/* nag_pde_parab_1d_coll (d03pdc) Example Program.
 *
 * Copyright 2014 Numerical Algorithms Group.
 *
 * Mark 7, 2001.
 * Mark 7b revised, 2004.
 */

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>
#include <nagx01.h>

#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL uinit(Integer, Integer, const double[], double[],
                           Nag_Comm *);
static void NAG_CALL pdedef(Integer, double, const double[], Integer,
                            const double[], const double[], double[], double[],
                            double[], Integer *, Nag_Comm *);
static void NAG_CALL bndary(Integer, double, const double[], const double[],
                            Integer, double[], double[], Integer *, Nag_Comm *);
#ifdef __cplusplus
}
#endif


#define U(I, J)       u[npde*((J) -1)+(I) -1]
#define UOUT(I, J, K) uout[npde*(intpts*((K) -1)+(J) -1)+(I) -1]
#define P(I, J, K)    p[npde*(npde*((K) -1)+(J) -1)+(I) -1]
#define Q(I, J)       q[npde*((J) -1)+(I) -1]
#define R(I, J)       r[npde*((J) -1)+(I) -1]
#define UX(I, J)      ux[npde*((J) -1)+(I) -1]

int main(void)
{
  const Integer nbkpts = 10, nelts = nbkpts-1, npde = 2, npoly = 3,
                m = 0, itype = 1, npts = nelts*npoly+1, neqn = npde*npts,
                intpts = 6, npl1 = npoly+1, lisave = neqn+24,
                mu = npde*(npoly+1)-1, lenode = (3*mu+1)*neqn,
                nwkres = 3*npl1*npl1+npl1*(npde*npde+6*npde+nbkpts+1)
                         +13*npde+5, lrsave = 11*neqn+50+nwkres+lenode;

  static double ruser[3] = {-1.0, -1.0, -1.0};
  static double xout[6] = { -1., -.6, -.2, .2, .6, 1. };
  double        acc, tout, ts;
  Integer       exit_status = 0, i, ind, it, itask, itrace;

  double        *rsave = 0, *u = 0, *uout = 0, *x = 0, *xbkpts = 0;
  Integer       *isave = 0;
  NagError      fail;
  Nag_Comm      comm;
  Nag_D03_Save  saved;

  INIT_FAIL(fail);

  printf("nag_pde_parab_1d_coll (d03pdc) Example Program Results\n\n");

  /* For communication with user-supplied functions: */
  comm.user = ruser;

  /* Allocate memory */

  if (!(rsave = NAG_ALLOC(lrsave, double)) ||
      !(u = NAG_ALLOC(npde*npts, double)) ||
      !(uout = NAG_ALLOC(npde*intpts*itype, double)) ||
      !(x = NAG_ALLOC(npts, double)) ||
      !(xbkpts = NAG_ALLOC(nbkpts, double)) ||
      !(isave = NAG_ALLOC(lisave, Integer)))
    {
      printf("Allocation failure\n");
      exit_status = 1;
      goto END;
    }

  acc = 1e-4;
  itrace = 0;

  /* Set the break-points */

  for (i = 0; i < 10; ++i)
    {
      xbkpts[i] = i*2.0/9.0- 1.0;
    }

  ind = 0;
  itask = 1;
  ts = 0.0;
  tout = 1e-5;
  printf(" Polynomial degree =%4ld", npoly);
  printf("   No. of elements = %4ld\n\n", nelts);
  printf(" Accuracy requirement = %12.3e", acc);
  printf("  Number of points = %5ld\n\n", npts);
  printf("  t /   x   ");

  for (i = 0; i < 6; ++i)
    {
      printf("%8.4f", xout[i]);
      printf((i+1)%6 == 0 || i == 5?"\n":"");
    }
  printf("\n");

  /* Loop over output values of t */

  for (it = 0; it < 5; ++it)
    {
      tout *= 10.0;

      /* nag_pde_parab_1d_coll (d03pdc).
       * General system of parabolic PDEs, method of lines,
       * Chebyshev C^0 collocation, one space variable
       */
      nag_pde_parab_1d_coll(npde, m, &ts, tout, pdedef, bndary, u, nbkpts,
                            xbkpts, npoly, npts, x, uinit, acc, rsave, lrsave,
                            isave, lisave, itask, itrace, 0, &ind, &comm,
                            &saved, &fail);

      if (fail.code != NE_NOERROR)
        {
          printf("Error from nag_pde_parab_1d_coll (d03pdc).\n%s\n",
                  fail.message);
          exit_status = 1;
          goto END;
        }

      /* Interpolate at required spatial points */

      /* nag_pde_interp_1d_coll (d03pyc).
       * PDEs, spatial interpolation with nag_pde_parab_1d_coll
       * (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc)
       */
      nag_pde_interp_1d_coll(npde, u, nbkpts, xbkpts, npoly, npts, xout,
                             intpts,
                             itype, uout, rsave, lrsave,
                             &fail);

      if (fail.code != NE_NOERROR)
        {
          printf("Error from nag_pde_interp_1d_coll (d03pyc).\n%s\n",
                  fail.message);
          exit_status = 1;
          goto END;
        }

      printf("\n %6.4f u(1)", tout);

      for (i = 1; i <= 6; ++i)
        {
          printf("%8.4f", UOUT(1, i, 1));
          printf(i%6 == 0 || i == 6?"\n":"");
        }

      printf("        u(2)");

      for (i = 1; i <= 6; ++i)
        {
          printf("%8.4f", UOUT(2, i, 1));
          printf(i%6 == 0 || i == 6?"\n":"");
        }
    }

  /* Print integration statistics */

  printf("\n");
  printf(" Number of integration steps in time                    ");
  printf("%4ld\n", isave[0]);
  printf(" Number of residual evaluations of resulting ODE system ");
  printf("%4ld\n", isave[1]);
  printf(" Number of Jacobian evaluations                         ");
  printf("%4ld\n", isave[2]);
  printf(" Number of iterations of nonlinear solver               ");
  printf("%4ld\n", isave[4]);

 END:
  NAG_FREE(rsave);
  NAG_FREE(u);
  NAG_FREE(uout);
  NAG_FREE(x);
  NAG_FREE(xbkpts);
  NAG_FREE(isave);

  return exit_status;
}


static void NAG_CALL uinit(Integer npde, Integer npts, const double x[],
                           double u[], Nag_Comm *comm)
{
  Integer i;
  double  piby2;

  if (comm->user[0] == -1.0)
    {
      printf("(User-supplied callback uinit, first invocation.)\n");
      comm->user[0] = 0.0;
    }
  piby2 = 0.5*nag_pi;
  for (i = 1; i <= npts; ++i)
    {
      U(1, i) = -sin(piby2*x[i-1]);
      U(2, i) = -piby2 *piby2 *U(1, i);
    }
  return;
}


static void NAG_CALL pdedef(Integer npde, double t, const double x[],
                            Integer nptl, const double u[], const double ux[],
                            double p[], double q[], double r[], Integer *ires,
                            Nag_Comm *comm)
{
  Integer i;

  if (comm->user[1] == -1.0)
    {
      printf("(User-supplied callback pdedef, first invocation.)\n");
      comm->user[1] = 0.0;
    }
  for (i = 1; i <= nptl; ++i)
    {
      Q(1, i) = U(2, i);
      Q(2, i) = U(1, i)*UX(2, i) - UX(1, i)*U(2, i);
      R(1, i) = UX(1, i);
      R(2, i) = UX(2, i);
      P(1, 1, i) = 0.0;
      P(1, 2, i) = 0.0;
      P(2, 1, i) = 0.0;
      P(2, 2, i) = 1.0;
    }
  return;
}

static void NAG_CALL bndary(Integer npde, double t, const double u[],
                            const double ux[], Integer ibnd, double beta[],
                            double gamma[], Integer *ires, Nag_Comm *comm)
{
  if (comm->user[2] == -1.0)
    {
      printf("(User-supplied callback bndary, first invocation.)\n");
      comm->user[2] = 0.0;
    }
  if (ibnd == 0)
    {
      beta[0] = 1.0;
      gamma[0] = 0.0;
      beta[1] = 0.0;
      gamma[1] = u[0] - 1.0;
    }
  else
    {
      beta[0] = 1.0;
      gamma[0] = 0.0;
      beta[1] = 0.0;
      gamma[1] = u[0] + 1.0;
    }
  return;
}