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nag_multid_quad_adapt_1 (d01wcc)

1 Purpose

nag_multid_quad_adapt_1 (d01wcc) attempts to evaluate a multidimensional integral (up to 15
dimensions), with constant and finite limits,
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to a specified relative accuracy, using an adaptive subdivision strategy.

2 Specification

#include <nag.h>
#include <nagd01.h>

void nag_multid_quad_adapt_1 (Integer ndim,

double (*f)(Integer ndim, const double x[], Nag_User *comm),

const double a[], const double b[], Integer *minpts, Integer maxpts,
double eps, double *finval, double *acc, Nag_User *comm, NagError *fail)

3 Description

nag_multid_quad_adapt_1 (d01wcc) evaluates an estimate of a multidimensional integral over a hyper-
rectangle (i.e., with constant limits), and also an estimate of the relative error. You will need to set the
relative accuracy required, supply the integrand as a function f, and also set the minimum and maximum
acceptable number of calls to f (in minpts and maxpts).

The function operates by repeated subdivision of the hyper-rectangular region into smaller hyper-
rectangles. In each subregion, the integral is estimated using a seventh-degree rule, and an error estimate
is obtained by comparison with a fifth-degree rule which uses a subset of the same points. The fourth
differences of the integrand along each coordinate axis are evaluated, and the subregion is marked for
possible future subdivision in half along that coordinate axis which has the largest absolute fourth
difference.

If the estimated errors, totalled over the subregions, exceed the requested relative error (or if fewer than
minpts calls to f have been made), further subdivision is necessary, and is performed on the subregion
with the largest estimated error, that subregion being halved along the appropriate coordinate axis.

The function will fail if the requested relative error level has not been attained by the time maxpts calls
to f have been made.

This function is based on the HALF subroutine developed by van Dooren and de Ridder (1976). It uses
a different basic rule, described by Genz and Malik (1980).

4 References

Genz A C and Malik A A (1980) An adaptive algorithm for numerical integration over an N-dimensional
rectangular region J. Comput. Appl. Math. 6 295–302

van Dooren P and de Ridder L (1976) An adaptive algorithm for numerical integration over an N-
dimensional cube J. Comput. Appl. Math. 2 207–217
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5 Arguments

1: ndim – Integer Input

On entry: the number of dimensions of the integral, n.

Constraint: 2 � ndim � 15.

2: f – function, supplied by the user External Function

f must return the value of the integrand f at a given point.

The specification of f is:

double f (Integer ndim, const double x[], Nag_User *comm)

1: ndim – Integer Input

On entry: the number of dimensions of the integral.

2: x½ndim� – const double Input

On entry: the coordinates of the point at which the integrand must be evaluated.

3: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p should be cast to the required type, e.g.,

struct user *s = (struct user *)comm ! p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

3: a½ndim� – const double Input

On entry: the lower limits of integration, ai, for i ¼ 1; 2; . . . ; n.

4: b½ndim� – const double Input

On entry: the upper limits of integration, bi, for i ¼ 1; 2; . . . ; n.

5: minpts – Integer * Input/Output

On entry: minpts must be set to the minimum number of integrand evaluations to be allowed.

On exit: minpts contains the actual number of integrand evaluations used by this function.

6: maxpts – Integer Input

On entry: the maximum number of integrand evaluations to be allowed.

Constraints:

maxpts � minpts;
maxpts � 2ndim þ 2� ndim2 þ 2� ndimþ 1.

7: eps – double Input

On entry: the relative error acceptable. When the solution is zero or very small relative accuracy
may not be achievable but you may still set eps to a reasonable value and check fail for
NE_QUAD_MAX_INTEGRAND_EVAL.

Constraint: eps > 0:0.
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8: finval – double * Output

On exit: the best estimate obtained for the integral.

9: acc – double * Output

On exit: the estimated relative error in finval.

10: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p, of type Pointer, allows you to communicate
information to and from f(). An object of the required type should be declared, e.g., a
structure, and its address assigned to the pointer comm!p by means of a cast to Pointer in
the calling program, e.g., comm.p = (Pointer)&s. The type pointer will be void * with
a C compiler that defines void * and char * otherwise.

11: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_2_INT_ARG_LT

On entry, maxpts ¼ valueh i while minpts ¼ valueh i. These arguments must satisfy
maxpts � minpts.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_INVALID_INT_RANGE_2

Value valueh i given to ndim not valid. Correct range is 2 � ndim � 15.

NE_QUAD_MAX_INTEGRAND_CONS

maxpts < valueh i. Constraint: maxpts � 2ndim þ 2� ndim2 þ 2� ndimþ 1.

NE_QUAD_MAX_INTEGRAND_EVAL

maxpts was too small to obtain the required accuracy. On return, finval and acc contain estimates
of the integral and the relative error, but acc will be greater than eps.

NE_REAL_ARG_LE

On entry, eps must not be less than or equal to 0.0: eps ¼ valueh i.

7 Accuracy

A relative error estimate is output through the argument acc.

8 Parallelism and Performance

Not applicable.
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9 Further Comments

Execution time will usually be dominated by the time taken to evaluate the integrand f, and hence the
maximum time that could be taken will be proportional to maxpts.

10 Example

This example estimates the integral
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The accuracy requested is one part in 10,000.

10.1 Program Text

/* nag_multid_quad_adapt_1 (d01wcc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 5, 1998.
* Mark 7 revised, 2001.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagd01.h>

#ifdef __cplusplus
extern "C" {
#endif
static double NAG_CALL f(Integer n, const double z[], Nag_User *comm);
#ifdef __cplusplus
}
#endif

#define NDIM 4
#define MAXPTS 1000*NDIM

int main(void)
{

static Integer use_comm[1] = {1};
Integer exit_status = 0;
Integer ndim = NDIM;
Integer maxpts = MAXPTS;
double a[4], b[4];
Integer k;
double finval;
Integer minpts;
double acc, eps;
Nag_User comm;
NagError fail;

INIT_FAIL(fail);

printf("nag_multid_quad_adapt_1 (d01wcc) Example Program Results\n");

/* For communication with user-supplied functions: */
comm.p = (Pointer)&use_comm;

for (k = 0; k < 4; ++k)
{

a[k] = 0.0;
b[k] = 1.0;

}
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eps = 0.0001;
minpts = 0;

/* nag_multid_quad_adapt_1 (d01wcc).
* Multi-dimensional adaptive quadrature, thread-safe
*/

nag_multid_quad_adapt_1(ndim, f, a, b, &minpts, maxpts, eps, &finval, &acc,
&comm, &fail);

if (fail.code != NE_NOERROR && fail.code != NE_QUAD_MAX_INTEGRAND_EVAL)
{

printf("Error from nag_multid_quad_adapt_1 (d01wcc) %s\n",
fail.message);

exit_status = 1;
goto END;

}
printf("Requested accuracy =%12.2e\n", eps);
printf("Estimated value =%12.4f\n", finval);
printf("Estimated accuracy =%12.2e\n", acc);

END:
return exit_status;

}

static double NAG_CALL f(Integer n, const double z[], Nag_User *comm)
{

double tmp_pwr;
Integer *use_comm = (Integer *)comm->p;

if (use_comm[0])
{

printf("(User-supplied callback f, first invocation.)\n");
use_comm[0] = 0;

}

tmp_pwr = z[1]+1.0+z[n-1];
return z[0]*4.0*z[2]*z[2]*exp(z[0]*2.0*z[2])/(tmp_pwr*tmp_pwr);

}

10.2 Program Data

None.

10.3 Program Results

nag_multid_quad_adapt_1 (d01wcc) Example Program Results
(User-supplied callback f, first invocation.)
Requested accuracy = 1.00e-04
Estimated value = 0.5754
Estimated accuracy = 9.89e-05
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