
NAG Library Function Document

nag_rand_field_1d_user_setup (g05zmc)

1 Purpose

nag_rand_field_1d_user_setup (g05zmc) performs the setup required in order to simulate stationary
Gaussian random fields in one dimension, for a user-defined variogram, using the circulant embedding
method. Specifically, the eigenvalues of the extended covariance matrix (or embedding matrix) are
calculated, and their square roots output, for use by nag_rand_field_1d_generate (g05zpc), which
simulates the random field.

2 Specification

#include <nag.h>
#include <nagg05.h>

void nag_rand_field_1d_user_setup (Integer ns, double xmin, double xmax,
Integer maxm, double var,

void (*cov1)(double x, double *gamma, Nag_Comm *comm),

Nag_EmbedPad pad, Nag_EmbedScale corr, double lam[], double xx[],
Integer *m, Integer *approx, double *rho, Integer *icount, double eig[],
Nag_Comm *comm, NagError *fail)

3 Description

A one-dimensional random field Z xð Þ in R is a function which is random at every point x 2 R, so Z xð Þ
is a random variable for each x. The random field has a mean function � xð Þ ¼ E Z xð Þ½ � and a symmetric
positive semidefinite covariance function C x; yð Þ ¼ E Z xð Þ � � xð Þð Þ Z yð Þ � � yð Þð Þ½ �. Z xð Þ is a Gaussian

random field if for any choice of n 2 N and x1; . . . ; xn 2 R, the random vector Z x1ð Þ; . . . ; Z xnð Þ½ �T
follows a multivariate Normal distribution, which would have a mean vector ~�� with entries ~�i ¼ � xið Þ
and a covariance matrix ~C with entries ~Cij ¼ C xi; xj

� �
. A Gaussian random field Z xð Þ is stationary if

� xð Þ is constant for all x 2 R and C x; yð Þ ¼ C xþ a; yþ að Þ for all x; y; a 2 R and hence we can
express the covariance function C x; yð Þ as a function � of one variable: C x; yð Þ ¼ � x� yð Þ. � is known
as a variogram (or more correctly, a semivariogram) and includes the multiplicative factor �2

representing the variance such that � 0ð Þ ¼ �2.

The functions nag_rand_field_1d_user_setup (g05zmc) and nag_rand_field_1d_generate (g05zpc) are
used to simulate a one-dimensional stationary Gaussian random field, with mean function zero and
variogram � xð Þ, over an interval xmin ; xmax½ �, using an equally spaced set of N points on the interval.
The problem reduces to sampling a Normal random vector X of size N , with mean vector zero and a
symmetric Toeplitz covariance matrix A. Since A is in general expensive to factorize, a technique known
as the circulant embedding method is used. A is embedded into a larger, symmetric circulant matrix B of
size M � 2 N � 1ð Þ, which can now be factorized as B ¼W�W � ¼ R�R, where W is the Fourier
matrix (W � is the complex conjugate of W ), � is the diagonal matrix containing the eigenvalues of B

and R ¼ �1
2W � . B is known as the embedding matrix. The eigenvalues can be calculated by performing

a discrete Fourier transform of the first row (or column) of B and multiplying by M, and so only the first
row (or column) of B is needed – the whole matrix does not need to be formed.

As long as all of the values of � are non-negative (i.e., B is positive semidefinite), B is a covariance
matrix for a random vector Y, two samples of which can now be simulated from the real and imaginary
parts of R� Uþ iVð Þ, where U and V have elements from the standard Normal distribution. Since

R� Uþ iVð Þ ¼ W�
1
2 Uþ iVð Þ , this calculation can be done using a discrete Fourier transform of the

vector �
1
2 Uþ iVð Þ . Two samples of the random vector X can now be recovered by taking the first N

elements of each sample of Y – because the original covariance matrix A is embedded in B, X will have
the correct distribution.

g05 – Random Number Generators g05zmc

Mark 24 g05zmc.1

../G05/g05zpc.pdf
../G05/g05zpc.pdf


If B is not positive semidefinite, larger embedding matrices B can be tried; however if the size of the
matrix would have to be larger than maxm, an approximation procedure is used. We write
� ¼ �þ þ ��, where �þ and �� contain the non-negative and negative eigenvalues of B respectively.
Then B is replaced by �Bþ where Bþ ¼ W�þW

� and � 2 0; 1ð � is a scaling factor. The error � in
approximating the distribution of the random field is given by

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ð Þ2 trace�þ �2 trace��

M

s
:

Three choices for � are available, and are determined by the input argument corr:

setting corr ¼ Nag EmbedScaleTraces sets

� ¼ trace�

trace�þ
;

setting corr ¼ Nag EmbedScaleSqrtTraces sets

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace�

trace�þ

s
;

setting corr ¼ Nag EmbedScaleOne sets � ¼ 1.

nag_rand_field_1d_user_setup (g05zmc) finds a suitable positive semidefinite embedding matrix B and
outputs its size, m, and the square roots of its eigenvalues in lam. If approximation is used, information
regarding the accuracy of the approximation is output. Note that only the first row (or column) of B is
actually formed and stored.

4 References

Dietrich C R and Newsam G N (1997) Fast and exact simulation of stationary Gaussian processes
through circulant embedding of the covariance matrix SIAM J. Sci. Comput. 18 1088–1107

Schlather M (1999) Introduction to positive definite functions and to unconditional simulation of random
fields Technical Report ST 99–10 Lancaster University

Wood A T A and Chan G (1994) Simulation of stationary Gaussian processes in 0; 1½ �d Journal of
Computational and Graphical Statistics 3(4) 409–432

5 Arguments

1: ns – Integer Input

On entry: the number of sample points to be generated in realizations of the random field.

Constraint: ns � 1.

2: xmin – double Input

On entry: the lower bound for the interval over which the random field is to be simulated.

Constraint: xmin < xmax.

3: xmax – double Input

On entry: the upper bound for the interval over which the random field is to be simulated.

Constraint: xmin < xmax.

4: maxm – Integer Input

On entry: the maximum size of the circulant matrix to use. For example, if the embedding matrix
is to be allowed to double in size three times before the approximation procedure is used, then
choose maxm ¼ 2kþ2 where k ¼ 1þ log2 ns� 1ð Þd e.

g05zmc NAG Library Manual

g05zmc.2 Mark 24



Suggested value: 2kþ2 where k ¼ 1þ log2 ns� 1ð Þd e

Constraint: maxm � 2k, where k is the smallest integer satisfying 2k � 2 ns� 1ð Þ .

5: var – double Input

On entry: the multiplicative factor �2 of the variogram � xð Þ.
Constraint: var � 0:0.

6: cov1 – function, supplied by the user External Function

cov1 must evaluate the variogram � xð Þ, without the multiplicative factor �2, for all x � 0. The
value returned in gamma is multiplied internally by var.

The specification of cov1 is:

void cov1 (double x, double *gamma, Nag_Comm *comm)

1: x – double Input

On entry: the value x at which the variogram � xð Þ is to be evaluated.

2: gamma – double * Output

On exit: the value of the variogram
� xð Þ
�2

.

3: comm – Nag_Comm * Communication Structure

Pointer to structure of type Nag_Comm; the following members are relevant to cov1.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_rand_field_1d_user_setup
(g05zmc) you may allocate memory and initialize these pointers with various
quantities for use by cov1 when called from nag_rand_field_1d_user_setup
(g05zmc) (see Section 3.2.1.1 in the Essential Introduction).

7: pad – Nag_EmbedPad Input

On entry: determines whether the embedding matrix is padded with zeros, or padded with values
of the variogram. The choice of padding may affect how big the embedding matrix must be in
order to be positive semidefinite.

pad ¼ Nag EmbedPadZeros
The embedding matrix is padded with zeros.

pad ¼ Nag EmbedPadValues
The embedding matrix is padded with values of the variogram.

Suggested value: pad ¼ Nag EmbedPadValues.

Constraint: pad ¼ Nag EmbedPadZeros or Nag EmbedPadValues.

8: corr – Nag_EmbedScale Input

On entry: determines which approximation to implement if required, as described in Section 3.

Suggested value: corr ¼ Nag EmbedScaleTraces.

Constraint: corr ¼ Nag EmbedScaleTraces, Nag EmbedScaleSqrtTraces or Nag EmbedScaleOne.

g05 – Random Number Generators g05zmc

Mark 24 g05zmc.3

../GENINT/essint.pdf
../GENINT/essint.pdf


9: lam½maxm� – double Output

On exit: contains the square roots of the eigenvalues of the embedding matrix.

10: xx½ns� – double Output

On exit: the points at which values of the random field will be output.

11: m – Integer * Output

On exit: the size of the embedding matrix.

12: approx – Integer * Output

On exit: indicates whether approximation was used.

approx ¼ 0
No approximation was used.

approx ¼ 1
Approximation was used.

13: rho – double * Output

On exit: indicates the scaling of the covariance matrix. rho ¼ 1:0 unless approximation was used
with corr ¼ Nag EmbedScaleTraces or Nag EmbedScaleSqrtTraces.

14: icount – Integer * Output

On exit: indicates the number of negative eigenvalues in the embedding matrix which have had to
be set to zero.

15: eig½3� – double Output

On exit: indicates information about the negative eigenvalues in the embedding matrix which have
had to be set to zero. eig½0� contains the smallest eigenvalue, eig½1� contains the sum of the
squares of the negative eigenvalues, and eig½2� contains the sum of the absolute values of the
negative eigenvalues.

16: comm – Nag_Comm * Communication Structure

The NAG communication argument (see Section 3.2.1.1 in the Essential Introduction).

17: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, maxm ¼ valueh i.
Constraint: the minimum calculated value for maxm is valueh i.
Where the minimum calculated value is given by 2k, where k is the smallest integer satisfying
2k � 2 ns� 1ð Þ.
On entry, ns ¼ valueh i.
Constraint: ns � 1.

g05zmc NAG Library Manual

g05zmc.4 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf


NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_REAL

On entry, var ¼ valueh i.
Constraint: var � 0:0.

NE_REAL_2

On entry, xmin ¼ valueh i and xmax ¼ valueh i.
Constraint: xmin < xmax.

7 Accuracy

If on exit approx ¼ 1, see the comments in Section 3 regarding the quality of approximation; increase
the value of maxm to attempt to avoid approximation.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

This example calls nag_rand_field_1d_user_setup (g05zmc) to calculate the eigenvalues of the
embedding matrix for 8 sample points of a random field characterized by the symmetric stable
variogram:

� xð Þ ¼ �2 exp � x0ð Þ�
� �

;

where x0 ¼ x
‘ , and ‘ and � are parameters.

It should be noted that the symmetric stable variogram is one of the pre-defined variograms available in
nag_rand_field_1d_predef_setup (g05znc). It is used here purely for illustrative purposes.

10.1 Program Text

/* nag_rand_field_1d_user_setup (g05zmc) Example Program.
*
* Copyright 2013 Numerical Algorithms Group.
*
* Mark 24, 2013.
*/

#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg05.h>
#include <nagx04.h>

#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL cov1(double x, double *gamma, Nag_Comm *comm);
#ifdef __cplusplus
}
#endif
static void read_input_data(double *l, double *nu, double *var, double *xmin,

double *xmax, Integer *ns, Integer *maxm,

g05 – Random Number Generators g05zmc

Mark 24 g05zmc.5

../G05/g05znc.pdf
../G05/g05znc.pdf


Nag_EmbedScale *corr, Nag_EmbedPad *pad);
static void display_results(Integer approx, Integer m, double rho,

double *eig, Integer icount, double *lam);
int main(void)
{

Integer exit_status = 0;
/* Scalars */
double c, nu, rho, var, xmax, xmin;
Integer approx, icount, m, maxm, ns;
/* Arrays */
double eig[3], *lam = 0, *xx = 0;
/* Nag types */
Nag_EmbedScale corr;
Nag_EmbedPad pad;
Nag_Comm comm;
NagError fail;

INIT_FAIL(fail);

printf("nag_rand_field_1d_user_setup (g05zmc) Example Program Results\n\n");

/* Get problem specifications from data file*/
read_input_data(&c, &nu, &var, &xmin, &xmax, &ns, &maxm, &corr, &pad);
if (!(lam = NAG_ALLOC(maxm, double))||

!(xx = NAG_ALLOC(ns, double)) ||
!(comm.user = NAG_ALLOC(2, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
/* Put covariance parameters in communication array*/
comm.user[0] = c;
comm.user[1] = nu;
/* Get square roots of the eigenvalues of the embedding matrix. These are
* obtained from the setup for simulating one-dimensional random fields,
* with a user-defined variogram, by the circulant embedding method using
* nag_rand_field_1d_user_setup (g05zmc).
*/

nag_rand_field_1d_user_setup(ns, xmin, xmax, maxm, var, cov1, pad,
corr, lam, xx, &m, &approx, &rho, &icount,
eig, &comm, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_rand_field_1d_user_setup (g05zmc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}
/* Output results*/
display_results(approx, m, rho, eig, icount, lam);

END:
NAG_FREE(lam);
NAG_FREE(xx);
NAG_FREE(comm.user);
return exit_status;

}

void read_input_data(double *l, double *nu, double *var, double *xmin,
double *xmax, Integer *ns, Integer *maxm,
Nag_EmbedScale *corr, Nag_EmbedPad *pad)

{
/* Arrays */
char nag_enum_arg[40];
/* Skip heading and get l and nu for cov1 function. */

scanf("%*[^\n] %lf %lf%*[^\n]",l,nu);
/* Read in variance of random field. */
scanf("%lf%*[^\n]",var);
/* Read in domain endpoints. */
scanf("%lf %lf%*[^\n]",xmin,xmax);
/* Read in number of sample points. */
scanf("%ld%*[^\n]",ns);

g05zmc NAG Library Manual

g05zmc.6 Mark 24



/* Read in maximum size of embedding matrix. */
scanf("%ld%*[^\n]",maxm);
/* Read in choice of scaling in case of approximation. */
scanf(" %39s%*[^\n]", nag_enum_arg);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/

*corr = (Nag_EmbedScale) nag_enum_name_to_value(nag_enum_arg);
/* Read in choice of padding and convert to enum name to value. */
scanf(" %39s%*[^\n]", nag_enum_arg);
*pad = (Nag_EmbedPad) nag_enum_name_to_value(nag_enum_arg);

}

void display_results(Integer approx, Integer m, double rho, double *eig,
Integer icount, double *lam)

{
Integer j;
/* Display size of embedding matrix*/
printf("\nSize of embedding matrix = %ld\n\n", m);
/* Display approximation information if approximation used*/
if (approx==1) {

printf("Approximation required\n\n");
printf("rho = %10.5f\n", rho);
printf("eig = ");
for (j=0; j<3; j++)

printf("%10.5f ", eig[j]);
printf("\nicount = %ld\n", icount);

} else {
printf("Approximation not required\n");

}
/* Display square roots of the eigenvalues of the embedding matrix*/
printf("\nSquare roots of eigenvalues of embedding matrix:\n\n");
for (j=0; j<m; j++)

printf("%10.5f%s", lam[j], j%4==3?"\n":"");
printf("\n");

}

static void NAG_CALL cov1(double x, double *gamma, Nag_Comm *comm)
{

/* Scalars */
double dummy, l, nu;

/* Correlation length and exponent in comm->ruser.*/
l = comm->user[0];
nu = comm->user[1];
if (x==0.0) {

*gamma = 1.0;
} else {

dummy = pow(x/l, nu);
*gamma = exp(-dummy);

}
}

10.2 Program Data

nag_rand_field_1d_user_setup (g05zmc) Example Program Data
0.1 1.2 : c, nu
0.5 : var

-1.0 1.0 : xmin, xmax
8 : ns
64 : maxm
Nag_EmbedScaleOne : icorr
Nag_EmbedPadValues : pad

g05 – Random Number Generators g05zmc

Mark 24 g05zmc.7



10.3 Program Results

nag_rand_field_1d_user_setup (g05zmc) Example Program Results

Size of embedding matrix = 16

Approximation not required

Square roots of eigenvalues of embedding matrix:

0.74207 0.73932 0.73150 0.71991
0.70639 0.69304 0.68184 0.67442
0.67182 0.67442 0.68184 0.69304
0.70639 0.71991 0.73150 0.73932

g05zmc NAG Library Manual

g05zmc.8 (last) Mark 24


	g05zmc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Dietrich and Newsam (1997)
	Schlather (1999)
	Wood and Chan (1994)

	5 Arguments
	ns
	xmin
	xmax
	maxm
	var
	cov1
	x
	gamma
	comm
	user
	iuser
	p


	pad
	corr
	lam
	xx
	m
	approx
	rho
	icount
	eig
	comm
	fail

	6 Error Indicators and Warnings
	NE_BAD_PARAM
	NE_INT
	NE_INTERNAL_ERROR
	NE_REAL
	NE_REAL_2

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction



