g07 — Univariate Estimation g07dcc

NAG Library Function Document

nag_robust m_estim_1var_usr (g07dcc)

1 Purpose

nag_robust m_estim lvar usr (g07dcc) computes an M-estimate of location with (optional) simulta-
neous estimation of scale, where you provide the weight functions.

2 Specification

#include <nag.h>
#include <nagg07.h>

void nag_robust_m_estim_lvar_usr (
double (*chi) (double t, Nag_Comm *comm),
double (*psi) (double t, Nag_Comm *comm),

Integer isigma, Integer n, const double x[], double beta, double *theta,
double *sigma, Integer maxit, double tol, double rs[], Integer *nit,
Nag_Comm *comm, NagError *fail)

3 Description
The data consists of a sample of size n, denoted by z;,x;,...,z,, drawn from a random variable X.

The x; are assumed to be independent with an unknown distribution function of the form,
F((zi = 0)/0)

where 6 is a location argument, and ¢ is a scale argument. M-estimators of 6 and o are given by the
solution to the following system of equations;

S i)i0) = o

z";x((xi ~0)/6) = -1

where 1) and x are user-supplied weight functions, and [is a constant. Optionally the second equation
can be omitted and the first equation is solved for # using an assigned value of o = o..

The constant 3 should be chosen so that & is an unbiased estimator when x;, for i =1,2,...,n has a
Normal distribution. To achieve this the value of 3 is calculated as:

B=E(x) = /:x(Z)\/LZ—WeXp{_TZZ} dz
x;— 0

The values of zﬁ(—)& are known as the Winsorized residuals.
o

The equations are solved by a simple iterative procedure, suggested by Huber:

. 1 . z; — O .
" ﬂ<n—1>(§x<))

and

Mark 24 g07dcc. 1

g07dcc NAG Library Manual

or

if o is fixed.

The initial values for 6 and & may be user-supplied or calculated within nag_robust m_estim_lvar
(g07dbc) as the sample median and an estimate of o based on the median absolute deviation respectively.

nag_robust m_estim lvar usr (g07dcc) is based upon function LYHALG within the ROBETH library,
see Marazzi (1987).

4 References

Hampel F R, Ronchetti E M, Rousseeuw P J and Stahel W A (1986) Robust Statistics. The Approach
Based on Influence Functions Wiley

Huber P J (1981) Robust Statistics Wiley

Marazzi A (1987) Subroutines for robust estimation of location and scale in ROBETH Cah. Rech. Doc.
IUMSP, No. 3 ROB 1 Institut Universitaire de Médecine Sociale et Préventive, Lausanne

S Arguments

1: chi — function, supplied by the user External Function

chi must return the value of the weight function y for a given value of its argument. The value of
X must be non-negative.

The specification of chi is:
double chi (double t, Nag_Comm *comm)
1: t — double Input

On entry: the argument for which chi must be evaluated.

2: comm — Nag Comm * Communication Structure

Pointer to structure of type Nag Comm; the following members are relevant to chi.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag robust m_estim lvar usr
(g07dcc) you may allocate memory and initialize these pointers with various
quantities for use by chi when called from nag robust m estim lvar usr
(g07dcc) (see Section 3.2.1.1 in the Essential Introduction).

2: psi — function, supplied by the user External Function

psi must return the value of the weight function ¢ for a given value of its argument.

The specification of psi is:

double psi (double t, Nag_Comm *comm)

g07dcc.2 Mark 24

../G07/g07dbc.pdf
../G07/g07dbc.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf

g07 — Univariate Estimation g07dcc

1: t — double Input

On entry: the argument for which psi must be evaluated.

2: comm — Nag Comm * Communication Structure

Pointer to structure of type Nag Comm; the following members are relevant to psi.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag robust m_estim 1var usr
(g07dcc) you may allocate memory and initialize these pointers with various
quantities for use by psi when called from nag robust m estim lvar usr
(g07dcc) (see Section 3.2.1.1 in the Essential Introduction).

3: isigma — Integer Input
On entry: the value assigned to isigma determines whether & is to be simultaneously estimated.

isigma = 0
The estimation of & is bypassed and sigma is set equal to o,.

isigma = 1
6 1s estimated simultaneously.
4: n — Integer Input
On entry: n, the number of observations.

Constraint: n > 1.

5: x[n] — const double Input
On entry: the vector of observations, xy, s, ..., Zy.
6: beta — double Input

On entry: the value of the constant 3 of the chosen chi function.

Constraint: beta > 0.0.

7: theta — double * Input/Output

On entry: if sigma > 0, then theta must be set to the required starting value of the estimate of the
location argument . A reasonable initial value for § will often be the sample mean or median.

On exit: the M-estimate of the location argument 0.

8: sigma — double * Input/Output
On entry: the role of sigma depends on the value assigned to isigma as follows.

If isigma = 1, sigma must be assigned a value which determines the values of the starting points
for the calculation of # and &. If sigma < 0.0, then nag_robust m_estim_lvar usr (g07dcc) will

determine the starting points of 0 and 4. Otherwise, the value assigned to sigma will be taken as
the starting point for &, and theta must be assigned a relevant value before entry, see above.

If isigma = 0, sigma must be assigned a value which determines the values of o, which is held
fixed during the iterations, and the starting value for the calculation of 6. 1f sigma < 0, then
nag robust m estim lvar usr (g07dcc) will determine the value of o. as the median absolute
deviation adjusted to reduce bias (see nag median_lvar (g07dac)) and the starting point for 6.
Otherwise, the value assigned to sigma will be taken as the value of 0. and theta must be
assigned a relevant value before entry, see above.

Mark 24 g07dcc.3

../GENINT/essint.pdf
../GENINT/essint.pdf
../G07/g07dac.pdf

g07dcc NAG Library Manual

10:

11:

12:

6

On exit: the M-estimate of the scale argument &, if isigma was assigned the value 1 on entry,
otherwise sigma will contain the initial fixed value o..

maxit — Integer Input
On entry: the maximum number of iterations that should be used during the estimation.
Suggested value: maxit = 50.

Constraint: maxit > 0.

tol — double Input

On entry: the relative precision for the final estimates. Convergence is assumed when the
increments for theta, and sigma are less than tol x max(1.0, 0%_1).

Constraint: tol > 0.0.

rs[n] — double Output

On exit: the Winsorized residuals.

nit — Integer * Output

On exit: the number of iterations that were used during the estimation.

comm — Nag Comm * Communication Structure

The NAG communication argument (see Section 3.2.1.1 in the Essential Introduction).

fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD PARAM

On entry, argument (value) had an illegal value.

NE_FUN_RET_VAL

The chi function returned a negative value: chi = (value).

NE_INT

On entry, isigma = (value).
Constraint: isigma = 0 or 1.

On entry, maxit = (value).
Constraint: maxit > 0.

On entry, n = (value).
Constraint: n > 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

g07dcc.4 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf

g07 — Univariate Estimation g07dcc

NE_REAL

On entry, beta = (value).
Constraint: beta > 0.0.

On entry, tol = (value).
Constraint: tol > 0.0.
NE_REAL_ARRAY ELEM_CONS

All elements of x are equal.

NE_SIGMA_NEGATIVE

Current estimate of sigma is zero or negative: sigma = (value).

NE_TOO_MANY_ITER

Number of iterations required exceeds maxit: maxit = (value).

NE_ZERO_RESID

All winsorized residuals are zero.

7 Accuracy

On successful exit the accuracy of the results is related to the value of tol, see Section 5.

8 Parallelism and Performance

nag robust m_estim lvar usr (g07dcc) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library.

nag_robust m_estim_1var usr (g07dcc) makes calls to BLAS and/or LAPACK routines, which may be
threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

Please consult the Users’ Note for your implementation for any additional implementation-specific
information.

9 Further Comments

Standard forms of the functions ¢ and x are given in Hampel et al. (1986), Huber (1981) and Marazzi
(1987). nag_robust m_estim_1var (g07dbc) calculates M-estimates using some standard forms for 1) and

X-
When you supply the initial values, care has to be taken over the choice of the initial value of . If too

— 0

small a value is chosen then initial values of the standardized residuals will be large. If the

g
redescending ¢ functions are used, i.e., 1 = 0 if |[¢| > 7, for some positive constant 7, then these large

values are Winsorized as zero. If a sufficient number of the residuals fall into this category then a false
solution may be returned, see page 152 of Hampel et al. (1986).

10 Example

The following program reads in a set of data consisting of eleven observations of a variable X.

The psi and chi functions used are Hampel’s Piecewise Linear Function and Hubers chi function
respectively.

Using the following starting values various estimates of 6 and o are calculated and printed along with the
number of iterations used:

Mark 24 g07dcc.5

../G07/g07dbc.pdf

g07dcc

NAG Library Manual

(a) nag robust m estim lvar usr (g07dcc) determined the starting values, o is estimated simulta-

neously.
(b)
(c)
(d)

10.1 Program Text

You must supply the starting values, o is estimated simultaneously.
nag robust m_estim lvar usr (g07dcc) determined the starting values, o is fixed.

You must supply the starting values, o is fixed.

(g07dcc) Example Program.

Copyright 2001 Numerical Algorithms Group.

double NAG_CALL chi(double t, Nag_Comm *comm) ;
double NAG_CALL psi(double t, Nag_Comm *comm) ;

/* nag_robust_m_estim_lvar_usr
*
*
*
* Mark 7, 2001.
* Mark 7b revised, 2004.
*/
#include <math.h>
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg07.h>
#ifdef _ cplusplus
extern "C" {
#endif
static
static
#ifdef _ cplusplus
¥
#endif

int main(void)

{

/* Scalars */
double beta, sigma,
Integer exit_status,
NagError fail;
Nag_Comm comm;

/* Arrays */

static double ruser[2]
double *rs = 0, *x =
INIT_FAIL(fail);

exit_status =
printf(

0;

"nag_robust_m_estim_lvar_usr

/* For communication with user-supplied functions:

comm.user = ruser;

sigsav,
i,

thesav, theta, tol;
isigma, maxit, n, nit;

{-1.0, -1.0};

0;

(g07dcc) Example Program Results\n");

*/

/* Skip heading in data file */

scanf ("$*["\n] ");
scanf ("$1ds*[*\n] ",
/* Allocate memory */
if
! (x = NAG_ALLOC(n,
{
printf("Allocation
exit_status = -1;
goto END;
}
printf ("\n");

g07dcc.6

(! (rs = NAG_ALLOC(n,

&n) ;

double)) ||
double)))

failure\n");

Mark 24

g07 — Univariate Estimation g07dcc

for (i = 1; 1 <= n; ++1)
{
scanf ("%1f", &x[i - 11);
}

scanf ("s*["\n] ");
scanf ("%1f%1d%s*["\n] ", &beta, &maxit);

printf (" Input parameters Output parameters\n");
printf("isigma sigma theta tol sigma theta\n");
while (scanf ("%1d%1f%1f%1f%*["\n] ", &isigma, &sigma,
&theta, &tol) != EOF)
{
sigsav = sigma;

thesav = theta;

/* nag_robust_m_estim_1lvar_usr (g07dcc).
* Robust estimation, M-estimates for location and scale
* parameters, user-defined weight functions
*
/
nag_robust_m_estim_lvar_usr(chi, psi, isigma, n, x, beta, &theta,
&sigma, maxit, tol, rs, &nit, &comm,
s&fail);
if (fail.code != NE_NOERROR)
{
printf(
"Error from nag_robust_m _estim_ lvar_usr (g07dcc).\n%ss\n",
fail.message);
exit_status = 1;
goto END;
b

printf("%$31d%3s%8.4£%8.4£f%7.4f", isigma, "", sigsav,
thesav, tol);
printf ("%8.4£%8.4f\n", sigma, theta);
}
END:
NAG_FREE(rs) ;
NAG_FREE (x) ;
return exit_status;

¥

static double NAG_CALL psi(double t, Nag_Comm *comm)
{

/* Scalars */

double abst;

double ret_val;

/* Hampel’s Piecewise Linear Function. */

if (comm->user[0] == -1.0)
{
printf (" (User-supplied callback psi, first invocation.)\n");
comm->user [0] = 0.0;
}

abst = fabs(t);
if (abst < 4.5)

{
if (abst <= 3.0)
{
ret_val = MIN(1.5, abst);
¥
else
{
ret_val = (4.5 - abst) * 1.5 / 1.5;
}
if (t < 0.0)
{
ret_val = -ret_val;
¥
}
else

Mark 24 g07dcc.7

g07dcc NAG Library Manual

{
ret_val = 0.0;
}

return ret_val;

/% psi */

double NAG_CALL chi(double t, Nag_Comm *comm)
{

/* Scalars */

double abst, ps;

double ret_val;

/* Huber’s chi function. */
if (comm->user[1l] == -1.0)
{
printf (" (User-supplied callback chi, first invocation.)\n");
comm->user[1] = 0.0;
}
abst = fabs(t);
ps = MIN(1.5, abst);
ret_val = ps * ps / 2;
return ret_val;

10.2 Program Data

nag_robust_m_estim_lvar_usr (g07dcc) Example Program Data

11 : n, number of observations
13.0 11.0 16.0 5.0 3.0 18.0 9.0 8.0 6.0 27.0 7.0 : x, observations
0.3892326 50 : beta maxit

1 -1.0 0.0 0.0001 : isigma sigma theta tol

1 7.0 2.0 0.0001

0 -1.0 0.0 0.0001

0 7.0 2.0 0.0001

10.3 Program Results

nag_robust_m_estim_lvar_usr (g07dcc) Example Program Results

Input parameters Output parameters
isigma sigma theta tol sigma theta
(User-supplied callback chi, first invocation.)
(User-supplied callback psi, first invocation.)

1 -1.0000 0.0000 0.0001 6.3247 10.5487
1 7.0000 2.0000 0.0001 6.3249 10.5487
0 -1.0000 0.0000 0.0001 5.9304 10.4896
0 7.0000 2.0000 0.0001 7.0000 10.6500

g07dcc.8 (last) Mark 24

	g07dcc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Hampel et al. (1986)
	Huber (1981)
	Marazzi (1987)

	5 Arguments
	chi
	t
	comm
	user
	iuser
	p

	psi
	t
	comm
	user
	iuser
	p

	isigma
	n
	x
	beta
	theta
	sigma
	maxit
	tol
	rs
	nit
	comm
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_FUN_RET_VAL
	NE_INT
	NE_INTERNAL_ERROR
	NE_REAL
	NE_REAL_ARRAY_ELEM_CONS
	NE_SIGMA_NEGATIVE
	NE_TOO_MANY_ITER
	NE_ZERO_RESID

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

