NAG Library Function Document nag_1d_spline_interpolant (e01bac)

1 Purpose

nag_1d_spline_interpolant (e01bac) determines a cubic spline interpolant to a given set of data.

2 Specification

```
#include <nag.h>
#include <nage01.h>
void nag_1d_spline_interpolant (Integer m, const double x[],
    const double y[], Nag_Spline *spline, NagError *fail)
```


3 Description

nag_1d_spline_interpolant (e01bac) determines a cubic spline $s(x)$, defined in the range $x_{1} \leq x \leq x_{m}$, which interpolates (passes exactly through) the set of data points $\left(x_{i}, y_{i}\right)$, for $i=1,2, \ldots, m$, where $m \geq 4$ and $x_{1}<x_{2}<\cdots<x_{m}$. Unlike some other spline interpolation algorithms, derivative end conditions are not imposed. The spline interpolant chosen has $m-4$ interior knots $\lambda_{5}, \lambda_{6}, \ldots, \lambda_{m}$, which are set to the values of $x_{3}, x_{4}, \ldots, x_{m-2}$ respectively. This spline is represented in its B-spline form (see Cox (1975)):

$$
s(x)=\sum_{i=1}^{m} c_{i} N_{i}(x)
$$

where $N_{i}(x)$ denotes the normalized B-spline of degree 3 , defined upon the knots $\lambda_{i}, \lambda_{i+1}, \ldots, \lambda_{i+4}$, and c_{i} denotes its coefficient, whose value is to be determined by the function.

The use of B-splines requires eight additional knots $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{m+1}, \lambda_{m+2}, \lambda_{m+3}$ and λ_{m+4} to be specified; the function sets the first four of these to x_{1} and the last four to x_{m}.

The algorithm for determining the coefficients is as described in Cox (1975) except that $Q R$ factorization is used instead of $L U$ decomposition. The implementation of the algorithm involves setting up appropriate information for the related function nag_1d_spline_fit_knots (e02bac) followed by a call of that function. (For further details of nag_1d_spline_fit_knots (e02bac), see the function document.)

Values of the spline interpolant, or of its derivatives or definite integral, can subsequently be computed as detailed in Section 9.

4 References

Cox M G (1975) An algorithm for spline interpolation J. Inst. Math. Appl. 15 95-108
Cox M G (1977) A survey of numerical methods for data and function approximation The State of the Art in Numerical Analysis (ed D A H Jacobs) 627-668 Academic Press

5 Arguments

1: $\quad \mathbf{m}$ - Integer
Input
On entry: m, the number of data points.
Constraint: $\mathbf{m} \geq 4$.

2: $\quad \mathbf{x}[\mathbf{m}]-$ const double
Input
On entry: $\mathbf{x}[i-1]$ must be set to x_{i}, the i th data value of the independent variable x, for $i=1,2, \ldots, m$.
Constraint: $\mathbf{x}[i]<\mathbf{x}[i+1]$, for $i=0,1, \ldots, m-2$.
3: $\quad \mathbf{y}[\mathbf{m}]-$ const double
Input
On entry: $\mathbf{y}[i-1]$ must be set to y_{i}, the i th data value of the dependent variable y, for $i=1,2, \ldots, m$.

4: \quad spline - Nag_Spline *
Pointer to structure of type Nag_Spline with the following members:
n - Integer
Output
On exit: the size of the storage internally allocated to lamda. This is set to $\mathbf{m}+4$.
lamda - double *
Output
On exit: the pointer to which storage of size \mathbf{n} is internally allocated. lamda $[i-1]$ contains the i th knot, for $i=1,2, \ldots, m+4$.
$\mathbf{c}-$ double *
Output
On exit: the pointer to which storage of size $\mathbf{n}-4$ is internally allocated. $\mathbf{c}[i-1]$ contains the coefficient c_{i} of the B-spline $N_{i}(x)$, for $i=1,2, \ldots, m$.

Note that when the information contained in the pointers lamda and \mathbf{c} is no longer of use, or before a new call to nag_1d_spline_interpolant (e01bac) with the same spline, you should free this storage using the NAG macro NAG_FREE. This storage will not have been allocated if this function returns with fail.code \neq NE_NOERROR.

5: fail - NagError *
Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_INT_ARG_LT

On entry, $\mathbf{m}=\langle$ value \rangle.
Constraint: $\mathbf{m} \geq 4$.

NE_NOT_STRICTLY_INCREASING

The sequence \mathbf{x} is not strictly increasing: $\mathbf{x}[\langle$ value $\rangle]=\langle$ value $\rangle, \mathbf{x}[\langle$ value $\rangle]=\langle$ value \rangle.

7 Accuracy

The rounding errors incurred are such that the computed spline is an exact interpolant for a slightly perturbed set of ordinates $y_{i}+\delta y_{i}$. The ratio of the root-mean-square value of the δy_{i} to that of the y_{i} is no greater than a small multiple of the relative machine precision.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken by nag_1d_spline_interpolant (e01bac) is approximately proportional to m.
All the x_{i} are used as knot positions except x_{2} and x_{m-1}. This choice of knots (see Cox (1977)) means that $s(x)$ is composed of $m-3$ cubic arcs as follows. If $m=4$, there is just a single arc space spanning the whole interval x_{1} to x_{4}. If $m \geq 5$, the first and last arcs span the intervals x_{1} to x_{3} and x_{m-2} to x_{m} respectively. Additionally if $m \geq 6$, the i th arc, for $i=2,3, \ldots, m-4$, spans the interval x_{i+1} to x_{i+2}.
After the call

```
eO1bac(m, x, y, &spline, &fail)
```

the following operations may be carried out on the interpolant $s(x)$.
The value of $s(x)$ at $x=$ xval can be provided in the variable sval by calling the function

```
eO2bbc(xval, &sval, &spline, &fail)
```

The values of $s(x)$ and its first three derivatives at $x=$ xval can be provided in the array sdif of dimension 4 , by the call

```
e02bcc(derivs, xval, sdif, &spline, &fail)
```

Here derivs must specify whether the left- or right-hand value of the third derivative is required (see nag_1d_spline_deriv (e02bcc) for details). The value of the integral of $s(x)$ over the range x_{1} to x_{m} can be provided in the variable sint by

```
e02bdc(&spline, &sint, &fail)
```


10 Example

The following example program sets up data from 7 values of the exponential function in the interval 0 to 1 . nag_1d_spline_interpolant (e 01 bac) is then called to compute a spline interpolant to these data.
The spline is evaluated by nag_1d_spline_evaluate (e02bbc), at the data points and at points halfway between each adjacent pair of data points, and the spline values and the values of e^{x} are printed out.

10.1 Program Text

```
/* nag_1d_spline_interpolant (e01bac) Example Program.
    *
    * Copyright 2014 Numerical Algorithms Group.
    * Mark 2, 1991.
    *
    * Mark 6 revised, 2000.
    * Mark 8 revised, 2004.
    */
#include <nag.h>
#include <stdio.h>
#include <math.h>
#include <nag_stdlib.h>
#include <nage01.h>
#include <nage02.h>
#define MMAX 7
int main(void)
{
    Integer exit_status = 0, i, j, m = MMAX;
    NagError fail;
    Nag_Spline spline;
    double fit, *x = 0, xarg, *y = 0;
    INIT_FAIL(fail);
    /* Initialise spline */
    spline.lamda = 0;
```

```
spline.c = 0;
printf(
            "nag_1d_spline_interpolant (e01bac) Example Program Results\n");
if (m >= 1)
    {
        if (!(y = NAG_ALLOC(m, double)) ||
                        !(x = NAG_ALLOC (m, double)))
            {
                printf("Allocation failure\n");
                exit_status = -1;
                goto END;
            }
    }
else
    {
        exit_status = 1;
        return exit_status;
    }
x[0] = 0.0; x[1] = 0.2; x[2] = 0.4;
x[3] = 0.6; x[4] = 0.75; x[5] = 0.9; x[6] = 1.0;
for (i = 0; i < m; ++i)
    y[i] = exp(x[i]);
/* nag_1d_spline_interpolant (e01bac).
    * Interpolating function, cubic spline interpolant, one
    * variable
    */
nag_1d_spline_interpolant(m, x, y, &spline, &fail);
if (fail.code != NE_NOERROR)
    {
        printf("Error from nag_1d_spline_interpolant (e01bac).\n%s\n",
                        fail.message);
        exit_status = 1;
        goto END;
    }
printf("\nNumber of distinct knots = %"NAG_IFMT"\n\n", m-2);
printf("Distinct knots located at \n\n");
for (j = 3; j < m+1; j++)
    printf("%8.4f%s", spline.lamda[j], (j-3)%5 == 4 || j == m?"\n":" ");
printf("\n\n J B-spline coeff c\n\n");
for (j = 0; j < m; ++j)
    printf(" %"NAG_IFMT" %13.4f\n", j+1, spline.c[j]);
printf(
            "\n J Abscissa
                                    Ordinate
                                    Spline\n\n");
for (j = 0; j < m; ++j)
    {
        /* nag_1d_spline_evaluate (e02bbc).
            * Evaluation of fitted cubic spline, function only
            */
        nag_ld_spline_evaluate(x[j], &fit, &spline, &fail);
        if (fail.code != NE_NOERROR)
            {
                printf("Error from nag_1d_spline_evaluate (e02bbc).\n%s\n",
                    fail.message);
                exit_status = 1;
                goto END;
                }
        printf(" %"NAG_IFMT" %13.4f %13.4f %13.4f\n",
                        j+1, x[j], y[j], fit);
        if (j < m-1)
            {
                xarg = (x[j] + x[j+1]) * 0.5;
                /* nag_1d_spline_evaluate (e02bbc), see above. */
                nag_1d_spline_evaluate(xarg, &fit, &spline, &fail);
                if (fail.code != NE_NOERROR)
                    {
```

```
            printf(
                            "Error from nag_1d_spline_evaluate (e02bbc).\n%s\n",
                    fail.message);
                    exit_status = 1;
                    goto END;
                }
                    printf(" %13.4f %13.4f\n",
                        xarg, fit);
                }
        }
    /* Free memory allocated by nag_ld_spline_interpolant (e01bac) */
END:
    NAG_FREE(y);
    NAG_FREE(x);
    NAG_FREE(spline.lamda);
    NAG_FREE(spline.c);
    return exit_status;
}
```


10.2 Program Data

None.

10.3 Program Results

Number of distinct knots $=5$				
Distinct knots located at				
0.0000	0.40000 .6000	0.7500	1.0000	
1	1.0000			
2	1.1336			
3	1.3726			
4	1.7827			
5	2.1744			
6	2.4918			
7 2.7183				
J	Abscissa	Ordi	ate	Spline
1	0.0000	1.0000		1.0000
	0.1000			1.1052
2	0.2000	1.2214		1.2214
	0.3000			1.3498
3	0.4000	1.4918		1.4918
	0.5000			1.6487
4	0.6000	1.8221		1.8221
	0.6750			1.9640
5	0.7500	2.1170		2.1170
	0.8250			2.2819
6	0.9000	2.4596		2.4596
	0.9500			2.5857
7	1.0000	2.71		2.7183

