
NAG Library Function Document

nag_multid_quad_adapt_1 (d01wcc)

1 Purpose

nag_multid_quad_adapt_1 (d01wcc) attempts to evaluate a multidimensional integral (up to 15
dimensions), with constant and finite limits,

Z b1

a1

Z b2

a2

� � �
Z bn

an

f x1; x2; . . . ; xnð Þdxn � � � dx2dx1

to a specified relative accuracy, using an adaptive subdivision strategy.

2 Specification

#include <nag.h>
#include <nagd01.h>

void nag_multid_quad_adapt_1 (Integer ndim,

double (*f)(Integer ndim, const double x[], Nag_User *comm),

const double a[], const double b[], Integer *minpts, Integer maxpts,
double eps, double *finval, double *acc, Nag_User *comm, NagError *fail)

3 Description

nag_multid_quad_adapt_1 (d01wcc) evaluates an estimate of a multidimensional integral over a hyper-
rectangle (i.e., with constant limits), and also an estimate of the relative error. You will need to set the
relative accuracy required, supply the integrand as a function f, and also set the minimum and maximum
acceptable number of calls to f (in minpts and maxpts).

The function operates by repeated subdivision of the hyper-rectangular region into smaller hyper-
rectangles. In each subregion, the integral is estimated using a seventh-degree rule, and an error estimate
is obtained by comparison with a fifth-degree rule which uses a subset of the same points. The fourth
differences of the integrand along each coordinate axis are evaluated, and the subregion is marked for
possible future subdivision in half along that coordinate axis which has the largest absolute fourth
difference.

If the estimated errors, totalled over the subregions, exceed the requested relative error (or if fewer than
minpts calls to f have been made), further subdivision is necessary, and is performed on the subregion
with the largest estimated error, that subregion being halved along the appropriate coordinate axis.

The function will fail if the requested relative error level has not been attained by the time maxpts calls
to f have been made.

This function is based on the HALF subroutine developed by van Dooren and de Ridder (1976). It uses
a different basic rule, described by Genz and Malik (1980).

4 References

Genz A C and Malik A A (1980) An adaptive algorithm for numerical integration over an N-dimensional
rectangular region J. Comput. Appl. Math. 6 295–302

van Dooren P and de Ridder L (1976) An adaptive algorithm for numerical integration over an N-
dimensional cube J. Comput. Appl. Math. 2 207–217

d01 – Quadrature d01wcc

Mark 25 d01wcc.1

5 Arguments

1: ndim – Integer Input

On entry: the number of dimensions of the integral, n.

Constraint: 2 � ndim � 15.

2: f – function, supplied by the user External Function

f must return the value of the integrand f at a given point.

The specification of f is:

double f (Integer ndim, const double x[], Nag_User *comm)

1: ndim – Integer Input

On entry: the number of dimensions of the integral.

2: x½ndim� – const double Input

On entry: the coordinates of the point at which the integrand must be evaluated.

3: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p should be cast to the required type, e.g.,

struct user *s = (struct user *)comm ! p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

3: a½ndim� – const double Input

On entry: the lower limits of integration, ai, for i ¼ 1; 2; . . . ; n.

4: b½ndim� – const double Input

On entry: the upper limits of integration, bi, for i ¼ 1; 2; . . . ; n.

5: minpts – Integer * Input/Output

On entry: minpts must be set to the minimum number of integrand evaluations to be allowed.

On exit: minpts contains the actual number of integrand evaluations used by this function.

6: maxpts – Integer Input

On entry: the maximum number of integrand evaluations to be allowed.

Constraints:

maxpts � minpts;
maxpts � 2ndim þ 2� ndim2 þ 2� ndimþ 1.

7: eps – double Input

On entry: the relative error acceptable. When the solution is zero or very small relative accuracy
may not be achievable but you may still set eps to a reasonable value and check fail for
NE_QUAD_MAX_INTEGRAND_EVAL.

Constraint: eps > 0:0.

d01wcc NAG Library Manual

d01wcc.2 Mark 25

8: finval – double * Output

On exit: the best estimate obtained for the integral.

9: acc – double * Output

On exit: the estimated relative error in finval.

10: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p, of type Pointer, allows you to communicate
information to and from f(). An object of the required type should be declared, e.g., a
structure, and its address assigned to the pointer comm!p by means of a cast to Pointer in
the calling program, e.g., comm.p = (Pointer)&s. The type pointer will be void * with
a C compiler that defines void * and char * otherwise.

11: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_2_INT_ARG_LT

On entry, maxpts ¼ valueh i while minpts ¼ valueh i. These arguments must satisfy
maxpts � minpts.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_INVALID_INT_RANGE_2

Value valueh i given to ndim not valid. Correct range is 2 � ndim � 15.

NE_QUAD_MAX_INTEGRAND_CONS

maxpts < valueh i. Constraint: maxpts � 2ndim þ 2� ndim2 þ 2� ndimþ 1.

NE_QUAD_MAX_INTEGRAND_EVAL

maxpts was too small to obtain the required accuracy. On return, finval and acc contain estimates
of the integral and the relative error, but acc will be greater than eps.

NE_REAL_ARG_LE

On entry, eps must not be less than or equal to 0.0: eps ¼ valueh i.

7 Accuracy

A relative error estimate is output through the argument acc.

8 Parallelism and Performance

Not applicable.

d01 – Quadrature d01wcc

Mark 25 d01wcc.3

9 Further Comments

Execution time will usually be dominated by the time taken to evaluate the integrand f, and hence the
maximum time that could be taken will be proportional to maxpts.

10 Example

This example estimates the integral
Z 1

0

Z 1

0

Z 1

0

Z 1

0

4z1z
2
3 exp 2z1z3ð Þ

1þ z2 þ z4ð Þ2
dz4dz3dz2dz1 ¼ 0:575364:

The accuracy requested is one part in 10,000.

10.1 Program Text

/* nag_multid_quad_adapt_1 (d01wcc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 5, 1998.
* Mark 7 revised, 2001.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagd01.h>

#ifdef __cplusplus
extern "C" {
#endif
static double NAG_CALL f(Integer n, const double z[], Nag_User *comm);
#ifdef __cplusplus
}
#endif

#define NDIM 4
#define MAXPTS 1000*NDIM

int main(void)
{

static Integer use_comm[1] = {1};
Integer exit_status = 0;
Integer ndim = NDIM;
Integer maxpts = MAXPTS;
double a[4], b[4];
Integer k;
double finval;
Integer minpts;
double acc, eps;
Nag_User comm;
NagError fail;

INIT_FAIL(fail);

printf("nag_multid_quad_adapt_1 (d01wcc) Example Program Results\n");

/* For communication with user-supplied functions: */
comm.p = (Pointer)&use_comm;

for (k = 0; k < 4; ++k)
{

a[k] = 0.0;
b[k] = 1.0;

}

d01wcc NAG Library Manual

d01wcc.4 Mark 25

eps = 0.0001;
minpts = 0;

/* nag_multid_quad_adapt_1 (d01wcc).
* Multi-dimensional adaptive quadrature, thread-safe
*/

nag_multid_quad_adapt_1(ndim, f, a, b, &minpts, maxpts, eps, &finval, &acc,
&comm, &fail);

if (fail.code != NE_NOERROR && fail.code != NE_QUAD_MAX_INTEGRAND_EVAL)
{

printf("Error from nag_multid_quad_adapt_1 (d01wcc) %s\n",
fail.message);

exit_status = 1;
goto END;

}
printf("Requested accuracy =%12.2e\n", eps);
printf("Estimated value =%12.4f\n", finval);
printf("Estimated accuracy =%12.2e\n", acc);

END:
return exit_status;

}

static double NAG_CALL f(Integer n, const double z[], Nag_User *comm)
{

double tmp_pwr;
Integer *use_comm = (Integer *)comm->p;

if (use_comm[0])
{

printf("(User-supplied callback f, first invocation.)\n");
use_comm[0] = 0;

}

tmp_pwr = z[1]+1.0+z[n-1];
return z[0]*4.0*z[2]*z[2]*exp(z[0]*2.0*z[2])/(tmp_pwr*tmp_pwr);

}

10.2 Program Data

None.

10.3 Program Results

nag_multid_quad_adapt_1 (d01wcc) Example Program Results
(User-supplied callback f, first invocation.)
Requested accuracy = 1.00e-04
Estimated value = 0.5754
Estimated accuracy = 9.89e-05

d01 – Quadrature d01wcc

Mark 25 d01wcc.5 (last)

	d01wcc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Genz and Malik (1980)
	van Dooren and de Ridder (1976)

	5 Arguments
	ndim
	f
	ndim
	x
	comm
	p

	a
	b
	minpts
	maxpts
	eps
	finval
	acc
	comm
	p

	fail

	6 Error Indicators and Warnings
	NE_2_INT_ARG_LT
	NE_ALLOC_FAIL
	NE_INVALID_INT_RANGE_2
	NE_QUAD_MAX_INTEGRAND_CONS
	NE_QUAD_MAX_INTEGRAND_EVAL
	NE_REAL_ARG_LE

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

