/* nag_mesh2d_bound (d06bac) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd06.h>
/* Structure to allow data to be passed into */
/* the user-supplied function fbnd */
struct user
{
/* details of the ellipse containing the NAG logo */
double xa, xb, x0, y0;
};
#ifdef __cplusplus
extern "C" {
#endif
static double NAG_CALL fbnd(Integer, double, double, Nag_Comm *);
#ifdef __cplusplus
}
#endif
#define EDGE(I, J) edge[3*((J) -1)+(I) -1]
#define LINED(I, J) lined[4*((J) -1)+(I) -1]
#define CONN(I, J) conn[3*((J) -1)+(I) -1]
#define COOR(I, J) coor[2*((J) -1)+(I) -1]
#define COORCH(I, J) coorch[2*((J) -1)+(I) -1]
#define CRUS(I, J) crus[2*((J) -1)+(I) -1]
int main(void)
{
const Integer sdcrus = 4, nvmax = 1000, nedmx = 300, nvint = 0;
struct user ellipse;
Nag_Comm comm;
double x0, xa, xb, xmax, xmin, y0, ymax, ymin;
Integer exit_status, i, itrace, j, k, ncomp, nedge, nelt, nlines;
Integer npropa, nv, nvb, reftk, l;
char pmesh[2];
double *coor = 0, *coorch = 0, *crus = 0, *rate = 0, *weight = 0;
Integer *conn = 0, *edge = 0, *lcomp = 0, *lined = 0, *nlcomp = 0;
NagError fail;
INIT_FAIL(fail);
exit_status = 0;
printf(" nag_mesh2d_bound (d06bac) Example Program Results\n\n");
fflush(stdout);
/* Skip heading in data file */
scanf("%*[^\n] ");
/* Initialise boundary mesh inputs: */
/* the number of line and of the characteristic points of */
/* the boundary mesh */
scanf("%ld%*[^\n] ", &nlines);
/* Allocate memory */
if (!(coor = NAG_ALLOC(2*nvmax, double)) ||
!(coorch = NAG_ALLOC(2*nlines, double)) ||
!(crus = NAG_ALLOC(2*sdcrus, double)) ||
!(rate = NAG_ALLOC(nlines, double)) ||
!(weight = NAG_ALLOC(1, double)) ||
!(conn = NAG_ALLOC(3*(2*nvmax+5), Integer)) ||
!(edge = NAG_ALLOC(3*nedmx, Integer)) ||
!(lined = NAG_ALLOC(4*nlines, Integer)) ||
!(lcomp = NAG_ALLOC(nlines, Integer)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/* The ellipse boundary which envelops */
/* the NAG Logo, the N, the A and the G */
for (j = 1; j <= nlines; ++j) scanf("%lf", &COORCH(1, j));
scanf("%*[^\n] ");
for (j = 1; j <= nlines; ++j) scanf("%lf", &COORCH(2, j));
scanf("%*[^\n] ");
for (j = 1; j <= sdcrus; ++j) scanf("%lf", &CRUS(1, j));
scanf("%*[^\n] ");
for (j = 1; j <= sdcrus; ++j) scanf("%lf", &CRUS(2, j));
scanf("%*[^\n] ");
/* The lines of the boundary mesh */
for (j = 1; j <= nlines; ++j)
{
for (i = 1; i <= 4; ++i) scanf("%ld", &LINED(i, j));
scanf("%lf", &rate[j-1]);
}
scanf("%*[^\n] ");
/* The number of connected components */
/* to the boundary and their information */
scanf("%ld%*[^\n] ", &ncomp);
/* Allocate memory */
if (!(nlcomp = NAG_ALLOC(ncomp, Integer)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
j = 0;
for (i = 0; i < ncomp; ++i)
{
scanf("%ld", &nlcomp[i]);
scanf("%*[^\n] ");
l = j + abs(nlcomp[i]);
for (k = j; k < l; ++k) scanf("%ld", &lcomp[k]);
scanf("%*[^\n] ");
j += abs(nlcomp[i]);
}
scanf(" ' %1s '%*[^\n] ", pmesh);
/* Data passed to the user-supplied function */
xmin = COORCH(1, 4);
xmax = COORCH(1, 2);
ymin = COORCH(2, 1);
ymax = COORCH(2, 3);
xa = (xmax-xmin)/2.0;
xb = (ymax-ymin)/2.0;
x0 = (xmin+xmax)/2.0;
y0 = (ymin+ymax)/2.0;
comm.p = (Pointer)&ellipse;
ellipse.xa = xa;
ellipse.xb = xb;
ellipse.x0 = x0;
ellipse.y0 = y0;
itrace = -1;
/* Call to the boundary mesh generator */
/* nag_mesh2d_bound (d06bac).
* Generates a boundary mesh
*/
nag_mesh2d_bound(nlines, coorch, lined, fbnd, crus, sdcrus, rate, ncomp,
nlcomp, lcomp, nvmax, nedmx, &nvb, coor, &nedge, edge,
itrace, 0, &comm, &fail);
if (fail.code == NE_NOERROR)
{
if (pmesh[0] == 'N')
{
printf(" Boundary mesh characteristics\n");
printf(" nvb =%6ld\n", nvb);
printf(" nedge =%6ld\n", nedge);
}
else if (pmesh[0] == 'Y')
{
/* Output the mesh to view it using the NAG Graphics Library */
printf(" %10ld%10ld\n", nvb, nedge);
for (i = 1; i <= nvb; ++i)
printf(" %4ld %15.6e %15.6e \n",
i, COOR(1, i), COOR(2, i));
for (i = 1; i <= nedge; ++i)
printf(" %4ld%4ld%4ld%4ld\n",
i, EDGE(1, i), EDGE(2, i), EDGE(3, i));
}
else
{
printf("Problem with the printing option Y or N\n");
exit_status = -1;
goto END;
}
}
else
{
printf("Error from nag_mesh2d_bound (d06bac).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
/* Initialise mesh control parameters */
itrace = 0;
npropa = 1;
/* Call to the 2D Delaunay-Voronoi mesh generator */
/* nag_mesh2d_delaunay (d06abc).
* Generates a two-dimensional mesh using a Delaunay-Voronoi
* process
*/
nag_mesh2d_delaunay(nvb, nvint, nvmax, nedge, edge, &nv, &nelt, coor, conn,
weight, npropa, itrace, 0, &fail);
if (fail.code == NE_NOERROR)
{
if (pmesh[0] == 'N')
{
printf(" Complete mesh characteristics (Delaunay-Voronoi)\n");
printf(" nv =%6ld\n", nv);
printf(" nelt =%6ld\n", nelt);
}
else if (pmesh[0] == 'Y')
{
/* Output the mesh to view it using the NAG Graphics Library */
printf(" %10ld%10ld\n", nv, nelt);
for (i = 1; i <= nv; ++i)
printf(" %15.6e %15.6e \n", COOR(1, i), COOR(2, i));
reftk = 0;
for (k = 1; k <= nelt; ++k)
printf(" %10ld%10ld%10ld%10ld\n",
CONN(1, k), CONN(2, k), CONN(3, k), reftk);
}
else
{
printf("Problem with the printing option Y or N\n");
exit_status = -1;
goto END;
}
}
else
{
printf("Error from nag_mesh2d_delaunay (d06abc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
/* Call to the 2D Advancing front mesh generator */
/* nag_mesh2d_front (d06acc).
* Generates a two-dimensional mesh using an Advancing-front
* method
*/
nag_mesh2d_front(nvb, nvint, nvmax, nedge, edge, &nv, &nelt, coor,
conn, weight, itrace, 0, &fail);
if (fail.code == NE_NOERROR)
{
if (pmesh[0] == 'N')
{
printf(" Complete mesh characteristics (Advancing Front)\n");
printf(" nv =%6ld\n", nv);
printf(" nelt =%6ld\n", nelt);
}
else if (pmesh[0] == 'Y')
{
/* Output the mesh to view it using the NAG Graphics Library */
printf(" %10ld%10ld\n", nv, nelt);
for (i = 1; i <= nv; ++i)
printf(" %15.6e %15.6e \n",
COOR(1, i), COOR(2, i));
reftk = 0;
for (k = 1; k <= nelt; ++k)
printf(" %10ld%10ld%10ld%10ld\n",
CONN(1, k), CONN(2, k), CONN(3, k), reftk);
}
else
{
printf("Problem with the printing option Y or N\n");
exit_status = -1;
goto END;
}
}
else
{
printf("Error from nag_mesh2d_front (d06acc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
END:
NAG_FREE(coor);
NAG_FREE(coorch);
NAG_FREE(crus);
NAG_FREE(rate);
NAG_FREE(weight);
NAG_FREE(conn);
NAG_FREE(edge);
NAG_FREE(lcomp);
NAG_FREE(lined);
NAG_FREE(nlcomp);
return exit_status;
}
static double NAG_CALL fbnd(Integer i, double x, double y, Nag_Comm *pcomm)
{
double ret_val, d1, d2;
double radius2, x0, xa, xb, y0;
struct user *ellipse = (struct user *) pcomm->p;
xa = ellipse->xa;
xb = ellipse->xb;
x0 = ellipse->x0;
y0 = ellipse->y0;
ret_val = 0.0;
switch (i)
{
case 1:
/* line 1,2,3, and 4: ellipse centred in (X0,Y0) with */
/* XA and XB as coefficients */
d1 = (x - x0)/xa;
d2 = (y - y0)/xb;
ret_val = d1*d1 + d2*d2 - 1.0;
break;
case 2:
/* line 24, 27, 33 and 38 are a circle centred in (X0,Y0) */
/* with radius SQRT(RADIUS2) */
x0 = 20.5;
y0 = 4.0;
radius2 = 4.25;
d1 = x - x0;
d2 = y - y0;
ret_val = d1*d1 + d2*d2 - radius2;
break;
case 3:
x0 = 17.0;
y0 = 8.5;
radius2 = 5.0;
d1 = x - x0;
d2 = y - y0;
ret_val = d1*d1 + d2*d2 - radius2;
break;
case 4:
x0 = 17.0;
y0 = 8.5;
radius2 = 5.0;
d1 = x - x0;
d2 = y - y0;
ret_val = d1*d1 + d2*d2 - radius2;
break;
case 5:
x0 = 19.5;
y0 = 4.0;
radius2 = 1.25;
d1 = x - x0;
d2 = y - y0;
ret_val = d1*d1 + d2*d2 - radius2;
break;
default:
break;
}
return ret_val;
}