/* nag_ode_bvp_fd_lin_gen (d02gbc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 3, 1992.
* Mark 7 revised, 2001.
* Mark 8 revised, 2004.
*
*/
#include <nag.h>
#include <math.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagd02.h>
#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL fcnf(Integer neq, double x, double f[], Nag_User *comm);
#ifdef __cplusplus
}
#endif
#define NEQ 2
#define MNP 70
#define C(I, J) c[(I) *tdc + J]
#define D(I, J) d[(I) *tdd + J]
#define Y(I, J) y[(I) *tdy + J]
int main(void)
{
Integer exit_status = 0, i, j, mnp, neq, np, tdc, tdd, tdy;
NagError fail;
Nag_User comm;
double a, b, *c = 0, *d = 0, eps, *gam = 0, tol, *x = 0, *y = 0;
INIT_FAIL(fail);
printf("nag_ode_bvp_fd_lin_gen (d02gbc) Example Program Results\n");
/* For communication with function fcnf()
* assign address of eps to comm.p.
*/
comm.p = (Pointer)&eps;
neq = NEQ;
mnp = MNP;
tol = 1.0e-3;
np = 0;
a = 0.0;
b = 1.0;
if (mnp >= 32 && neq >= 2)
{
if (!(c = NAG_ALLOC(NEQ*NEQ, double)) ||
!(d = NAG_ALLOC(NEQ*NEQ, double)) ||
!(gam = NAG_ALLOC(NEQ, double)) ||
!(x = NAG_ALLOC(MNP, double)) ||
!(y = NAG_ALLOC(NEQ*MNP, double)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
tdc = neq;
tdd = neq;
tdy = mnp;
}
else
{
exit_status = 1;
return exit_status;
}
for (i = 0; i < neq; ++i)
{
gam[i] = 0.0;
for (j = 0; j < neq; ++j)
{
C(i, j) = 0.0;
D(i, j) = 0.0;
}
}
C(0, 0) = 1.0;
D(1, 0) = 1.0;
gam[1] = 1.0;
for (i = 1; i <= 2; ++i)
{
eps = pow(10.0, (double) -i);
printf("\nProblem with epsilon = %7.4f\n", eps);
/* nag_ode_bvp_fd_lin_gen (d02gbc).
* Ordinary differential equations solver, for general
* linear two-point boundary value problems, using a finite
* difference technique with deferred correction
*/
nag_ode_bvp_fd_lin_gen(neq, fcnf, NULLFN, a, b, c, d, gam,
mnp, &np, x, y, tol, &comm, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_ode_bvp_fd_lin_gen (d02gbc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
printf("\nApproximate solution on final mesh of %ld points\n",
np);
printf(" X(I) Y(1,I)\n");
for (j = 0; j < np; ++j)
printf("%9.4f %9.4f\n", x[j], Y(0, j));
}
END:
NAG_FREE(c);
NAG_FREE(d);
NAG_FREE(gam);
NAG_FREE(x);
NAG_FREE(y);
return exit_status;
}
static void NAG_CALL fcnf(Integer neq, double x, double f[],
Nag_User *comm)
{
#define F(I, J) f[(I) *neq+J]
double *eps = (double *) comm->p;
F(0, 0) = 0.0;
F(0, 1) = 1.0;
F(1, 0) = 0.0;
F(1, 1) = -1.0/ *eps;
}