/* nag_zungtr (f08ftc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagf08.h>
#include <nagx04.h>
int main(void)
{
/* Scalars */
Integer i, j, n, pda, pdz, d_len, e_len, tau_len;
Integer exit_status = 0;
NagError fail;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
char nag_enum_arg[40];
Complex *a = 0, *tau = 0, *z = 0;
double *d = 0, *e = 0;
#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J - 1) * pda + I - 1]
#define Z(I, J) z[(J - 1) * pdz + I - 1]
order = Nag_ColMajor;
#else
#define A(I, J) a[(I - 1) * pda + J - 1]
#define Z(I, J) z[(I - 1) * pdz + J - 1]
order = Nag_RowMajor;
#endif
INIT_FAIL(fail);
printf("nag_zungtr (f08ftc) Example Program Results\n");
/* Skip heading in data file */
scanf("%*[^\n] ");
scanf("%ld%*[^\n] ", &n);
#ifdef NAG_COLUMN_MAJOR
pda = n;
pdz = n;
#else
pda = n;
pdz = n;
#endif
tau_len = n-1;
d_len = n;
e_len = n-1;
/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, Complex)) ||
!(tau = NAG_ALLOC(tau_len, Complex)) ||
!(z = NAG_ALLOC(n * n, Complex)) ||
!(d = NAG_ALLOC(d_len, double)) ||
!(e = NAG_ALLOC(e_len, double)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read A from data file */
scanf("%39s%*[^\n] ", nag_enum_arg);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/
uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg);
if (uplo == Nag_Upper)
{
for (i = 1; i <= n; ++i)
{
for (j = i; j <= n; ++j)
scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
}
scanf("%*[^\n] ");
}
else
{
for (i = 1; i <= n; ++i)
{
for (j = 1; j <= i; ++j)
scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
}
scanf("%*[^\n] ");
}
/* Reduce A to tridiagonal form T = (Q**H)*A*Q */
/* nag_zhetrd (f08fsc).
* Unitary reduction of complex Hermitian matrix to real
* symmetric tridiagonal form
*/
nag_zhetrd(order, uplo, n, a, pda, d, e, tau, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_zhetrd (f08fsc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Copy A into Z */
if (uplo == Nag_Upper)
{
for (i = 1; i <= n; ++i)
{
for (j = i; j <= n; ++j)
{
Z(i, j).re = A(i, j).re;
Z(i, j).im = A(i, j).im;
}
}
}
else
{
for (i = 1; i <= n; ++i)
{
for (j = 1; j <= i; ++j)
{
Z(i, j).re = A(i, j).re;
Z(i, j).im = A(i, j).im;
}
}
}
/* Form Q explicitly, storing the result in Z */
/* nag_zungtr (f08ftc).
* Generate unitary transformation matrix from reduction to
* tridiagonal form determined by nag_zhetrd (f08fsc)
*/
nag_zungtr(order, uplo, n, z, pdz, tau, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_zungtr (f08ftc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Calculate all the eigenvalues and eigenvectors of A */
/* nag_zsteqr (f08jsc).
* All eigenvalues and eigenvectors of real symmetric
* tridiagonal matrix, reduced from complex Hermitian
* matrix, using implicit QL or QR
*/
nag_zsteqr(order, Nag_UpdateZ, n, d, e, z, pdz, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_zsteqr (f08jsc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Normalize the eigenvectors */
for(j=1; j<=n; j++)
{
for(i=n; i>=1; i--)
{
Z(i, j) = nag_complex_divide(Z(i, j),Z(1, j));
}
}
/* Print eigenvalues and eigenvectors */
printf("\nEigenvalues\n");
for (i = 1; i <= n; ++i)
printf("%9.4f%s", d[i-1], i%4 == 0?"\n":" ");
printf("\n");
/* nag_gen_complx_mat_print_comp (x04dbc).
* Print complex general matrix (comprehensive)
*/
fflush(stdout);
nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
n, z, pdz, Nag_BracketForm, "%7.4f",
"Eigenvectors", Nag_IntegerLabels, 0,
Nag_IntegerLabels, 0, 80, 0, 0,
&fail);
if (fail.code != NE_NOERROR)
{
printf(
"Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
END:
NAG_FREE(a);
NAG_FREE(tau);
NAG_FREE(z);
NAG_FREE(d);
NAG_FREE(e);
return exit_status;
}