$ |
| 4 | $2.5000 \mathrm{e}+00$ | $3.2002 \mathrm{e}+00$ |
| 5 | $3.0000 \mathrm{e}+00$ | $3.3639 \mathrm{e}+00$ |
| 6 | $3.5000 \mathrm{e}+00$ | $3.5359 \mathrm{e}+00$ |
| 7 | $4.0000 \mathrm{e}+00$ | $3.7166 \mathrm{e}+00$ |
| y | | |
| | $2.0000 \mathrm{e}+00$ | |
| i | $\mathrm{x}(\mathrm{i})$ | $\mathrm{Poly}(\mathrm{x}(\mathrm{i}), \mathrm{y})$ |
| 0 | $5.0000 \mathrm{e}-01$ | $3.1700 \mathrm{e}+00$ |
| 1 | $1.0000 \mathrm{e}+00$ | $3.3315 \mathrm{e}+00$ |
| 2 | $1.5000 \mathrm{e}+00$ | $3.5015 \mathrm{e}+00$ |
| 3 | $2.0000 \mathrm{e}+00$ | $3.6806 \mathrm{e}+00$ |
| 4 | $2.5000 \mathrm{e}+00$ | $3.8692 \mathrm{e}+00$ |
| 5 | $3.0000 \mathrm{e}+00$ | $4.0678 \mathrm{e}+00$ |
| 6 | $3.5000 \mathrm{e}+00$ | $4.2769 \mathrm{e}+00$ |
| 7 | $4.0000 \mathrm{e}+00$ | $4.4971 \mathrm{e}+00$ |

Example Program

Evaluation of Least-squares Bi-variate Polynomial Fit

