/* nag_ode_ivp_rk_onestep (d02pdc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 3, 1992.
* Mark 7 revised, 2001.
* Mark 8 revised, 2004.
*
*/
#include <nag.h>
#include <math.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagd02.h>
#include <nagx01.h>
#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL f(Integer neq, double t1, const double y[], double yp[],
Nag_User *comm);
#ifdef __cplusplus
}
#endif
#define NEQ 2
#define ZERO 0.0
#define ONE 1.0
#define TWO 2.0
#define FOUR 4.0
int main(void)
{
static Integer use_comm[1] = {1};
Integer exit_status = 0, i, neq;
NagError fail;
Nag_ErrorAssess errass;
Nag_ODE_RK opt;
Nag_RK_method method;
Nag_User comm;
double hstart, pi, tend, *thres = 0, tnow, tol, tstart, *ynow = 0,
*ypnow = 0;
double *ystart = 0;
INIT_FAIL(fail);
printf("nag_ode_ivp_rk_onestep (d02pdc) Example Program Results\n");
/* For communication with user-supplied functions: */
comm.p = (Pointer)&use_comm;
/* Set initial conditions and input for nag_ode_ivp_rk_setup (d02pvc) */
neq = NEQ;
if (neq >= 1)
{
if (!(thres = NAG_ALLOC(neq, double)) ||
!(ynow = NAG_ALLOC(neq, double)) ||
!(ypnow = NAG_ALLOC(neq, double)) ||
!(ystart = NAG_ALLOC(neq, double)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
}
else
{
exit_status = 1;
return exit_status;
}
/* nag_pi (x01aac).
* pi
*/
pi = nag_pi;
tstart = ZERO;
ystart[0] = ZERO;
ystart[1] = ONE;
tend = TWO*pi;
for (i = 0; i < neq; i++)
thres[i] = 1.0e-8;
errass = Nag_ErrorAssess_off;
hstart = ZERO;
method = Nag_RK_4_5;
for (i = 1; i <= 2; i++)
{
if (i == 1)
tol = 1.0e-4;
else
tol = 1.0e-5;
/* nag_ode_ivp_rk_setup (d02pvc).
* Setup function for use with nag_ode_ivp_rk_range (d02pcc)
* and/or nag_ode_ivp_rk_onestep (d02pdc)
*/
nag_ode_ivp_rk_setup(neq, tstart, ystart, tend, tol, thres, method,
Nag_RK_onestep, errass, hstart, &opt, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_ode_ivp_rk_setup (d02pvc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
printf("\nCalculation with tol = %10.1e\n\n", tol);
printf(" t y1 y2\n\n");
printf("%8.3f %8.3f %8.3f\n", tstart, ystart[0], ystart[1]);
do
{
/* nag_ode_ivp_rk_onestep (d02pdc).
* Ordinary differential equations solver, initial value
* problems, one time step using Runge-Kutta methods
*/
nag_ode_ivp_rk_onestep(neq, f, &tnow, ynow, ypnow, &opt, &comm,
&fail);
if (fail.code != NE_NOERROR)
{
printf(
"Error from nag_ode_ivp_rk_onestep (d02pdc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
printf("%8.3f %8.3f %8.3f\n", tnow, ynow[0], ynow[1]);
} while (tnow < tend);
printf("\nCost of the integration in evaluations of f is"
" %ld\n\n", opt.totfcn);
/* nag_ode_ivp_rk_free (d02ppc).
* Freeing function for use with the Runge-Kutta suite (d02p
* functions)
*/
nag_ode_ivp_rk_free(&opt);
}
END:
NAG_FREE(thres);
NAG_FREE(ynow);
NAG_FREE(ypnow);
NAG_FREE(ystart);
return exit_status;
}
static void NAG_CALL f(Integer neq, double t, const double y[], double yp[],
Nag_User *comm)
{
Integer *use_comm = (Integer *)comm->p;
if (use_comm[0])
{
printf("(User-supplied callback f, first invocation.)\n");
use_comm[0] = 0;
}
yp[0] = y[1];
yp[1] = -y[0];
}