
NAG Library Function Document

nag_inteq_volterra2 (d05bac)

1 Purpose

nag_inteq_volterra2 (d05bac) computes the solution of a nonlinear convolution Volterra integral equation
of the second kind using a reducible linear multi-step method.

2 Specification

#include <nag.h>
#include <nagd05.h>

void nag_inteq_volterra2 (

double (*ck)(double t, Nag_Comm *comm),

double (*cg)(double s, double y, Nag_Comm *comm),

double (*cf)(double t, Nag_Comm *comm),

Nag_ODEMethod method, Integer iorder, double alim, double tlim,
double tol, Integer nmesh, double thresh, double work[], Integer lwk,
double yn[], double errest[], Nag_Comm *comm, NagError *fail)

3 Description

nag_inteq_volterra2 (d05bac) computes the numerical solution of the nonlinear convolution Volterra
integral equation of the second kind

y tð Þ ¼ f tð Þ þ
Z t

a

k t� sð Þg s; y sð Þð Þ ds; a � t � T: ð1Þ

It is assumed that the functions involved in (1) are sufficiently smooth. The function uses a reducible
linear multi-step formula selected by you to generate a family of quadrature rules. The reducible
formulae available in nag_inteq_volterra2 (d05bac) are the Adams–Moulton formulae of orders 3 to 6,
and the backward differentiation formulae (BDF) of orders 2 to 5. For more information about the
behaviour and the construction of these rules we refer to Lubich (1983) and Wolkenfelt (1982).

The algorithm is based on computing the solution in a step-by-step fashion on a mesh of equispaced
points. The initial step size which is given by T � að Þ=N, N being the number of points at which the
solution is sought, is halved and another approximation to the solution is computed. This extrapolation
procedure is repeated until successive approximations satisfy a user-specified error requirement.

The above methods require some starting values. For the Adams’ formula of order greater than 3 and the
BDF of order greater than 2 we employ an explicit Dormand–Prince–Shampine Runge–Kutta method
(see Shampine (1986)). The above scheme avoids the calculation of the kernel, k tð Þ, on the negative real
line.

4 References

Lubich Ch (1983) On the stability of linear multi-step methods for Volterra convolution equations IMA J.
Numer. Anal. 3 439–465

Shampine L F (1986) Some practical Runge–Kutta formulas Math. Comput. 46(173) 135–150

Wolkenfelt P H M (1982) The construction of reducible quadrature rules for Volterra integral and
integro-differential equations IMA J. Numer. Anal. 2 131–152
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5 Arguments

1: ck – function, supplied by the user External Function

ck must evaluate the kernel k tð Þ of the integral equation (1).

The specification of ck is:

double ck (double t, Nag_Comm *comm)

1: t – double Input

On entry: t, the value of the independent variable.

2: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to ck.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_inteq_volterra2 (d05bac) you
may allocate memory and initialize these pointers with various quantities for use
by ck when called from nag_inteq_volterra2 (d05bac) (see Section 3.2.1.1 in the
Essential Introduction).

2: cg – function, supplied by the user External Function

cg must evaluate the function g s; y sð Þð Þ in (1).

The specification of cg is:

double cg (double s, double y, Nag_Comm *comm)

1: s – double Input

On entry: s, the value of the independent variable.

2: y – double Input

On entry: the value of the solution y at the point s.

3: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to cg.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_inteq_volterra2 (d05bac) you
may allocate memory and initialize these pointers with various quantities for use
by cg when called from nag_inteq_volterra2 (d05bac) (see Section 3.2.1.1 in the
Essential Introduction).

3: cf – function, supplied by the user External Function

cf must evaluate the function f tð Þ in (1).

The specification of cf is:

double cf (double t, Nag_Comm *comm)
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1: t – double Input

On entry: t, the value of the independent variable.

2: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to cf.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_inteq_volterra2 (d05bac) you
may allocate memory and initialize these pointers with various quantities for use
by cf when called from nag_inteq_volterra2 (d05bac) (see Section 3.2.1.1 in the
Essential Introduction).

4: method – Nag_ODEMethod Input

On entry: the type of method which you wish to employ.

method ¼ Nag Adams
For Adams’ type formulae.

method ¼ Nag BDF
For backward differentiation formulae.

Constraint: method ¼ Nag Adams or Nag BDF.

5: iorder – Integer Input

On entry: the order of the method to be used.

Constraints:

if method ¼ Nag Adams, 3 � iorder � 6;
if method ¼ Nag BDF, 2 � iorder � 5.

6: alim – double Input

On entry: a, the lower limit of the integration interval.

Constraint: alim � 0:0.

7: tlim – double Input

On entry: the final point of the integration interval, T .

Constraint: tlim > alim.

8: tol – double Input

On entry: the relative accuracy required in the computed values of the solution.

Constraint:
ffiffi
�
p
� tol � 1:0, where � is the machine precision.

9: nmesh – Integer Input

On entry: the number of equidistant points at which the solution is sought.

Constraints:

if method ¼ Nag Adams, nmesh � iorder� 1;
if method ¼ Nag BDF, nmesh � iorder.
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10: thresh – double Input

On entry: the threshold value for use in the evaluation of the estimated relative errors. For two
successive meshes the following condition must hold at each point of the coarser mesh

Y1 � Y2j j
max Y1j j; Y2j j; threshj jð Þ � tol;

where Y1 is the computed solution on the coarser mesh and Y2 is the computed solution at the
corresponding point in the finer mesh. If this condition is not satisfied then the step size is halved
and the solution is recomputed.

Note: thresh can be used to effect a relative, absolute or mixed error test. If thresh ¼ 0:0 then
pure relative error is measured and, if the computed solution is small and thresh ¼ 1:0, absolute
error is measured.

11: work½lwk� – double Output
12: lwk – Integer Input

On entry: the dimension of the array work.

Constraint: lwk � 10� nmeshþ 6.

Note: the above value of lwk is sufficient for nag_inteq_volterra2 (d05bac) to perform only one
extrapolation on the initial mesh as defined by nmesh. In general much more workspace is
required and in the case when a large step size is supplied (i.e., nmesh is small), you must provide
a considerably larger workspace.

On exit: if fail:code ¼ NW_OUT_OF_WORKSPACE, work½0� contains the size of lwk required
for the algorithm to proceed further.

13: yn½nmesh� – double Output

On exit: yn½i � 1� contains the most recent approximation of the true solution y tð Þ at the specified
point t ¼ alimþ i � H , for i ¼ 1; 2; . . . ; nmesh, where H ¼ tlim� alimð Þ=nmesh.

14: errest½nmesh� – double Output

On exit: errest½i � 1� contains the most recent approximation of the relative error in the computed
solution at the point t ¼ alimþ i � H , for i ¼ 1; 2; . . . ; nmesh, where H ¼ tlim� alimð Þ=nmesh.

15: comm – Nag_Comm *

The NAG communication argument (see Section 3.2.1.1 in the Essential Introduction).

16: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_CONVERGENCE

The solution is not converging. See Section 9.
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NE_ENUM_INT

On entry, method ¼ Nag Adams and iorder ¼ 2.
Constraint: if method ¼ Nag Adams, 3 � iorder � 6.

On entry, method ¼ Nag BDF and iorder ¼ 6.
Constraint: if method ¼ Nag BDF, 2 � iorder � 5.

NE_ENUM_INT_2

On entry, method ¼ Nag Adams, iorder ¼ valueh i and nmesh ¼ valueh i.
Constraint: if method ¼ Nag Adams, nmesh � iorder� 1.

On entry, method ¼ Nag BDF, iorder ¼ valueh i and nmesh ¼ valueh i.
Constraint: if method ¼ Nag BDF, nmesh � iorder.

NE_INT

On entry, iorder ¼ valueh i.
Constraint: 2 � iorder � 6.

On entry, lwk ¼ valueh i.
Constraint: lwk � 10� nmeshþ 6; that is, valueh i.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_REAL

On entry, alim ¼ valueh i.
Constraint: alim � 0:0.

On entry, tol ¼ valueh i.
Constraint:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
machine precision
p

� tol � 1:0.

NE_REAL_2

On entry, alim ¼ valueh i and tlim ¼ valueh i.
Constraint: tlim > alim.

NW_OUT_OF_WORKSPACE

The workspace which has been supplied is too small for the required accuracy. The number of
extrapolations, so far, is valueh i. If you require one more extrapolation extend the size of
workspace to: lwk ¼ valueh i.

7 Accuracy

The accuracy depends on tol, the theoretical behaviour of the solution of the integral equation, the
interval of integration and on the method being used. It can be controlled by varying tol and thresh; you
are recommended to choose a smaller value for tol, the larger the value of iorder.

You are warned not to supply a very small tol, because the required accuracy may never be achieved.
This will usually force an error exit with fail:code ¼ NW_OUT_OF_WORKSPACE.
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In general, the higher the order of the method, the faster the required accuracy is achieved with less
workspace. For non-stiff problems (see Section 9) you are recommended to use the Adams’ method
(method ¼ Nag Adams) of order greater than 4 (iorder > 4).

8 Parallelism and Performance

Not applicable.

9 Further Comments

When solving (1), the solution of a nonlinear equation of the form

Yn � �g tn; Ynð Þ � �n ¼ 0; ð2Þ

i s requi red , where �n and � are cons tants . nag_in teq_vol te r ra2 (d05bac) ca l l s
nag_interval_zero_cont_func (c05avc) to find an interval for the zero of this equation followed by
nag_zero_cont_func_brent_rcomm (c05azc) to find its zero.

There is an initial phase of the algorithm where the solution is computed only for the first few points of
the mesh. The exact number of these points depends on iorder and method. The step size is halved until
the accuracy requirements are satisfied on these points and only then the solution on the whole mesh is
computed. During this initial phase, if lwk is too small, nag_inteq_volterra2 (d05bac) will exit with
fail:code ¼ NW_OUT_OF_WORKSPACE.

In the case fail:code ¼ NE_CONVERGENCE or NW_OUT_OF_WORKSPACE, you may be dealing
with a ‘stiff’ equation; an equation where the Lipschitz constant L of the function g t; yð Þ in (1) with
respect to its second argument is large, viz,

g t; uð Þ � g t; vð Þj j � L u� vj j: ð3Þ

In this case, if a BDF method (method ¼ Nag BDF) has been used, you are recommended to choose a
smaller step size by increasing the value of nmesh, or provide a larger workspace. But, if an Adams’
method (method ¼ Nag Adams) has been selected, you are recommended to switch to a BDF method
instead.

In the case fail:code ¼ NW_OUT_OF_WORKSPACE, then if fail:errnum ¼ 6, the specified accuracy
has not been attained but yn and errest contain the most recent approximation to the computed solution
and the corresponding error estimate. In this case, the error message informs you of the number of
extrapolations performed and the size of lwk required for the algorithm to proceed further. The latter
quantity will also be available in work½0�.

10 Example

Consider the following integral equation

y tð Þ ¼ e�t þ
Z t

0
e� t�sð Þ y sð Þ þ e�y sð Þ

h i
ds; 0 � t � 20 ð4Þ

with the solution y tð Þ ¼ ln tþ eð Þ. In this example, the Adams’ method of order 6 is used to solve this
equation with tol ¼ 1:e�4.

10.1 Program Text

/* nag_inteq_volterra2 (d05bac) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 23, 2011.
*/

#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd05.h>
#include <nagx02.h>
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#ifdef __cplusplus
extern "C" {
#endif

static double NAG_CALL sol(double t);
static double NAG_CALL cf(double t, Nag_Comm *comm);
static double NAG_CALL ck(double t, Nag_Comm *comm);
static double NAG_CALL cg(double s, double y, Nag_Comm *comm);

#ifdef __cplusplus
}
#endif

int main(void)
{

/* Scalars */
double alim = 0.0, tlim = 20.0, tol = 1.e-4;
double h, hi, si, thresh;
Integer exit_status = 0;
Integer iorder = 6, nmesh = 6;
Integer i, lwk;
/* Arrays */
static double ruser[3] = {-1.0, -1.0, -1.0};
double *errest = 0, *work = 0, *yn = 0;
/* NAG types */
Nag_Comm comm;
NagError fail;
Nag_ODEMethod method = Nag_Adams;

INIT_FAIL(fail);

printf("nag_inteq_volterra2 (d05bac) Example Program Results\n");

/* For communication with user-supplied functions: */
comm.user = ruser;

lwk = 10 * nmesh + 6;

if (
!(work = NAG_ALLOC(lwk, double)) ||
!(yn = NAG_ALLOC(nmesh, double)) ||
!(errest = NAG_ALLOC(nmesh, double))
)

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

h = (tlim - alim)/(double) (nmesh);
thresh = nag_machine_precision;

/*
nag_inteq_volterra2 (d05bac).
Nonlinear Volterra convolution equation, second kind.

*/
nag_inteq_volterra2(ck, cg, cf, method, iorder, alim, tlim, tol, nmesh,

thresh, work, lwk, yn, errest, &comm, &fail);
/* Loop until the supplied workspace is big enough. */
while (fail.code == NW_OUT_OF_WORKSPACE)

{
lwk = work[0];
NAG_FREE(work);

if (!(work = NAG_ALLOC(lwk, double)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;
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}
nag_inteq_volterra2(ck, cg, cf, method, iorder, alim, tlim, tol, nmesh,

thresh, work, lwk, yn, errest, &comm, &fail);
}

if (fail.code != NE_NOERROR)
{

printf("Error from nag_inteq_volterra2 (d05bac).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

printf("\nSize of workspace = %"NAG_IFMT"\n", lwk);
printf("Tolerance = %f\n\n", tol);
printf(" t Approx. Sol. True Sol. Est. Error Actual Error\n");

hi = 0.0;
for (i = 0; i < nmesh; i++)

{
hi += h;
si = sol(hi);
printf("%7.2f%14.5f%14.5f%15.5e%15.5e\n", alim + hi, yn[i], si,

errest[i], fabs((yn[i] - si)/si));
}

END:

NAG_FREE(errest);
NAG_FREE(yn);
NAG_FREE(work);

return exit_status;
}

static double NAG_CALL sol(double t)
{

return log(t + exp(1.0));
}
static double NAG_CALL cf(double t, Nag_Comm *comm)
{

if (comm->user[0] == -1.0)
{

printf("(User-supplied callback cf, first invocation.)\n");
comm->user[0] = 0.0;

}
return exp(-t);

}
static double NAG_CALL ck(double t, Nag_Comm *comm)
{

if (comm->user[1] == -1.0)
{

printf("(User-supplied callback ck, first invocation.)\n");
comm->user[1] = 0.0;

}
return exp(-t);

}
static double NAG_CALL cg(double s, double y, Nag_Comm *comm)
{

if (comm->user[2] == -1.0)
{

printf("(User-supplied callback cg, first invocation.)\n");
comm->user[2] = 0.0;

}
return y + exp(-y);

}

10.2 Program Data

None.
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10.3 Program Results

nag_inteq_volterra2 (d05bac) Example Program Results
(User-supplied callback ck, first invocation.)
(User-supplied callback cf, first invocation.)
(User-supplied callback cg, first invocation.)

Size of workspace = 966
Tolerance = 0.000100

t Approx. Sol. True Sol. Est. Error Actual Error
3.33 1.80033 1.80033 4.46315e-07 1.86622e-06
6.67 2.23911 2.23911 2.14707e-06 3.39762e-06

10.00 2.54305 2.54304 2.49406e-06 3.48516e-06
13.33 2.77582 2.77581 6.47098e-06 3.31131e-06
16.67 2.96451 2.96450 8.91042e-06 3.09688e-06
20.00 3.12318 3.12317 1.08231e-05 2.89422e-06
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