/* nag_fft_3d (c06pxc) Example Program.
 *
 * Copyright 2014 Numerical Algorithms Group.
 *
 * Mark 7, 2002.
 */

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagc06.h>
#include <nagx04.h>

static Integer writex(Integer n1, Integer n2, Integer n3, Complex *x)
{
  /* Routine to print 3D matrix in 2D slices. */
  Integer  k;
  NagError fail;

  INIT_FAIL(fail);

  for (k = 1; k <= n3; k++)
    {
      char title[30];
      sprintf(title, "X(i,j,k) for k = %" NAG_IFMT, k);
      fflush(stdout);
      nag_gen_complx_mat_print_comp(Nag_ColMajor, Nag_GeneralMatrix,
                                    Nag_NonUnitDiag, n1, n2, &x[(k-1)*n1*n2],
                                    n1,
                                    Nag_BracketForm, "%6.3f",
                                    title, Nag_NoLabels, 0,
                                    Nag_NoLabels, 0, 90, 0, 0,
                                    &fail);
      printf("\n");
    }
  if (fail.code != NE_NOERROR)
    {
      printf(
        "Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",
        fail.message);
      return 1;
    }
  return 0;
}

int main(void)
{
  /* Scalars */
  Integer  i, j, k, n1, n2, n3;
  Integer  exit_status = 0;
  NagError fail;
  /* Arrays */
  Complex  *x = 0;
#define X(I, J, K) x[(K-1)*n2*n1 + (J-1)*n1 + I - 1]

  INIT_FAIL(fail);

  printf("nag_fft_3d (c06pxc) Example Program Results\n");
  /* Skip heading in data file */
  scanf("%*[^\n]");
  scanf("%ld%ld%ld", &n1, &n2, &n3);
  scanf("%*[^\n]");
  if (n1*n2*n3 >= 1)
    {
      /* Allocate memory */
      if (!(x = NAG_ALLOC(n1 * n2 * n3, Complex)))
        {
          printf("Allocation failure\n");
          exit_status = -1;
          goto END;
        }

      /* Read in complex data and print out. */
      for (k = 1; k <= n3; ++k)
        {
          for (i = 1; i <= n1; ++i)
            {
              for (j = 1; j <= n2; ++j)
                {
                  scanf(" ( %lf, %lf ) ", &X(i, j, k).re,
                          &X(i, j, k).im);
                }
            }
        }
      printf("\nOriginal data values\n\n");
      exit_status = writex(n1, n2, n3, x);
      if (exit_status != 0)
        {
          goto END;
        }
      /* Compute transform */
      /* nag_fft_3d (c06pxc).
       * Three-dimensional complex discrete Fourier transform,
       * complex data format
       */
      nag_fft_3d(Nag_ForwardTransform, n1, n2, n3, x, &fail);
      if (fail.code != NE_NOERROR)
        {
          printf("Error from nag_fft_3d (c06pxc).\n%s\n", fail.message);
          exit_status = 1;
          goto END;
        }

      printf("\nComponents of discrete Fourier transforms\n\n");
      exit_status = writex(n1, n2, n3, x);
      if (exit_status != 0)
        {
          goto END;
        }
      /* Compute inverse transform */
      /* nag_fft_3d (c06pxc), see above. */
      nag_fft_3d(Nag_BackwardTransform, n1, n2, n3, x, &fail);
      if (fail.code != NE_NOERROR)
        {
          printf("Error from nag_fft_3d (c06pxc).\n%s\n", fail.message);
          exit_status = 1;
          goto END;
        }
      printf("\nOriginal data as restored by inverse transform\n\n");
      exit_status = writex(n1, n2, n3, x);
    }
  else
    printf("\nInvalid value of n1, n2 or n3.\n");

 END:
  NAG_FREE(x);

  return exit_status;
}