/* nag_fft_2d_complex (c06fuc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 2 revised, 1992.
* Mark 8 revised, 2004.
*/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagc06.h>
int main(void)
{
Integer exit_status = 0, i, j, m, n;
NagError fail;
double *trigm = 0, *trign = 0, *x = 0, *y = 0;
INIT_FAIL(fail);
printf("nag_fft_2d_complex (c06fuc) Example Program Results\n");
/* Skip heading in data file */
scanf("%*[^\n]");
while (scanf("%ld%ld", &m, &n) != EOF)
{
if (m*n >= 1)
{
if (!(trigm = NAG_ALLOC(2*m, double)) ||
!(trign = NAG_ALLOC(2*n, double)) ||
!(x = NAG_ALLOC(m*n, double)) ||
!(y = NAG_ALLOC(m*n, double)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
}
else
{
printf("Invalid m or n.\n");
exit_status = 1;
return exit_status;
}
printf("\n\nm = %2ld n = %2ld\n", m, n);
/* Read in complex data and print out. */
for (j = 0; j < m; ++j)
{
for (i = 0; i < n; ++i)
scanf("%lf", &x[j*n + i]);
for (i = 0; i < n; ++i)
scanf("%lf", &y[j*n + i]);
}
printf("\nOriginal data values\n\n");
for (j = 0; j < m; ++j)
{
printf("Real");
for (i = 0; i < n; ++i)
printf("%10.4f%s", x[j*n + i],
(i%6 == 5 && i != n-1?"\n ":""));
printf("\nImag");
for (i = 0; i < n; ++i)
printf("%10.4f%s", y[j*n + i],
(i%6 == 5 && i != n-1?"\n ":""));
printf("\n\n");
}
/* Initialize trig arrays */
/* nag_fft_init_trig (c06gzc).
* Initialization function for other c06 functions
*/
nag_fft_init_trig(m, trigm, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_fft_init_trig (c06gzc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
/* nag_fft_init_trig (c06gzc), see above. */
nag_fft_init_trig(n, trign, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_fft_init_trig (c06gzc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
/* Compute transform */
/* nag_fft_2d_complex (c06fuc).
* Two-dimensional complex discrete Fourier transform
*/
nag_fft_2d_complex(m, n, x, y, trigm, trign, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_fft_2d_complex (c06fuc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
printf("\nComponents of discrete Fourier transforms\n\n");
for (j = 0; j < m; ++j)
{
printf("Real");
for (i = 0; i < n; ++i)
printf("%10.4f%s", x[j*n + i],
(i%6 == 5 && i != n-1?"\n ":""));
printf("\nImag");
for (i = 0; i < n; ++i)
printf("%10.4f%s", y[j*n + i],
(i%6 == 5 && i != n-1?"\n ":""));
printf("\n\n");
}
/* Compute inverse transform */
/* nag_conjugate_complex (c06gcc).
* Complex conjugate of complex sequence
*/
nag_conjugate_complex(m*n, y, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_conjugate_complex (c06gcc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
/* nag_fft_2d_complex (c06fuc), see above. */
nag_fft_2d_complex(m, n, x, y, trigm, trign, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_fft_2d_complex (c06fuc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
/* nag_conjugate_complex (c06gcc), see above. */
nag_conjugate_complex(m*n, y, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_conjugate_complex (c06gcc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
printf("\nOriginal data as restored by inverse transform\n\n");
for (j = 0; j < m; ++j)
{
printf("Real");
for (i = 0; i < n; ++i)
printf("%10.4f%s", x[j*n + i],
(i%6 == 5 && i != n-1?"\n ":""));
printf("\nImag");
for (i = 0; i < n; ++i)
printf("%10.4f%s", y[j*n + i],
(i%6 == 5 && i != n-1?"\n ":""));
printf("\n\n");
}
END:
NAG_FREE(trigm);
NAG_FREE(trign);
NAG_FREE(x);
NAG_FREE(y);
}
return exit_status;
}