
NAG Library Function Document

nag_numdiff_1d_real (d04aac)

1 Purpose

nag_numdiff_1d_real (d04aac) calculates a set of derivatives (up to order 14) of a function of one real
variable at a point, together with a corresponding set of error estimates, using an extension of the Neville
algorithm.

2 Specification

#include <nag.h>
#include <nagd04.h>

void nag_numdiff_1d_real (double xval, Integer nder, double hbase,
double der[], double erest[],

double (*fun)(double x, Nag_Comm *comm),

Nag_Comm *comm, NagError *fail)

3 Description

nag_numdiff_1d_real (d04aac) provides a set of approximations:

der½j� 1�; j ¼ 1; 2; . . . ; n

to the derivatives:

f jð Þ x0ð Þ; j ¼ 1; 2; . . . ; n

of a real valued function f xð Þ at a real abscissa x0, together with a set of error estimates:

erest½j� 1�; j ¼ 1; 2; . . . ; n

which hopefully satisfy:

der½j� 1� � f jð Þ x0ð Þ
�� �� < erest½j� 1�; j ¼ 1; 2; . . . ; n:

You must provide the value of x0, a value of n (which is reduced to 14 should it exceed 14), a function
which evaluates f xð Þ for all real x, and a step length h. The results der½j� 1� and erest½j� 1� are based
on 21 function values:

f x0ð Þ; f x0 � 2i� 1ð Þhð Þ; i ¼ 1; 2; . . . ; 10:

Internally nag_numdiff_1d_real (d04aac) calculates the odd order derivatives and the even order
derivatives separately. There is an option you can use for restricting the calculation to only odd (or even)
order derivatives. For each derivative the function employs an extension of the Neville Algorithm (see
Lyness and Moler (1969)) to obtain a selection of approximations.

For example, for odd derivatives, based on 20 function values, nag_numdiff_1d_real (d04aac) calculates
a set of numbers:

Tk;p;s; p ¼ s; sþ 1; . . . ; 6; k ¼ 0; 1; . . . ; 9� p

each of which is an approximation to f 2sþ1ð Þ x0ð Þ= 2sþ 1ð Þ!. A specific approximation Tk;p;s is of
polynomial degree 2pþ 2 and is based on polynomial interpolation using function values
f x0 � 2i� 1ð Þhð Þ, for k ¼ k; . . . ; k þ p. In the absence of round-off error, the better approximations
would be associated with the larger values of p and of k. However, round-off error in function values has
an increasingly contaminating effect for successively larger values of p. This function proceeds to make
a judicious choice between all the approximations in the following way.

d04 – Numerical Differentiation d04aac

Mark 25 d04aac.1

For a specified value of s, let:

Rp ¼ Up � Lp; p ¼ s; sþ 1; . . . ; 6

where Up ¼ max
k

Tk;p;s

� �
and Lp ¼ min

k
Tk;p;s

� �
, for k ¼ 0; 1; . . . ; 9� p, and let �p be such that

R�p ¼ min
p

Rp

� �
, for p ¼ s; . . . ; 6.

The function returns:

der½2s� ¼ 1

8� �p
�

X9��p

k¼0

Tk;�p;s � U�p � L�p

()
2sþ 1ð Þ!

and

erest½2s� ¼ R�p � 2sþ 1ð Þ!�K2sþ1

where Kj is a safety factor which has been assigned the values:

Kj ¼ 1, j � 9
Kj ¼ 1:5, j ¼ 10; 11
Kj ¼ 2 j � 12,

on the basis of performance statistics.

The even order derivatives are calculated in a precisely analogous manner.

4 References

Lyness J N and Moler C B (1966) van der Monde systems and numerical differentiation Numer. Math. 8
458–464

Lyness J N and Moler C B (1969) Generalised Romberg methods for integrals of derivatives Numer.
Math. 14 1–14

5 Arguments

1: xval – double Input

On entry: the point at which the derivatives are required, x0.

2: nder – Integer Input

On entry: must be set so that its absolute value is the highest order derivative required.

nder > 0
All derivatives up to order min nder; 14ð Þ are calculated.

nder < 0 and nder is even
Only even order derivatives up to order min �nder; 14ð Þ are calculated.

nder < 0 and nder is odd
Only odd order derivatives up to order min �nder; 13ð Þ are calculated.

3: hbase – double Input

On entry: the initial step length which may be positive or negative. For advice on the choice of
hbase see Section 9.

Constraint: hbase 6¼ 0:0.

d04aac NAG Library Manual

d04aac.2 Mark 25

4: der½14� – double Output

On exit: der½j� 1� contains an approximation to the jth derivative of f xð Þ at x ¼ xval, so long as
the jth derivative is one of those requested by you when specifying nder. For other values of j,
der½j� 1� is unused.

5: erest½14� – double Output

On exit: an estimate of the absolute error in the corresponding result der½j� 1� so long as the jth
derivative is one of those requested by you when specifying nder. The sign of erest½j� 1� is
posit ive unless the result der½j� 1� is questionable. It is set negative when
der½j� 1�j j < erest½j� 1�j j or when for some other reason there is doubt about the validity of

the result der½j� 1� (see Section 6). For other values of j, erest½j� 1� is unused.

6: fun – function, supplied by the user External Function

fun must evaluate the function f xð Þ at a specified point.

The specification of fun is:

double fun (double x, Nag_Comm *comm)

1: x – double Input

On entry: the value of the argument x.

If you have equally spaced tabular data, the following information may be useful:

(i) in any call of nag_numdiff_1d_real (d04aac) the only values of x for which f xð Þ
will be required are x ¼ xval and x ¼ xval� 2j � 1ð Þhbase, for j ¼ 1; 2; . . . ; 10;
and

(ii) f x0ð Þ is always computed, but it is disregarded when only odd order derivatives are
required.

2: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to fun.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_numdiff_1d_real (d04aac)
you may allocate memory and initialize these pointers with various quantities for
use by fun when called from nag_numdiff_1d_real (d04aac) (see Section 3.2.1.1
in the Essential Introduction).

7: comm – Nag_Comm *

The NAG communication argument (see Section 3.2.1.1 in the Essential Introduction).

8: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

d04 – Numerical Differentiation d04aac

Mark 25 d04aac.3

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, nder ¼ 0.
Constraint: nder 6¼ 0.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_REAL

On entry, hbase ¼ 0:0.
Constraint: hbase 6¼ 0:0.

7 Accuracy

The accuracy of the results is problem dependent. An estimate of the accuracy of each result der½j� 1�
is returned in erest½j� 1� (see Sections 3, 5 and 9).

A basic feature of any floating-point function for numerical differentiation based on real function values
on the real axis is that successively higher order derivative approximations are successively less accurate.
It is expected that in most cases der½13� will be unusable. As an aid to this process, the sign of
erest½j� 1� is set negative when the estimated absolute error is greater than the approximate derivative
itself, i.e., when the approximate derivative may be so inaccurate that it may even have the wrong sign.
It is also set negative in some other cases when information available to the function indicates that the
corresponding value of der½j� 1� is questionable.

The actual values in erest depend on the accuracy of the function values, the properties of the machine
arithmetic, the analytic properties of the function being differentiated and the user-supplied step length
hbase (see Section 9). The only hard and fast rule is that for a given fun xvalð Þ and hbase, the values of
erest½j� 1� increase with increasing j. The limit of 14 is dictated by experience. Only very rarely can
one obtain meaningful approximations for higher order derivatives on conventional machines.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken by nag_numdiff_1d_real (d04aac) depends on the time spent for function evaluations.
Otherwise the time is roughly equivalent to that required to evaluate the function 21 times and calculate
a finite difference table having about 200 entries in total.

The results depend very critically on the choice of the user-supplied step length hbase. The overall
accuracy is diminished as hbase becomes small (because of the effect of round-off error) and as hbase
becomes large (because the discretization error also becomes large). If the function is used four or five
times with different values of hbase one can find a reasonably good value. A process in which the value
of hbase is successively halved (or doubled) is usually quite effective. Experience has shown that in
cases in which the Taylor series for fun xð Þ about xval has a finite radius of convergence R, the choices

d04aac NAG Library Manual

d04aac.4 Mark 25

of hbase > R=19 are not likely to lead to good results. In this case some function values lie outside the
circle of convergence.

10 Example

This example evaluates the odd-order derivatives of the function:

f xð Þ ¼ 1
2e

2x�1

up to order 7 at the point x ¼ 1
2 . Several different values of hbase are used, to illustrate that:

(i) extreme choices of hbase, either too large or too small, yield poor results;

(ii) the quality of these results is adequately indicated by the values of erest.

10.1 Program Text

/* nag_numdiff_1d_real (d04aac) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 23, 2011.
*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd04.h>

#ifdef __cplusplus
extern "C" {
#endif

static double NAG_CALL fun(double x, Nag_Comm *comm);
#ifdef __cplusplus
}
#endif

int main(void)
{

static double ruser[1] = {-1.0};
Integer exit_status = 0;
double hbase;
Integer i, k, l, start, step;
double h_init;
double h_reduce;
double xval;
Integer nder;
double der[14], erest[14];
Nag_Comm comm;
NagError fail;

INIT_FAIL(fail);

printf("nag_numdiff_1d_real (d04aac) Example Program Results\n");

/* For communication with user-supplied functions: */
comm.user = ruser;

/* abs(nder) is largest order derivative required. */
nder = -7;
l = fabs(nder);
/* nder < 0 and nder is even means only even derivatives,
* and nder < 0 and nder is odd, only odd derivatives.
*/

if (nder < 0) {
start = (l % 2 ? 0 : 1);
step = 2;

}

d04 – Numerical Differentiation d04aac

Mark 25 d04aac.5

else {
start = 0;
step = 1;

}
/* Initial step size. */
h_init = 0.5;
hbase = h_init;
/* Reduction factor applied to successive step sizes. */
h_reduce = 0.1;
/* Derivatives will be evaluated at x = xval. */
xval = 0.5;

printf("\n"
"Four separate runs to calculate the first four odd order derivatives "
"of\n"
" fun(x) = 0.5*exp(2.0*x-1.0) at x = 0.5.\n"
"The exact results are 1, 4, 16 and 64\n\n"
"Input parameters common to all four runs\n"
" xval = %f nder = %"NAG_IFMT"\n", xval, nder);

for (k = 0; k < 4; k++)
{

/* nag_numdiff_1d_real (d04aac).
* Numerical differentiation, derivatives up to order 14,
* function of one real variable.
*/

nag_numdiff_1d_real(xval, nder, hbase, der, erest, fun, &comm,
&fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_numdiff_1d_real (d04aac).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

printf("\n"
"with step length %f the results are\n"
"Order Derivative Error estimate\n", hbase);

for (i = start; i < MIN(l,14); i += step)
printf("%2"NAG_IFMT" %21.4e %21.4e\n", i+1, der[i], erest[i]);

hbase = hbase * h_reduce;
}

END:
return exit_status;

}

static double NAG_CALL fun(double x, Nag_Comm *comm)
{

if (comm->user[0] == -1.0)
{

printf("(User-supplied callback fun, first invocation.)\n");
comm->user[0] = 0.0;

}
return 0.5*exp(2.0*x - 1.0);

}

10.2 Program Data

None.

d04aac NAG Library Manual

d04aac.6 Mark 25

10.3 Program Results

nag_numdiff_1d_real (d04aac) Example Program Results

Four separate runs to calculate the first four odd order derivatives of
fun(x) = 0.5*exp(2.0*x-1.0) at x = 0.5.

The exact results are 1, 4, 16 and 64

Input parameters common to all four runs
xval = 0.500000 nder = -7

(User-supplied callback fun, first invocation.)

with step length 0.500000 the results are
Order Derivative Error estimate
1 1.3919e+03 -1.0734e+05
3 -3.1386e+03 -1.4378e+05
5 8.7619e+03 -2.4790e+05
7 -2.4753e+04 -4.4838e+05

with step length 0.050000 the results are
Order Derivative Error estimate
1 1.0000e+00 1.5294e-11
3 4.0000e+00 2.1125e-09
5 1.6000e+01 3.8149e-07
7 6.4000e+01 7.3845e-05

with step length 0.005000 the results are
Order Derivative Error estimate
1 1.0000e+00 1.2768e-14
3 4.0000e+00 4.1903e-10
5 1.6000e+01 1.4629e-05
7 6.4039e+01 2.9729e-01

with step length 0.000500 the results are
Order Derivative Error estimate
1 1.0000e+00 1.4266e-13
3 4.0000e+00 3.0869e-07
5 1.5988e+01 6.3314e-01
7 3.8249e+04 -1.9644e+06

d04 – Numerical Differentiation d04aac

Mark 25 d04aac.7 (last)

	d04aac
	1 Purpose
	2 Specification
	3 Description
	4 References
	Lyness and Moler (1966)
	Lyness and Moler (1969)

	5 Arguments
	xval
	nder
	hbase
	der
	erest
	fun
	x
	comm
	user
	iuser
	p

	comm
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NE_REAL

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

