/* nag_fft_multiple_complex (c06frc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 1, 1990.
*
* Mark 3 revised, 1994.
* Mark 8 revised, 2004.
*/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagc06.h>
int main(void)
{
Integer exit_status = 0, i, j, m, n;
NagError fail;
double *trig = 0, *x = 0, *y = 0;
INIT_FAIL(fail);
/* Skip heading in data file */
scanf("%*[^\n]");
printf("nag_fft_multiple_complex (c06frc) Example Program Results\n");
while (scanf("%ld%ld", &m, &n) != EOF)
{
if (m >= 1 && n >= 1)
{
if (!(trig = NAG_ALLOC(2*n, double)) ||
!(x = NAG_ALLOC(m*n, double)) ||
!(y = NAG_ALLOC(m*n, double)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
}
else
{
printf("Invalid m or n.\n");
exit_status = 1;
return exit_status;
}
printf("\n\nm = %2ld n = %2ld\n", m, n);
for (j = 0; j < m; ++j)
{
for (i = 0; i < n; ++i)
scanf("%lf", &x[j*n + i]);
for (i = 0; i < n; ++i)
scanf("%lf", &y[j*n + i]);
}
printf("\nOriginal data values\n\n");
for (j = 0; j < m; ++j)
{
printf("Real");
for (i = 0; i < n; ++i)
printf("%10.4f%s", x[j*n + i],
(i%6 == 5 && i != n-1?"\n ":""));
printf("\nImag");
for (i = 0; i < n; ++i)
printf("%10.4f%s", y[j*n + i],
(i%6 == 5 && i != n-1?"\n ":""));
printf("\n\n");
}
/* Initialise trig array */
/* nag_fft_init_trig (c06gzc).
* Initialization function for other c06 functions
*/
nag_fft_init_trig(n, trig, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_fft_init_trig (c06gzc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
/* Compute transforms */
/* nag_fft_multiple_complex (c06frc).
* Multiple one-dimensional complex discrete Fourier
* transforms
*/
nag_fft_multiple_complex(m, n, x, y, trig, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_fft_multiple_complex (c06frc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
printf("\nDiscrete Fourier transforms\n\n");
for (j = 0; j < m; ++j)
{
printf("Real");
for (i = 0; i < n; ++i)
printf("%10.4f%s", x[j*n + i],
(i%6 == 5 && i != n-1?"\n ":""));
printf("\nImag");
for (i = 0; i < n; ++i)
printf("%10.4f%s", y[j*n + i],
(i%6 == 5 && i != n-1?"\n ":""));
printf("\n\n");
}
/* Compute inverse transforms */
/* nag_conjugate_complex (c06gcc).
* Complex conjugate of complex sequence
*/
nag_conjugate_complex(m*n, y, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_conjugate_complex (c06gcc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
/* nag_fft_multiple_complex (c06frc), see above. */
nag_fft_multiple_complex(m, n, x, y, trig, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_fft_multiple_complex (c06frc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
/* nag_conjugate_complex (c06gcc), see above. */
nag_conjugate_complex(m*n, y, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_conjugate_complex (c06gcc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
printf("\nOriginal data as restored by inverse transform\n\n");
for (j = 0; j < m; ++j)
{
printf("Real");
for (i = 0; i < n; ++i)
printf("%10.4f%s", x[j*n + i],
(i%6 == 5 && i != n-1?"\n ":""));
printf("\nImag");
for (i = 0; i < n; ++i)
printf("%10.4f%s", y[j*n + i],
(i%6 == 5 && i != n-1?"\n ":""));
printf("\n\n");
}
END:
NAG_FREE(trig);
NAG_FREE(x);
NAG_FREE(y);
}
return exit_status;
}